Connections on dg modules and naïve liftings

Yuji Yoshino

Okayama University (Joint work with Maiko Ono and Saeed Nasseh)

Background

Let $R \to S(=R/I)$ be commutative noetherian rings.

• An S-module M is said to be liftable to R if there exists an R-module N such that

 $N \otimes_R S \cong M$ and $\operatorname{Tor}_i^R(N, S) = 0$ for i > 0.

• Equivalently, there is an acyclic free complex F over R such that $F \otimes_R S$ gives an S-free resolution of M.

In the case I = (x) where x is a non-zero divisor in R, Auslander-Ding-Solberg (1993) show:

- there is an obstruction class e_M for liftability in $\operatorname{Ext}^2_S(M, M)$.
- since $e_{M_1 \oplus M_2} = e_{M_1} + e_{M_2}$, the module class of $e_M = 0$ is closed under direct summand, however a direct summand of a liftable module is not necessarily liftable.
- An S-module M is said to be weakly liftable to R if $M \oplus M'$ is liftable for some M'. This is equivalent to $e_M = 0$.

Example

Ler
$$R = k[x, y]/(x^2 - y^3) \twoheadrightarrow S = R/(y) \cong k[x]/(x^2).$$

$$\cdots \longrightarrow R^2 \xrightarrow{\begin{pmatrix} x & y \\ y^2 & x \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} x & -y \\ -y^2 & x \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} x & -y \\ y^2 & x \end{pmatrix}} R^2 \longrightarrow R^2 \to M \to 0,$$

is an R-free resolution, and taking modulo (y) we have

$$\cdots \longrightarrow S^2 \xrightarrow{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}} S^2 \xrightarrow{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}} S^2 \xrightarrow{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}} S^2 \to k \oplus k \to 0.$$

Thus S-module $k \oplus k$ is liftable to R. However one can see that k is not liftable, since

$$\cdots \longrightarrow S \xrightarrow{x} S \xrightarrow{x} S \longrightarrow k \to 0$$

cannot be lifted. This k is weakly liftable.

R : a commutative ring

(A, d^A): a commutative dg R-algebra (可換次数付き微分代数)
 ① A = ⊕_{i≥0} A_i : a non-negatively graded R-algebra, commutative in the following sense;

$$ab = (-1)^{|a||b|} ba$$
, and $a^2 = 0$ if $|a|$ is odd

Q d^A: A → A(-1) is graded R-linear with (d^A)² = 0.
3 (Leibniz rule)

$$\boldsymbol{d}^{A}(\boldsymbol{a}\boldsymbol{b}) = \boldsymbol{d}^{A}(\boldsymbol{a})\boldsymbol{b} + (-1)^{|\boldsymbol{a}|}\boldsymbol{a}\boldsymbol{d}^{A}(\boldsymbol{b})$$

for $a, b \in A$.

Expand into the dg world

A: a commutative d
g $R\mbox{-algebra}$

$$\partial^{N}(xa) = \partial^{N}(x)a + (-1)^{|x|}xd^{A}(a)$$

for $x \in N, a \in A$.

• N is a semi-free dg A-module if N is a graded free A-module with well-ordered free basis E with the following property:

$$\partial^N(e) \in \{e' \in E \mid e' < e\} A \text{ for } e \in E.$$

E is called a semi-free basis of N.

Naïve lifting

$A \rightarrow B$: a dg *R*-algebra homomorphism of commutative dg *R*-algebras **Definition**

We say $Y \in D(B)$ is naïvely liftable to A if $\pi_Y : Y|_A \otimes_A^{\mathbf{L}} B \to Y$ has a right inverse in D(B), i.e. $\exists \rho : Y \to Y|_A \otimes_A^{\mathbf{L}} B$ in D(B) such that $\pi_Y \circ \rho = 1_Y$.

N : a semi-free DG B-module with semi-free basis $E = \{e_{\lambda}\}_{\lambda \in \Lambda}$.

- N is liftable to $A \iff N \cong M \otimes_A B$ as dg B-modules for \exists dg A-module M.
- N is naïvely liftable to A

 $\iff \text{the natural dg } B\text{-module homomorphism} \\ \pi_N: N|_A \otimes_A B \to N \ (n \otimes b \mapsto nb) \text{ is a split epimorphism}, \\ \text{i.e. } \exists \text{ dg } B\text{-homomorphism } \rho_N: N \to N|_A \otimes_A B \text{ s.t., } \pi_N \circ \rho_N = \text{id}_N.$

• liftable \Rightarrow naïve liftable.

