Torsion-free classes of smooth projective curves of genus $0 \ {\rm and} \ 1$

Shunya SAITO

The University of Tokyo

2024/9/18 The 56th Symposium on Ring Theory and Representation Theory

Overview

Today's topic

Study torsion-free classes of $\operatorname{coh} C$.

Here,

- torsion-free class = subcategory closed under sub. and ext.
- C: smooth projective curve ($\iff R$: ring).
- $\operatorname{coh} C$: the category of coherent sheaves on $C \pmod{R}$

More specifically, we classify torsion-free classes of $\operatorname{coh} C$ when:

- $C = \mathbb{P}^1$: the projective line (genus 0, easy case), and
- C = E: an elliptic curve (genus 1, main case).

Overview

Today's topic

Study torsion-free classes of $\operatorname{coh} C$.

Here,

- torsion-free class = subcategory closed under sub. and ext.
- C: smooth projective curve ($\iff R$: ring).
- $\operatorname{coh} C$: the category of coherent sheaves on $C \pmod{R}$ More specifically, we classify torsion-free classes of $\operatorname{coh} C$ when:
 - $C = \mathbb{P}^1$: the projective line (genus 0, easy case), and
 - C = E: an elliptic curve (genus 1, main case).

Contents

1 Preliminaries on algebraic curves

- 2 Backgrounds for classifications of subcategories
- 3 Torsion-free classes of the projective line
- 4 Torsion-free classes of an elliptic curve

Throughout this talk,

• k: an algebraically closed field.

Preliminaries on algebraic curves

2 Backgrounds for classifications of subcategories

- 3 Torsion-free classes of the projective line
- 4 Torsion-free classes of an elliptic curve

The category $\operatorname{coh} C$

C: smooth projective curve over \Bbbk (\longleftrightarrow R: ring). Then coh C (\longleftrightarrow mod R) is...

properties similar to mod $\Bbbk Q$:

- k-linear abelian category,
- Hom-finite (i.e., $\dim_{\Bbbk} \operatorname{Hom}(\mathscr{F}, \mathscr{G}) < \infty$),
- hereditary (i.e., $Ext^{>1} = 0$),

properties not similar to $\mathsf{mod}\,\Bbbk Q$:

- noetherian but not of finite length,
- has no nonzero projective objects.

Theorem (Serre 1955)

If $C = \{f_1 = \cdots = f_m = 0\}$, $f_1, \ldots, f_m \in \mathbb{k}[x_1, \ldots, x_n]$: homogeneous, $\operatorname{coh} C \simeq \operatorname{qgr} A := \operatorname{mod}^{\mathbb{Z}} A / \operatorname{mod}_{\operatorname{fd}}^{\mathbb{Z}} A$, $A = \mathbb{k}[x_1, \ldots, x_n] / (f_1, \ldots, f_m)$.

The category $\operatorname{coh} C$

C: smooth projective curve over \Bbbk (\longleftrightarrow R: ring). Then coh C (\longleftrightarrow mod R) is...

properties similar to mod $\Bbbk Q$:

- k-linear abelian category,
- Hom-finite (i.e., $\dim_{\Bbbk} \operatorname{Hom}(\mathscr{F}, \mathscr{G}) < \infty$),
- hereditary (i.e., $Ext^{>1} = 0$),

properties not similar to mod $\Bbbk Q$:

- noetherian but not of finite length,
- has no nonzero projective objects.

Theorem (Serre 1955)

If $C = \{f_1 = \cdots = f_m = 0\}$, $f_1, \ldots, f_m \in \mathbb{k}[x_1, \ldots, x_n]$: homogeneous, $\operatorname{coh} C \simeq \operatorname{qgr} A := \operatorname{mod}^{\mathbb{Z}} A / \operatorname{mod}_{\operatorname{fd}}^{\mathbb{Z}} A$, $A = \mathbb{k}[x_1, \ldots, x_n] / (f_1, \ldots, f_m)$.

The category ${\rm coh}\, C$

C: smooth projective curve over \Bbbk (\longleftrightarrow R: ring). Then coh C (\longleftrightarrow mod R) is...

properties similar to mod $\Bbbk Q$:

- k-linear abelian category,
- Hom-finite (i.e., $\dim_{\Bbbk} \operatorname{Hom}(\mathscr{F}, \mathscr{G}) < \infty$),
- hereditary (i.e., $Ext^{>1} = 0$),

properties not similar to mod $\Bbbk Q$:

- noetherian but not of finite length,
- has no nonzero projective objects.

