Connections on dg modules and na¨ıve liftings

Yuji Yoshino

Okayama University (Joint work with Maiko Ono and Saeed Nasseh)

Background

Let $R \to S (= R/I)$ be commutative noetherian rings.

• An *S*-module *M* is said to be liftable to *R* if there exists an *R*-module *N* such that

 $N \otimes_R S \cong M$ and $\operatorname{Tor}_i^R(N, S) = 0$ for $i > 0$.

• Equivalently, there is an acyclic free complex *F* over *R* such that $F \otimes_R S$ gives an *S*-free resolution of *M*.

In the case $I = (x)$ where x is a non-zero divisor in R, Auslander-Ding-Solberg (1993) show:

- there is an obstruction class e_M for liftability in $\text{Ext}^2_S(M, M)$.
- since $e_{M_1 \oplus M_2} = e_{M_1} + e_{M_2}$, the module class of $e_M = 0$ is closed under direct summand, however a direct summand of a liftable module is not necessarily liftable.
- *•* An *S*-module *M* is said to be weakly liftable to *R* if *M ⊕ M′* is liftable for some M' . This is equivalent to $e_M = 0$.

Example

Let
$$
R = k[x, y]/(x^2 - y^3) \to S = R/(y) \cong k[x]/(x^2)
$$
.

$$
\cdots \longrightarrow R^2 \xrightarrow{\begin{pmatrix} x & y \\ y^2 & x \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} x & -y \\ -y^2 & x \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} x & y \\ y^2 & x \end{pmatrix}} R^2 \longrightarrow M \longrightarrow 0,
$$

is an *R*-free resolution, and taking modulo (*y*) we have

$$
\cdots \longrightarrow S^2 \xrightarrow{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}} S^2 \xrightarrow{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}} S^2 \xrightarrow{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}} S^2 \to k \oplus k \to 0.
$$

Thus *S*-module $k \oplus k$ is liftable to *R*. However one can see that *k* is not liftable, since

$$
\cdots \longrightarrow S \xrightarrow{x} S \xrightarrow{x} S \longrightarrow k \to 0
$$

cannot be lifted. This *k* is weakly liftable.

Expand into the dg world

R : a commutative ring

• (*A, d^A*) : a commutative dg *R*-algebra (可換次数付き微分代数) **0** $A = \bigoplus_{i \geq 0} A_i$: a non-negatively graded *R*-algebra, commutative in the following sense;

$$
ab = (-1)^{|a||b|}ba
$$
, and $a^2 = 0$ if $|a|$ is odd

2 $d^A: A \to A(-1)$ is graded *R*-linear with $(d^A)^2 = 0$. **3** (Leibniz rule)

$$
d^{A}(ab) = d^{A}(a)b + (-1)^{|a|}ad^{A}(b)
$$

for $a, b \in A$.

Expand into the dg world

A: a commutative dg *R*-algebra

\n- \n
$$
N = (N, \partial^N) : \text{a dg } A\text{-module}
$$
\n $(\forall \mathbb{X} \land \mathbb{Y}) \land A\text{-} \mathbb{Y} \land A$

$$
\partial^{N}(xa) = \partial^{N}(x)a + (-1)^{|x|}xd^{A}(a)
$$

for $x \in N, a \in A$.

• N is a semi-free dg *A*-module if *N* is a graded free *A*-module with well-ordered free basis *E* with the following property:

$$
\partial^N(e) \in \{e' \in E \mid e' < e\}A \quad \text{for} \quad e \in E.
$$

E is called a semi-free basis of *N*.

Na¨ıve lifting

$A \rightarrow B$: a dg *R*-algebra homomorphism of commutative dg *R*-algebras **Definition**

We say $Y \in D(B)$ is naïvely liftable to *A* if $\pi_Y : Y|_A \otimes_A^{\mathbf{L}} B \to Y$ has a right inverse in $D(B)$, i.e. $\exists \rho : Y \to Y | A \otimes_A^{\mathbf{L}} B$ in $D(B)$ such that $π_Y ∘ ρ = 1_Y$.