Naïve lifting conjecture

Conjecture (Naive lifting conjecture)

Under the setup $A \to B$, let N be a (semi-free, non-negatively graded) dg B-module. Assume the AR assumption, i.e.

- $\bullet B \text{ is a direct summand of } N,$
- **2** $N|_A$ is perfect,
- **3** Hom_{D(B)}(N, N(i)) = 0 for $i \neq 0$.

Then, N is naively liftable to A, and hence N is perfect over B.

----*-----

N is perfect over $B \Leftrightarrow \exists$ a dg B-module homomorphism $L \to N$ that is quasi-isomorphic and L is finite free as a graded B-module.

Obstruction class for naïve lifting

Setting

 $A \to B$: commutative dg *R*-algebras N: a semi-free dg *B*-mdoule with semi-free basis $E = \{e_{\lambda}\}_{\lambda \in \Lambda}$.

 $\begin{array}{l} \pi_B: B^e=B^o\otimes_A B\to B \ (a\otimes b\mapsto ab): \ \text{the multiplication} \\ J=\operatorname{Ker}(\pi_B): \ \text{the diagonal ideal} \\ \exists \ \text{a short exact sequence of dg } B^e\text{-modules:} \end{array}$

$$0 \to J \to B^e \xrightarrow{\pi_B} B \to 0.$$

 \rightsquigarrow applying $N \otimes_B -$, we have an exact sequence of dg *B*-modules:

Therefore, the obstruction class for naive lifting of N lies in $\operatorname{Ext}^{1}_{B}(N, N \otimes_{B} J) = \operatorname{Hom}_{K(B)}(N, N \otimes_{B} J(-1))$, where K(B) is the homotopy category of dg B-modules.

Definition

A semi-free dg *B*-module *N* is called **weakly liftable** to *A* if a finite direct sum $N \oplus N(-a_1) \oplus \cdots \oplus N(-a_r)$ where $a_i > 0$ is liftable to *A*.

Let $A \to B = A\langle X \rangle$ be a free extension with a single variable X, and let $N = (N, \partial^N)$ be a semi-free dg B-module that is bounded below.

Theorem (Nasseh-Ono-Yoshino, JAlg 2022)

- There is a well-defined obstruction class $[j_X(\partial^N)] \in \operatorname{Ext}_B^{|X|+1}(N, N)$, where j_X is the *j*-operator.
- **2** If |X| is even, then $[j_X(\partial)] = 0 \iff (N, \partial)$ is liftable.

3 If
$$|X|$$
 is odd, then $[j_X(\partial)] = 0$
⇔ $(N, \partial) \oplus (N(-|X|), -\partial)$ is liftable
⇔ (N, ∂) is weakly liftable.

Generalized Atiyah class

- $E = \{e_{\lambda}\}_{\lambda \in \Lambda}$: a semi-free basis of N
- $\partial^N(e_\lambda) = \sum_{\mu < \lambda} e_\mu b_{\mu\lambda}$ for $e_\lambda \in E$
- Define a graded *B*-linear mapping $\omega_N : N \to N \otimes_B J(-1)$ by

$$\omega_N(e_\lambda) = \sum_{\mu < \lambda} e_\mu \otimes \delta(b_{\mu\lambda})$$

where $\delta(b) = b \otimes 1 - 1 \otimes b \in J$ for $b \in B$.

- ω_N is a dg *B*-module homomorphism, and it defines the homotopy class $[\omega_N]$ in $\operatorname{Ext}^1_B(N, N \otimes_B J) = \operatorname{Hom}_{K(B)}(N, N \otimes_B J(-1)).$
- We call $[\omega_N]$ the generalized Atiyah class of N.

Theorems

Theorem (Nasseh-Ono-Yoshino, JCommAlg 2024)

- $\bullet N \text{ is naively liftable to } A.$
- $(\omega_N) = 0 \text{ in } \operatorname{Ext}^1_B(N, N \otimes_B J).$

Theorem (Nasseh-Ono-Yoshino, MathZ 2022)

Let B be a dg smooth dg algebra over A (i.e. the Kähler differential $\Omega_A(B) := J/J^2$, moreover all $J^{[m]}/J^{[m+1]}$ are finite semi-free over B), and let N be a semi-free dg B-module that is bounded below. Then,

 $\begin{aligned} \operatorname{Ext}_B^i(N,N) &= 0 \ (i > 0) \quad \Rightarrow \quad \operatorname{Ext}_B^i(N,N \otimes_B J) &= 0 \ (i > 0) \\ &\Rightarrow \quad N \ is \ na \ddot{i} vely \ liftable \ to \ A. \end{aligned}$

Diagonal tensor algebra

Let $A \to B$ be as in the initial setting (B is semi-free over A).