Theorem (Serre 1955)

If
$$C = \{f_1 = \cdots = f_m = 0\}$$
, $f_1, \ldots, f_m \in \mathbb{k}[x_1, \ldots, x_n]$: homogeneous,
 $\operatorname{coh} C \simeq \operatorname{qgr} A := \operatorname{mod}^{\mathbb{Z}} A / \operatorname{mod}_{\operatorname{fd}}^{\mathbb{Z}} A$, $A = \mathbb{k}[x_1, \ldots, x_n] / (f_1, \ldots, f_m)$.

The rough classification of ${\boldsymbol C}$

Smooth projective curves C are roughly classified by $g_C \in \mathbb{Z}_{\geq 0}$: the genus. ($\iff q_Q$: Tits quadratic form) For a quiver Q,

q_Q	positive definite	positive semidefinite	indefinite
Q	Dynkin	Extended Dynkin	the others
$mod \Bbbk Q$	finite	tame	wild

For a smooth projective curve C,

		1	≥ 2
С	\mathbb{P}^1 : the projective line	E: an elliptic curve	general type
$\operatorname{coh} C$	(VB-)finite	tame	wild

Today's aim (Recall)

Classifying torsion-free classes of $\operatorname{coh} C$ when $C = \mathbb{P}^1$ or E.

The rough classification of ${\boldsymbol C}$

Smooth projective curves C are roughly classified by $g_C \in \mathbb{Z}_{\geq 0}$: the genus. ($\iff q_Q$: Tits quadratic form) For a quiver Q,

q_Q	positive definite	positive semidefinite	indefinite
Q	Dynkin	Extended Dynkin	the others
$mod \Bbbk Q$	finite	tame	wild

For a smooth projective curve C,

g_C	0	1	≥ 2
C	\mathbb{P}^1 : the projective line	E: an elliptic curve	general type
$\cosh C$	(VB-)finite	tame	wild

Today's aim (Recall)

Classifying torsion-free classes of $\operatorname{coh} C$ when $C = \mathbb{P}^1$ or E.

Smooth projective curves C are roughly classified by $g_C \in \mathbb{Z}_{\geq 0}$: the genus. ($\iff q_Q$: Tits quadratic form) For a quiver Q,

q_Q	positive definite	positive semidefinite	indefinite
Q	Dynkin	Extended Dynkin	the others
$mod \Bbbk Q$	finite	tame	wild

For a smooth projective curve C,

g_C	0	1	≥ 2
C	\mathbb{P}^1 : the projective line	E: an elliptic curve	general type
$\cosh C$	(VB-)finite	tame	wild

Today's aim (Recall)

Classifying torsion-free classes of $\operatorname{coh} C$ when $C = \mathbb{P}^1$ or E.

2 Backgrounds for classifications of subcategories

- 3 Torsion-free classes of the projective line
- 4 Torsion-free classes of an elliptic curve

Known results for subcategories of $\operatorname{coh} X$

A subcategory of an abelian category is...

- Serre subcategory : \Leftrightarrow closed under sub, quot, and ext.
- torsion class (tors) : \Leftrightarrow closed under quot, and ext.
- torsion-free class (torf) : \Leftrightarrow closed under sub, and ext.
- wide : \Leftrightarrow closed under kernels, cokernels, and ext.

Known classification results for noetherian schemes

Gabriel 1962: Serre subcategories of coh X for a noetherian scheme X (especially, mod R for a commutative noetherian ring R).

Takahashi 2008, Stanley-Wang 2011, Enomoto 2023:

Wide subcategories, torsion(-free) classes, and many classes of subcategories of mod R.

S. 2024: The above classifications also hold for L-closed subcategories of $\operatorname{coh} X$.

Problem

Classify subcategories of $\operatorname{coh} X$ which is not L-closed.

Known results for subcategories of $\operatorname{coh} X$

A subcategory of an abelian category is...

- Serre subcategory : \Leftrightarrow closed under sub, quot, and ext.
- torsion class (tors) : \Leftrightarrow closed under quot, and ext.
- torsion-free class (torf) : \Leftrightarrow closed under sub, and ext.
- wide : \Leftrightarrow closed under kernels, cokernels, and ext.

Known classification results for noetherian schemes

Gabriel 1962: Serre subcategories of coh X for a noetherian scheme X (especially, mod R for a commutative noetherian ring R).

Takahashi 2008, Stanley-Wang 2011, Enomoto 2023:

Wide subcategories, torsion(-free) classes, and many classes of subcategories of mod R.

S. 2024: The above classifications also hold for L-closed subcategories of $\operatorname{coh} X$.

Problem

Classify subcategories of coh X which is not L-closed.

Known results for subcategories of $\operatorname{coh} X$

A subcategory of an abelian category is...

- Serre subcategory : \Leftrightarrow closed under sub, quot, and ext.
- torsion class (tors) : \Leftrightarrow closed under quot, and ext.
- torsion-free class (torf) : \Leftrightarrow closed under sub, and ext.
- wide : \Leftrightarrow closed under kernels, cokernels, and ext.