 $N:$ a semi-free DG *B*-module with semi-free basis $E = \{e_{\lambda}\}_{\lambda \in \Lambda}$.

- *N* is liftable to $A \iff N \cong M \otimes_A B$ as dg *B*-modules for \exists dg *A*-module *M*.
- *• N* is na¨ıvely liftable to *A ⇐⇒* the natural dg *B*-module homomorphism $\pi_N : N|_A \otimes_A B \to N$ ($n \otimes b \mapsto nb$) is a split epimorphism, i.e. \exists dg *B*-homomorphism $\rho_N : N \to N|_A \otimes_A B$ s.t., $\pi_N \circ \rho_N = id_N$.
- *•* liftable *⇒* na¨ıve liftable.

Na¨ıve lifting conjecture

Conjecture (Naive lifting conjecture)

Under the setup $A \to B$, let N be a (semi-free, non-negatively graded) dg *B*-module. Assume the AR assumption, i.e.

- **0** *B* is a direct summand of *N*,
- \bullet *N*[|]*A* is perfect,
- \bullet Hom_{*D*(*B*)}(*N*, *N*(*i*)) = 0 for $i \neq 0$.

Then, *N* is naively liftable to *A*, and hence *N* is perfect over *B*.

− − − − − − − ∗ − − − − − − −

N is perfect over $B \Leftrightarrow \exists$ a dg *B*-module homomorphism $L \rightarrow N$ that is quasi-isomorphic and *L* is finite free as a graded *B*-module.

Obstruction class for na¨ıve lifting

Setting

 $A \rightarrow B$: commutative dg *R*-algebras $N:$ a semi-free dg *B*-mdoule with semi-free basis $E = \{e_{\lambda}\}_{\lambda \in \Lambda}$.

 $\pi_B : B^e = B^o \otimes_A B \rightarrow B$ ($a \otimes b \mapsto ab$) : the multiplication $J = \text{Ker}(\pi_B)$: the diagonal ideal *∃* a short exact sequence of dg *B^e* -modules:

$$
0 \to J \to B^e \xrightarrow{\pi_B} B \to 0.
$$

⇝ applying *N ⊗^B −*, we have an exact sequence of dg *B*-modules:

$$
0 \longrightarrow N \otimes_B J \longrightarrow N \otimes_B B^e \xrightarrow{\mathrm{id}_N \otimes \pi_B} N \otimes_B B \longrightarrow 0.
$$

$$
\parallel \qquad \qquad N|_A \otimes_A B \xrightarrow{\pi_N} N
$$

Therefore, the obstruction class for naive lifting of *N* lies in $\text{Ext}_{B}^{1}(N, N \otimes_{B} J) = \text{Hom}_{K(B)}(N, N \otimes_{B} J(-1)),$ where $K(B)$ is the homotopy category of dg *B*-modules.

Definition

A semi-free dg *B*-module *N* is called **weakly liftable** to *A* if a finite direct sum $N \oplus N(-a_1) \oplus \cdots \oplus N(-a_r)$ where $a_i > 0$ is liftable to A.

Let $A \rightarrow B = A\langle X \rangle$ be a free extension with a single variable X, and let $N = (N, \partial^N)$ be a semi-free dg *B*-module that is bounded below.

Theorem (Nasseh-Ono-Yoshino, JAlg 2022)

- ¹ *There is a well-defined obstruction class* $[j_X(\partial^N)] \in \text{Ext}^{|X|+1}_B(N, N)$, where j_X *is the j-operator.*
- **2** *If* |*X*| *is even, then* $[j_X(\partial)] = 0 \Leftrightarrow (N, \partial)$ *is liftable.*

$$
\begin{aligned}\n\bullet \text{ If } |X| \text{ is odd, then } [j_X(\partial)] = 0 \\
&\Leftrightarrow (N, \partial) \oplus (N(-|X|), -\partial) \text{ is } \text{liftable} \\
&\Leftrightarrow (N, \partial) \text{ is weakly } \text{liftable}.\n\end{aligned}
$$

Generalized Atiyah class

- $E = \{e_{\lambda}\}_{{\lambda \in {\Lambda}}}$: a semi-free basis of *N*
- \bullet $\partial^N(e_{\lambda}) = \sum_{\mu < \lambda} e_{\mu} b_{\mu\lambda}$ for $e_{\lambda} \in E$
- Define a graded *B*-linear mapping $\omega_N : N \to N \otimes_B J(-1)$ by

$$
\omega_N(e_\lambda)=\sum_{\mu<\lambda}e_\mu\otimes\delta(b_{\mu\lambda})
$$

where $\delta(b) = b \otimes 1 - 1 \otimes b \in J$ for $b \in B$.