Definition

$$T = T_B(J(-1)) = \bigoplus_{i \ge 0} J^{\otimes i}(-i) = B \oplus J(-1) \oplus J(-1)^{\otimes 2} \oplus \cdots$$

where $J(-1)^{\otimes i} = (J \otimes_B J \otimes_B \cdots \otimes_B J)(-i)$ (*i*-times).

- **1** T is a \mathbb{Z}^2 -graded algebra ; $T_n^i = J_{n-i}^{\otimes i}$ for $(n,i) \in \mathbb{Z}^2$. Call *i* the tensor-degree, while *n* is the dg-degree.
- O T is a graded dg R-algebra. (graded in tensor-degree)
- **3** $B \otimes_A T$ has a structure of semi-free dg B^e -module that resolves B. (Equivalent to the reduced bar resolution by Cuntz-Quillen (1995))

A tensor-graded dg *T*-module *M* is a direct sum $M = \bigoplus_{i \in \mathbb{Z}} M^i$ of dg *B*-modules with a bunch of dg *B*-module homomorphisms $a_M^i : M^i \otimes_B J(-1) \to M^{i+1}$ for $i \in \mathbb{Z}$. A tensor-graded dg *T*-module homomorphism $f : M = \bigoplus_{i \in \mathbb{Z}} M^i \to N = \bigoplus_{i \in \mathbb{Z}} N^i$ is a collection of dg *B*-module homomorphisms $\{f^i\}_{i \in \mathbb{Z}}$ which make the following squares commutative in C(B):

$$\begin{array}{c|c}
M^{i} \otimes_{B} J(-1) & \xrightarrow{a_{M}^{i}} M^{i+1} \\
\downarrow f_{i \otimes 1_{J(-1)}} & & \downarrow f^{i+1} \\
N^{i} \otimes_{B} J(-1) & \xrightarrow{a_{N}^{i}} N^{i+1}
\end{array}$$

We denote by $C^{gr}(T)$ the category of all tensor-graded dg *T*-modules and tensor-graded dg *T*-homomorphisms. Obviously $C^{gr}(T)$ is an abelian category. abelian category $C^{gr}(T) \Rightarrow$ homotopy category $K^{gr}(T)$ \Rightarrow derived category $D^{gr}(T)$

_ _ _ _ * _ _ _ _ _ _ _ _

Two grading for $X \in C^{gr}(T)$

- X(n) the *n*th shift in dg grading; $X(n)_m = X_{n+m}$, $\partial^{X(n)} = (-1)^n \partial^X$
- ② X[n] the *n*th shift in tensor-grading; If $X = \bigoplus_i X^i$ with $X^i J(-1) \subset X^{i+1}$, then $X[n] = \bigoplus_i Y^i$ where $Y^i = X^{i+n}$.

For $X, Y \in D^{gr}(T)$

$$^{*}\operatorname{Hom}_{D^{gr}(T)}(X,Y) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{D^{gr}(T)}(X,Y[i]).$$

$$\Gamma_X := {}^*\operatorname{End}_{D^{gr}(T)}(X) = {}^*\operatorname{Hom}_{D^{gr}(T)}(X, X).$$

 Γ_X is a graded ring in which the multiplication is just a composition of morphisms, and its degree *i* part Γ^i is $\operatorname{Hom}_{D^{gr}(T)}(X, X[i])$:

Let $A \to B$ be as in the initial setup and N a semi-free dg B-module. Set

 $\Lambda := \operatorname{End}_{D(B)}(N), \quad \Gamma := \Gamma_{N \otimes_B T} = {}^* \operatorname{End}_{D^{gr}(T)}(N \otimes_B T).$

There is a natural ring homomorphisms

$$\Lambda \xrightarrow[p]{i} I$$

 $i(f) = f \otimes_B T$ for $f \in \Lambda$, and $p(\varphi) = \varphi \otimes_T B$ for $\varphi \in \Gamma$. Since $p \circ i = id_{\Lambda}$, Λ is a subring of Γ with retraction.

Obstruction

Definition

Let N be a sf dg B-module with sf basis $\{e_{\lambda}\}$ which satisfies

$$\partial^N(e_{\lambda}) = \sum_{\mu < \lambda} e_{\mu} b_{\mu\lambda} \ (b_{\mu\lambda} \in B)$$

Define the morphism $\omega = \omega_N : N \otimes_B T \to N \otimes_B T[1]$ in $C^{gr}(T)$; by

$$\omega(e_{\lambda} \otimes t) = \sum_{\mu < \lambda} e_{\mu} \otimes_B \delta(b_{\mu\lambda}) \otimes_B t,$$

where $t \in T$.