Known classification results for noetherian schemes

Gabriel 1962: Serre subcategories of coh X for a noetherian scheme X (especially, mod R for a commutative noetherian ring R).

Takahashi 2008, Stanley-Wang 2011, Enomoto 2023:

Wide subcategories, torsion(-free) classes, and many classes of subcategories of mod R.

S. 2024: The above classifications also hold for L-closed subcategories of $\operatorname{coh} X$.

Problem

Classify subcategories of coh X which is not L-closed.

Known results for subcategories of $\operatorname{coh} C$

For a smooth projective curve C, the following is known.

Known classification results for smooth projective curves Krause-Stevenson 2019: Wide subcategories of $coh \mathbb{P}^1$. ($\leftrightarrow \rightarrow$ thick subcategories of $D^b(coh \mathbb{P}^1)$) Hirano-Ouchi 2022: Wide subcategories of coh E. ($\leftrightarrow \rightarrow$ thick subcategories of $D^b(coh E)$) Chen-Lin-Ruan 2023: Torsion classes of $coh \mathbb{P}^1$ and coh E. ($\leftrightarrow \rightarrow$ torsion pair of $coh \mathbb{P}^1$ and coh E)

Today's aim (Recall)

Classifying torsion-free classes of $\operatorname{coh} C$ when $C = \mathbb{P}^1$ or E.

Note: {torsion pairs} \nleftrightarrow {torsion-free classes} since coh C is not artinian.

Known results for subcategories of $\operatorname{coh} C$

For a smooth projective curve C, the following is known.

Known classification results for smooth projective curves Krause-Stevenson 2019: Wide subcategories of $coh \mathbb{P}^1$. ($\leftrightarrow \rightarrow$ thick subcategories of $D^b(coh \mathbb{P}^1)$) Hirano-Ouchi 2022: Wide subcategories of coh E. ($\leftrightarrow \rightarrow$ thick subcategories of $D^b(coh E)$) Chen-Lin-Ruan 2023: Torsion classes of $coh \mathbb{P}^1$ and coh E. ($\leftrightarrow \rightarrow$ torsion pair of $coh \mathbb{P}^1$ and coh E)

Today's aim (Recall)

Classifying torsion-free classes of $\operatorname{coh} C$ when $C = \mathbb{P}^1$ or E.

Note: {torsion pairs} \nleftrightarrow {torsion-free classes} since coh C is not artinian.

- Preliminaries on algebraic curves
- 2 Backgrounds for classifications of subcategories
- 3 Torsion-free classes of the projective line
- 4 Torsion-free classes of an elliptic curve

The AR quiver of $\operatorname{\mathsf{coh}} \mathbb{P}^1$

- $\operatorname{coh} \mathbb{P}^1 \simeq \operatorname{qgr} S \left(= \operatorname{mod}^{\mathbb{Z}} S / \operatorname{mod}_{\operatorname{fd}}^{\mathbb{Z}} S \right)$, where $S = \Bbbk[x, y]$.
- \exists essentially surjective functor $Q: \operatorname{mod}^{\mathbb{Z}} S \to \operatorname{coh} \mathbb{P}^1$.

• Set
$$\mathscr{O}(n) := Q(S(n))$$
 $(n \in \mathbb{Z})$, and
 $\mathscr{O}_{d[a:b]} := Q\left(S/(bx - ay)^d\right)$ $(d \in \mathbb{Z}_{\geq 1}, [a:b] \in \mathbb{P}^1(\mathbb{k}))$.

The AR quiver of $\operatorname{\mathsf{coh}} \mathbb{P}^1$:

The AR quiver of $\operatorname{\mathsf{coh}} \mathbb{P}^1$

•
$$\operatorname{\mathsf{coh}} \mathbb{P}^1 \simeq \operatorname{\mathsf{qgr}} S \left(= \operatorname{\mathsf{mod}}^{\mathbb{Z}} S / \operatorname{\mathsf{mod}}_{\operatorname{fd}}^{\mathbb{Z}} S \right)$$
, where $S = \Bbbk[x,y]$.

• \exists essentially surjective functor $Q: \operatorname{mod}^{\mathbb{Z}} S \to \operatorname{coh} \mathbb{P}^1$.

• Set
$$\mathscr{O}(n) := Q(S(n))$$
 $(n \in \mathbb{Z})$, and
 $\mathscr{O}_{d[a:b]} := Q\left(S/(bx - ay)^d\right)$ $(d \in \mathbb{Z}_{\geq 1}, [a:b] \in \mathbb{P}^1(\mathbb{k})).$

The AR quiver of $\operatorname{coh} \mathbb{P}^1$:

The torsion-free classes of $\operatorname{\mathsf{coh}} \mathbb{P}^1$

- Preliminaries on algebraic curves
- 2 Backgrounds for classifications of subcategories
- 3 Torsion-free classes of the projective line
- 4 Torsion-free classes of an elliptic curve

Stability conditions

C: smooth projective curve.