- \bullet ω_N is a dg *B*-module homomorphism, and it defines the homotopy class $[\omega_N]$ in $\text{Ext}_{B}^{1}(N, N \otimes_{B} J) = \text{Hom}_{K(B)}(N, N \otimes_{B} J(-1)).$
- We call $[\omega_N]$ the generalized Atiyah class of *N*.

Theorems

Theorem (Nasseh-Ono-Yoshino, JCommAlg 2024)

- ¹ *N* is naively liftable to *A*.
- \mathbf{Q} $[\omega_N] = 0$ in $\text{Ext}^1_B(N, N \otimes_B J)$.

Theorem (Nasseh-Ono-Yoshino, MathZ 2022)

Let B be a dg smooth dg algebra over A (i.e. the K¨ahler differential $\Omega_A(B) := J/J^2$, moreover all $J^{[m]}/J^{[m+1]}$ are finite semi-free over *B), and let N be a semi-free dg B-module that is bounded below. Then,*

 $\text{Ext}_{B}^{i}(N, N) = 0$ (*i* > 0) \Rightarrow $\text{Ext}_{B}^{i}(N, N \otimes_{B} J) = 0$ (*i* > 0) \Rightarrow *N is naïvely liftable to A.*

Diagonal tensor algebra

Let $A \rightarrow B$ be as in the initial setting (B is semi-free over A).

Definition

$$
T = T_B(J(-1)) = \bigoplus_{i \geq 0} J^{\otimes i}(-i) = B \oplus J(-1) \oplus J(-1)^{\otimes 2} \oplus \cdots
$$

where $J(-1)^{\otimes i} = (J \otimes_B J \otimes_B \cdots \otimes_B J)(-i)$ (i-times).

- **0** *T* is a \mathbb{Z}^2 -graded algebra ; $T_n^i = J_{n-i}^{\otimes i}$ for $(n, i) \in \mathbb{Z}^2$. Call *i* the tensor-degree, while *n* is the dg-degree.
- ² *T* is a graded dg *R*-algebra. (graded in tensor-degree)
- **3** *B* \otimes _{*A*} *T* has a structure of semi-free dg *B^e*-module that resolves *B*. (Equivalent to the reduced bar resolution by Cuntz-Quillen (1995))

A tensor-graded dg *T*-module *M* is a direct sum $M = \bigoplus_{i \in \mathbb{Z}} M^i$ of dg *B*-modules with a bunch of dg *B*-module homomorphisms a_M^i : $M^i \otimes_B J(-1) \to M^{i+1}$ for $i \in \mathbb{Z}$. A tensor-graded dg *T*-module homomorphism $f : M = \bigoplus_{i \in \mathbb{Z}} M^i \to N = \bigoplus_{i \in \mathbb{Z}} N^i$ is a collection of dg *B*-module homomorphisms ${fⁱ}_{i \in \mathbb{Z}}$ which make the following squares commutative in $C(B)$:

$$
M^{i} \otimes_{B} J(-1) \xrightarrow{a_{M}^{i}} M^{i+1}
$$

$$
f_{i} \otimes 1_{J(-1)} \downarrow \qquad \qquad \downarrow f^{i+1}
$$

$$
N^{i} \otimes_{B} J(-1) \xrightarrow{a_{N}^{i}} N^{i+1}
$$

We denote by $C^{gr}(T)$ the category of all tensor-graded dg T -modules and tensor-graded dg *T*-homomorphisms. Obviously $C^{gr}(T)$ is an abelian category.