 $\omega \in \Gamma^1 = \operatorname{Hom}_{D^{gr}(T)}(N \otimes_B T, N \otimes_B T[1]).$

Remark

 \blacksquare The definition of ω is independent of the choice of semi-free basis.

2 N is naively liftable to $A \Leftrightarrow \omega = 0$ in $D^{gr}(T)$.

Assumption (AR-1)

Adding to the initial setting for $A \to B$, we assume the following:

- \bullet N is a sf dg B-module that is non-negatively graded.
- **2** $B|_A$ and $N|_A$ are perfect dg A-modules.
- **3** Hom_{D(B)}(N, B(-n)) = 0 whenever $n \neq 0$.

Theorem (1)

Under the assumption (AR-1), we have $\Gamma = \Lambda[\omega]$, i.e. every element of Γ is of the polynomial form $\alpha_0 + \omega \alpha_1 + \omega^2 \alpha_2 + \dots + \omega^n \alpha_n$ with $\alpha_i \in \Lambda$. Furthermore, the multiplication by ω induces bijections

 $\Gamma^i \xrightarrow{\omega \circ} \Gamma^{i+1}$ for all i > 0.

Theorem (2)

Under the assumption (AR-1), there is an exact sequence of graded right Γ -modules

$$0 \longrightarrow P \longrightarrow \Gamma \xrightarrow{\omega \circ} \Gamma \longrightarrow \Lambda \longrightarrow 0$$

where P is a graded Γ -ideal concentrated in degree 0 (hence a Λ -ideal) and

 $P = \{ f \in \Lambda \mid f \text{ factors through a direct sum of copies of } B \}.$

Theorem (3)

Under the assumption (AR-1), the following conditions are equivalent for N.

- $\bullet N is naively liftable to A.$
- **2** $\omega = 0$ as an element of Γ .
- **3** ω is nilpotent in Γ , i.e. $\omega^n = 0$ for some n > 0.

() The natural mapping $\Lambda \to \Gamma$ is an isomorphism.

6 Γ is finitely generated as a (right) module over Λ .

6
$$\Gamma^i = 0$$
 for all $i > 0$.

7 $\Gamma^i = 0$ for some i > 0.

8 $\Gamma^1 \cong \operatorname{Hom}_{D(B)}(N, N \otimes_B J(-1)) = 0$

Theorem (4)

Assume the same assumption as in the Naive Lifting Conjecture, i.e.

 $\bullet B is a direct summand of N,$

 $\mathbf{2} N|_A$ is perfect,

3 Hom_{D(B)}(N, N(i)) = 0 for $i \neq 0$.

Then the following hold.

- $Hom_{D^{gr}(T)}(N \otimes_B T, N \otimes_B T(i)) = 0 \text{ for } i > 0.$
- **(b)** Λ has finite projective dimension as right Γ -module.

Derivation

Let $A \to B$ be dg R-algebras, and let L be a dg B^e -module.

A graded A-linear mapping D : B → L(n) of degree n ∈ Z is called an A-derivation if the Leibniz rule holds;

 $D(b_1b_2) = D(b_1)b_2 + (-1)^{|b_1|n}b_1D(b_2), \text{ for } b_1, b_2 \in B.$

- $Der_A(B, L)_n$ is the set of all A-derivations of degree n.
- Set *Der_A(B, L) = $\bigoplus_{n \in \mathbb{Z}} \text{Der}_A(B, L)_n$, which is a graded B-module.
- Define the differential $\partial^{*\text{Der}}$ on $*\text{Der}_A(B, L)$ by

 $\partial^{^{*}\mathrm{Der}}(D) = \partial^{L} \circ D - (-1)^{|D|} D \circ d^{B} \text{ for } D \in ^{*}\mathrm{Der}_{A}(B,L).$

- $(^{*}\mathrm{Der}_{A}(B,L),\partial^{^{*}\mathrm{Der}})$ is a dg *B*-module.
- It is known that there is an isomorphism of dg *B*-modules;

$$\operatorname{*Der}_A(B,L) \cong \operatorname{*Hom}_{B^e}(J,L) \quad (:= \bigoplus_n \operatorname{Hom}_{grB^e-mod}(J,L(n)))$$

Derivation2

Remark that

.