Definition

1 The slope of $\mathscr{F} \in \operatorname{coh} C$ is defined by

$$\mu(\mathscr{F}) := \frac{\deg \mathscr{F}}{\mathrm{rk}\,\mathscr{F}} \in \mathbb{Q} \cup \{\infty\}.$$

 $\begin{array}{ll} \textcircled{O} \ensuremath{\mathscr{F}} \in \mathsf{coh}\, C \colon \mathsf{semistable} : \Longleftrightarrow \mu(\mathscr{G}) \leq \mu(\mathscr{F}) \mbox{ for } \forall \mbox{ subobject } \mathscr{G} \mbox{ of } \mathscr{F}. \\ \fbox{O} \ensuremath{\mathsf{coh}}_{\mu}\, C := \{ \mathsf{semistable} \mbox{ of slope } \mu \} \ (\mu \in \mathbb{Q} \cup \{\infty\}). \end{array}$

Properties

Stability conditions

C: smooth projective curve.

Definition

1 The slope of $\mathscr{F} \in \operatorname{coh} C$ is defined by

$$\mu(\mathscr{F}) := \frac{\deg \mathscr{F}}{\mathrm{rk}\,\mathscr{F}} \in \mathbb{Q} \cup \{\infty\}.$$

 $\begin{array}{ll} \textcircled{O} \ \mathscr{F} \in \operatorname{coh} C \colon \operatorname{semistable} : \Longleftrightarrow \mu(\mathscr{G}) \leq \mu(\mathscr{F}) \ \text{for} \ \forall \ \text{subobject} \ \mathscr{G} \ \text{of} \ \mathscr{F}. \\ \\ \fbox{O} \ \operatorname{coh}_{\mu} C := \{ \text{semistable of slope} \ \mu \} \ (\mu \in \mathbb{Q} \cup \{\infty\}). \end{array}$

Properties

$$Hom(\operatorname{coh}_{\mu} C, \operatorname{coh}_{\nu} C) = 0 \text{ if } \mu > \nu. \left(\mathscr{Y} * \mathscr{Y} \coloneqq \{ \mathsf{M} \mid 0 \to \mathsf{X} \to \mathsf{M} \to \mathsf{Y} \to \mathsf{Q} \} \right)$$

$$coh C = \bigcup_{n \ge 1} \bigcup_{\mu_1 > \mu_2 > \cdots > \mu_n} (\operatorname{coh}_{\mu_1} C) * (\operatorname{coh}_{\mu_2} C) * \cdots * (\operatorname{coh}_{\mu_n} C).$$

C: smooth projective curve of genus g.

Proposition (S.)

 $\mathcal{X} \subseteq \operatorname{coh} C$: torsion-free class, $\mathscr{F} \in \mathcal{X}$: semistable of slope $\mu \in \mathbb{Q}$. Then \mathcal{X} contains all the semistable sheaves of slope $< \mu - (2g - 1)$.

E: an elliptic curve (i.e., g = 1). We have the following by the previous proposition:

Corollary

 $\mathcal{X} \subseteq \operatorname{coh} E$: torsion-free class, $\mathscr{F} \in \mathcal{X}$: semistable of slope $\mu \in \mathbb{Q}$. Then \mathcal{X} contains all the semistable sheaves of slope $< \mu - 1$.

In this case, we obtain a better version of this corollary.

Theorem (S.)

 $\mathcal{X} \subseteq \operatorname{coh} E$: torsion-free class, $\mathscr{F} \in \mathcal{X}$: semistable of slope $\mu \in \mathbb{Q}$. Then \mathcal{X} contains all the semistable sheaves of slope $< \mu$. E: an elliptic curve (i.e., g = 1). We have the following by the previous proposition:

Corollary

 $\mathcal{X} \subseteq \operatorname{coh} E$: torsion-free class, $\mathscr{F} \in \mathcal{X}$: semistable of slope $\mu \in \mathbb{Q}$. Then \mathcal{X} contains all the semistable sheaves of slope $< \mu - 1$.

In this case, we obtain a better version of this corollary.

Theorem (S.)

 $\mathcal{X} \subseteq \operatorname{coh} E$: torsion-free class, $\mathscr{F} \in \mathcal{X}$: semistable of slope $\mu \in \mathbb{Q}$. Then \mathcal{X} contains all the semistable sheaves of slope $< \mu$.

The classification of torsion-free classes of $\cosh E$

The torsion-free classes of coh E:

Thank you for your attention.