abelian category $C^{gr}(T) \Rightarrow$ homotopy category $K^{gr}(T)$ *⇒* derived category *Dgr*(*T*)

− − − − − − − ∗ − − − − − − −

Two grading for $X \in C^{gr}(T)$

- \bullet *X*(*n*) the *n*th shift in dg grading; *X*(*n*)_{*m*} = *X*_{*n*+*m*}, $\partial^{X(n)} = (-1)^n \partial^{X}$
- **2** $X[n]$ the *n*th shift in tensor-grading; If $X = \bigoplus_i X^i$ with $X^{i}J(-1) \subset X^{i+1}$, then $X[n] = \bigoplus_{i} Y^{i}$ where $Y^{i} = X^{i+n}$.

For $X, Y \in D^{gr}(T)$

*
$$
{}^*{\rm Hom}_{D^{gr}(T)}(X,Y) := \bigoplus_{i \in \mathbb{Z}} {\rm Hom}_{D^{gr}(T)}(X,Y[i]).
$$

$$
\Gamma_X := {}^*\text{End}_{D^{gr}(T)}(X) = {}^*\text{Hom}_{D^{gr}(T)}(X,X).
$$

 Γ_X is a graded ring in which the multiplication is just a composition of morphisms, and its degree *i* part Γ^i is $\text{Hom}_{D^{gr}(T)}(X, X[i])$:

Let $A \rightarrow B$ be as in the initial setup and N a semi-free dg B-module. Set

 $\Lambda := \text{End}_{D(B)}(N)$, $\Gamma := \Gamma_{N \otimes_B T} = {}^* \text{End}_{D^{gr}(T)}(N \otimes_B T)$.

There is a natural ring homomorphisms

$$
\Lambda \xrightarrow[p]{i} \Gamma
$$

 $i(f) = f \otimes_B T$ for $f \in \Lambda$, and $p(\varphi) = \varphi \otimes_T B$ for $\varphi \in \Gamma$. Since $p \circ i = id_\Lambda$, Λ is a subring of Γ with retraction.

Obstruction

Definition

Let *N* be a sf dg *B*-module with sf basis $\{e_{\lambda}\}\$ which satisfies

$$
\partial^N(e_{\lambda}) = \sum_{\mu < \lambda} e_{\mu} b_{\mu\lambda} \quad (b_{\mu\lambda} \in B)
$$

Define the morphism $\omega = \omega_N : N \otimes_B T \to N \otimes_B T[1]$ in $C^{gr}(T)$; by

$$
\omega(e_{\lambda} \otimes t) = \sum_{\mu < \lambda} e_{\mu} \otimes B \delta(b_{\mu\lambda}) \otimes_{B} t,
$$

where $t \in T$.

 $\omega \in \Gamma^1 = \text{Hom}_{D^{gr}(T)}(N \otimes_B T, N \otimes_B T[1]).$

Remark

The definition of ω **is independent of the choice of semi-free basis.**

 \bullet *N* is naively liftable to *A* $\Leftrightarrow \omega = 0$ in $D^{gr}(T)$.

Assumption (AR-1)

Adding to the initial setting for $A \rightarrow B$, we assume the following:

- *N* is a sf dg *B*-module that is non-negatively graded.
- \bullet *B* $|_A$ and *N* $|_A$ are perfect dg *A*-modules.
- Θ Hom_{*D*(*B*)}(*N, B*(*−n*)) = 0 whenever $n \neq 0$.

Theorem (1)

Under the assumption (AR-1), we have $\Gamma = \Lambda[\omega]$, i.e. every element of Γ is of the polynomial form $\alpha_0 + \omega \alpha_1 + \omega^2 \alpha_2 + \cdots + \omega^n \alpha_n$ with $\alpha_i \in \Lambda$. Furthermore, the multiplication by ω induces bijections $\Gamma^i \xrightarrow{\omega \circ} \Gamma^{i+1}$ for all $i > 0$.