• In the case L = B, $* \text{Der}_A(B) := * \text{Der}_A(B, B)$ has a Lie algebra structure by

$$[D_1, D_2] = D_1 \circ D_2 - (-1)^{|D_1||D_2|} D_2 \circ D_1$$

- In the case R = A, the differential d^B is in $\text{Der}_R(B)_{-1}$.
- If either $B = A\langle X_1, X_2, \ldots \rangle$ or $B = A[X_1, X_2, \ldots]$, the partial derivative $\partial/\partial X_n$ is an A-derivation of degree $-|X_n|$.

Connection

Recall the definition of dg B-module N:

 $\partial^N(xb) = \partial^N(x)b + (-1)^{|x|} x d^B(b) \text{ for } x \in N, b \in B.$

- Let $A \to B$ be dg R-algebras and N be a dg B-module.
- Let D be an A-derivation on B, i.e. $D \in \text{Der}_A(B)_n$. A graded A-linear mapping $\psi : N \to N(m)$ is called a D-connection on N if |D| = m and it satisfies

$$\psi(xb) = \psi(x)b + (-1)^{m|x|}xD(b)$$
 for $x \in N, b \in B$.

- Denote by $\operatorname{Conn}(N)_m$ the set of all connections of degree m (i.e. all *D*-connections where *D* runs through all *A*-derivations of degree m).
- Set

$$^*\mathrm{Conn}(N) = \bigoplus_m \mathrm{Conn}(N)_m$$

Remark that ∂^N is a d^B -connection. Also remark that 0-connections = B-linear mappings.

Connection2

Lemma

- If ψ_i is a D_i -connection (i = 1, 2) with $|D_1| = |D_2|$, then $\psi_1 + \psi_2$ is a $D_1 + D_2$ -connection.
- ❷ If ψ is a *D*-connection and *b* ∈ *B* homogeneous, then $\psi \cdot b$ is a *D* · *b*-connection.
- **3** If ψ_i is a D_i -connection (i = 1, 2), $[\psi_1, \psi_2]$ is a $[D_1, D_2]$ -connection.
- () Set $*Conn(N) = \bigoplus_{n} Conn(N)_n$ and define the differential by

$$\partial^{*\operatorname{Conn}}(\psi) = [\partial^N, \psi] \text{ for } \psi \in {}^{*}\operatorname{Conn}(N).$$

Then *Conn(N) is a dg *B*-module and it also has Lie algebra strucre.

• Corresponding a D-connection ψ to D, we have a mapping

$$^*\operatorname{Conn}(N) \xrightarrow{\nu} ^*\operatorname{Der}_A(B)$$

which is a dg $B\operatorname{-module}$ homomorphism and at the same time Lie algebra map.

Theorem

There is a short exact sequence of dg B-modules;

$$0 \longrightarrow * \operatorname{End}_B(N) \longrightarrow * \operatorname{Conn}(N) \xrightarrow{\nu} * \operatorname{Der}_A(B) \longrightarrow 0$$

Main theorem

The natural image of $[\omega_N] \in \operatorname{Ext}^1_B(N, N \otimes_B J) = \operatorname{Hom}_{K(B)}(N, N \otimes_B J(-1))$ into $[\omega_N] \in \operatorname{Ext}^1_B(N, N \otimes_B J/J^2) = \operatorname{Hom}_{K(B)}(N, N \otimes_B J/J^2(-1))T$ is called the (classical) Atiyah class of N.

Theorem (Nasseh-Ono-Yoshino, 2024)

Let B be a smooth algebra and N be a non-negatively graded semi-free dg B-module.

$$\bullet \ [\omega_N] = 0 \text{ in } \operatorname{Ext}^1_B(N, N \otimes_B J/J^2)$$

2 The fundamental short exact sequence

$$0 \longrightarrow * \operatorname{End}_B(N) \longrightarrow * \operatorname{Conn}(N) \xrightarrow{\nu} * \operatorname{Der}_A(B) \longrightarrow 0$$

is splitting in the category of dg B-modules.

3 ν splits in the derived category D(B).

Main theorem 2

Corollary

If N is naïvely liftable, then the fundamental short exact sequence for N splits.

Theorem (yet suspended)

Let $A \to B$ be a dg *R*-algebra homomorphism of commutative dg *R*-algebras. Assume *B* is smooth over *A*, i.e. J/J^2 is a semif-free dg *B*-module (+ α condition). Let *N* be a semi-free dg *B*-module (+ α condition).

If $\operatorname{Ext}_{B}^{n}(N, N) = 0$ for n > 0, then the fundamental short exact sequence for N splits.

Thanks for your attention.