Theorem (2)

Under the assumption (AR-1), there is an exact sequence of graded right Γ*-modules*

$$
0 \longrightarrow P \longrightarrow \Gamma \xrightarrow{\omega \circ} \Gamma \longrightarrow \Lambda \longrightarrow 0 ,
$$

where P is a graded Γ*-ideal concentrated in degree* 0 *(hence a* Λ*-ideal) and*

 $P = \{f \in \Lambda \mid f \text{ factors through a direct sum of copies of } B\}.$

Theorem (3)

Under the assumption (AR-1), the following conditions are equivalent for N.

- ¹ *N is naively liftable to A.*
- $\Omega \omega = 0$ *as an element of* Γ .
- **3** ω *is nilpotent in* Γ *, i.e.* $\omega^n = 0$ *for some* $n > 0$ *.*

 \bullet *The natural mapping* $\Lambda \rightarrow \Gamma$ *is an isomorphism.*

⁵ Γ *is finitely generated as a (right) module over* Λ*.*

$$
\bullet \ \Gamma^i = 0 \ for \ all \ i > 0.
$$

 $\mathbf{P}^i = 0$ for some $i > 0$.

 $\mathbf{S} \Gamma^1 \cong \text{Hom}_{D(B)}(N, N \otimes_B J(-1)) = 0$

Theorem (4)

Assume the same assumption as in the Naive Lifting Conjecture, i.e.

¹ *B is a direct summand of N,*

 \bullet *N* $|_A$ *is perfect,*

 Θ Hom_{*D*(*B*)}(*N*, *N*(*i*)) = 0 *for* $i \neq 0$ *.*

Then the following hold.

- \bullet ***Hom_{*D*}_{gr}(*T*)(*N* ⊗_{*B*} *T*, *N* ⊗_{*B*} *T*(*i*)) = 0 *for i* > 0*.*
- (ii) Λ *has finite projective dimension as right* Γ*-module.*

Derivation

Let $A \to B$ be dg R-algebras, and let L be a dg B^e -module.

• A graded *A*-linear mapping $D : B \to L(n)$ of degree $n \in \mathbb{Z}$ is called an *A*-derivation if the Leibniz rule holds;

 $D(b_1b_2) = D(b_1)b_2 + (-1)^{|b_1|n}b_1D(b_2)$, for $b_1, b_2 \in B$.

- *•* Der*A*(*B, L*)*ⁿ* is the set of all *A*-derivations of degree *n*.
- Set $*Der_A(B, L) = \bigoplus_{n \in \mathbb{Z}} Der_A(B, L)_n$, which is a graded *B*-module.
- *•* Define the differential *∂ [∗]*Der on *[∗]*Der*A*(*B, L*) by

$$
\partial^{\text{*Der}}(D) = \partial^L \circ D - (-1)^{|D|} D \circ d^B \text{ for } D \in \text{*Der}_A(B, L).
$$

- $(^{*}\text{Der}_{A}(B,L), \partial^{*}\text{Der})$ is a dg *B*-module.
- *•* It is known that there is an isomorphism of dg *B*-modules;

*
$$
\text{Der}_A(B, L) \cong \text{Hom}_{B^e}(J, L) \quad (:= \bigoplus_n \text{Hom}_{grB^e-mod}(J, L(n)))
$$

Derivation2

Remark that

.

• In the case $L = B$, $*Der_A(B) := *Der_A(B, B)$ has a Lie algebra structure by

$$
[D_1, D_2] = D_1 \circ D_2 - (-1)^{|D_1||D_2|} D_2 \circ D_1
$$

- In the case $R = A$, the differential d^B is in $Der_R(B)_{-1}$.
- If either $B = A \langle X_1, X_2, \ldots \rangle$ or $B = A \langle X_1, X_2, \ldots \rangle$, the partial derivative $\partial/\partial X_n$ is an *A*-derivation of degree $-|X_n|$.

Connection

Recall the definition of dg *B*-module *N*:

 $\partial^{N}(xb) = \partial^{N}(x)b + (-1)^{|x|}xd^{B}(b)$ for $x \in N, b \in B$.

- Let $A \rightarrow B$ be dg *R*-algebras and *N* be a dg *B*-module.
- Let *D* be an *A*-derivation on *B*, i.e. $D \in \text{Der}_{A}(B)_{n}$. A graded *A*-linear mapping $\psi : N \to N(m)$ is called a *D*-connection on *N* if $|D| = m$ and it satisfies

$$
\psi(xb) = \psi(x)b + (-1)^{m|x|} xD(b) \text{ for } x \in N, b \in B.
$$

- Denote by $Conn(N)_m$ the set of all connections of degree *m* (i.e. all *D*-connections where *D* runs through all *A*-derivations of degree *m*).
- *•* Set

$$
{}^*\mathrm{Conn}(N) = \bigoplus_m \mathrm{Conn}(N)_m
$$

Remark that ∂^N is a d^B -connection. Also remark that 0-connections $=$ *B*-linear mappings. 24

Connection2

Lemma

- **1** If ψ_i is a D_i -connection $(i = 1, 2)$ with $|D_1| = |D_2|$, then $\psi_1 + \psi_2$ is a $D_1 + D_2$ -connection.
- **2** If ψ is a *D*-connection and $b \in B$ homogeneous, then $\psi \cdot b$ is a *D · b*-connection.
- **3** If ψ_i is a D_i -connection $(i = 1, 2)$, $[\psi_1, \psi_2]$ is a $[D_1, D_2]$ -connection.
- Θ Set $^*{\rm Conn}(N)=\bigoplus_n {\rm Conn}(N)_n$ and define the differential by

$$
\partial^* \text{Conn}(\psi) = [\partial^N, \psi] \text{ for } \psi \in^* \text{Conn}(N).
$$

Then $*Conn(N)$ is a dg *B*-module and it also has Lie algebra strucre.

Fundamental exact sequence

• Corresponding a *D*-connection *ψ* to *D*, we have a mapping

$$
{}^*\mathrm{Conn}(N) \xrightarrow{\nu} {}^*\mathrm{Der}_A(B)
$$

which is a dg *B*-module homomorphism and at the same time Lie algebra map.

Theorem

There is a short exact sequence of dg *B*-modules;

$$
0 \longrightarrow {}^*{\rm End}_B(N) \longrightarrow {}^*{\rm Conn}(N) \stackrel{\nu}{\longrightarrow} {}^*{\rm Der}_A(B) \longrightarrow 0
$$

Main theorem

The natural image of $[\omega_N] \in \text{Ext}^1_{\mathcal{B}}(N, N \otimes_B J) = \text{Hom}_{K(B)}(N, N \otimes_B J(-1))$ into $[\omega_N] \in \text{Ext}^1_B(N, N \otimes_B J/J^2) = \text{Hom}_{K(B)}(N, N \otimes_B J/J^2(-1))T$ is called the (classical) Atiyah class of *N*.

Theorem (Nasseh-Ono-Yoshino,2024)

Let *B* be a smooth algebra and *N* be a non-negatively graded semi-free dg *B*-module.

$$
\bullet \, [\omega_N] = 0 \text{ in } \operatorname{Ext}^1_B(N, N \otimes_B J/J^2)
$$

² The fundamental short exact sequence

$$
0 \longrightarrow {}^*{\rm End}_B(N) \longrightarrow {}^*{\rm Conn}(N) \stackrel{\nu}{\longrightarrow} {}^*{\rm Der}_A(B) \longrightarrow 0
$$

is splitting in the category of dg *B*-modules.

³ *ν* splits in the derived category *D*(*B*).

Main theorem 2

Corollary

If N is naïvely liftable, then the fundamental short exact sequence for *N* splits.

Theorem (yet suspended)

Let $A \rightarrow B$ be a dg R-algebra homomorphism of commutative dg *R*-algebras. Assume *B* is smooth over *A*, i.e. J/J^2 is a semif-free dg *B*-module ($+\alpha$ condition). Let *N* be a semi-free dg *B*-module ($+\alpha$) condition).

If $\text{Ext}_{B}^{n}(N, N) = 0$ for $n > 0$, then the fundamental short exact sequence for *N* splits.

Thanks for your attention.