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INTRODUCTION

The notion of Cohen-Macaulay approximations was introduced by Auslander
and Buchweitz, and was studied widely [1]. In the case of commutative complete
Cohen-Macaulay local rings, there exist minimal CM-approximations of all finitely
generated modules. Then invariant theory with respect to this approximations was
studied by several authors. Also, Hashimoto and Shida showed the existence of
minimal ones without complteteness of rings [4]. In non-commutative ring theory,
we studied the relation between duality for derived categories and CM-
approximations, and studied cotilting bimodules of finite injective dimension as
the non-commutative ring version of dualizing modules [6]. Also, we gave the
condition of categories for the existence of minimal ones. In this note, we study
approximations in case of Noetherian algebras.

First, we study the case that modules of infinite injective dimension induce the
theory of CM-approximations. In the case of commutative ring , by [3] and [5],

we know that pointwise dualizing modules induce the duality on derived categories



of modules. We show that if A is a CM R-algebra over a commutative Cohen-
Macaulay ring R with a pointwise dualizing module @, then the duality between
D’(modA) and D’(A-mod) exists, and then modA has CM(A,)-approximations
(Theorem 1.2).

Second, we study the existence of minimal ones. In [6], we showed that
semiperfectness of some subcategories of modules induces the existnce of minimal
ones. We applied it to the case of a finite R-algebra A over a commutative
Noetherian local ring R (Corollary 2.2). Furthermore, we showed that if an
endomorphism ring of cotilting bimodule is a semiperfect ring, then modA has
minimal rac(U,)-approximations (Theorem 2.6). Then if A is a CM R-algebra
over a commutative Cohen-Macaulay ring R with a dualizing module @, then

modA has minimal CM(A ,)-approximations (Corollary 2.7).
1. DuaLities For DErIVED CATEGORIES AND CM-APPROXIMATIONS

Throughout this note, we assume that all rings have non-zero unity, and that
all modules are unital. For a ring A, we denote by modA (resp., A-mod) the
category of finitely presented right (resp., left) A-modules, and denote by &,
(resp., ,9°) the category of finitely generated projective right (resp., left) A-modules.
For a right A-module U, , we denote by addU, the category of right A-modules
which are direct summands of finite direct sums of copies of U, , and we define
the following subcategories of modA:
fres(U,) := {M € modAl there exist some integer n and X;e addU, (0 <i <n) such
that 0 - X — ... > X, —> M — 0 is exact in modA};
cores(U,) := {M € modAl there exist X' € addU, (i = 0) such that 0 - M — X' -
... > X" — ... is exact in modA };
rac(U,) :={M € modAl Ext;(M, U,) =0 for alli > 0}.

Let A and B be rings, ,U, a B-A-bimodule. We will call ,U, a cotilting
B-A-bimodule provided that it satisfies the following:

(C1) LU, is finitely presented as both a right A-module and a left B-module;
(C2r ) the injective dimension idim U, of U, is finite;

(C21) the injective dimension idim,U of ,U is finite;

(C3r) Extf; (U,U)=0foralli >0; (C3l) Extfg (U,U)=0foralli >0;
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(C4r ) the natural ring morphism B — Hom,(U,U ) is an isomorphism;
(C4l) the natural ring morphism A ®® — Hom,(U,U ) is an isomorphism.
In case of B = A, we call a cotilting A-A-bimodule a dualizing A-bimodule.

Let o4 be an additive category, K (=4) the homotopy category of =4, and
K'(4), K (=4) and K "(=4) full subcategories of K (—4) generated by the bounded
below complexes, the bounded above complexes, the bounded complexes,
respectively. For a full subcategory B of an abelian category 4, let K *”(‘B) be a
full subcategory of K*(‘B) generated by complexes which have bounded homologies,
and K *(B),, a quotient category of K *(2B) by the multiplicative set of quasi-
isomorphisms, where * = + or -. We denote K *(<A);, by D *(<A).

We give abbreviated definitions of CM-approximations here (see [1] for more
precise definitions). Let X and ) be full subcategories of modA such that Ext',
(X.,) =0. For M € modA, a short exact sequence: 0 - ¥ - X ——> M — 0
(resp.,0 > M —— Y — X — 0) is called a X-approximation (resp., ¥)-hull) if X
and Y belong to X and ?), respectively. The above X -approximation (resp., ¥)-hull)
is called minimal if hof (resp., foh) is not equal to i for every non-isomorphism f*:
X— X (resp., f: Y —>Y).

ProrosiTion 1.1.  Let A be a right coherent ring , B a left coherent ring, and
sU, a B-A-bimodule which satisfies the condition (C1) such that R"Hom,(—, ,U,)
and R™Homy(—, ,U, ) induce the duality between D’(modA) and D’(B-mod). If
rac(U,) = cores(U,), then K""(add U,) is equivalent to D’(modA).

Proof. Since K(,99) is equivalent to D”(B-mod), by the assumption,
R*Homy(—, ,U )b : K*(;7) — D"(modA) is a duality and is isomorphic to
QoHomy,(—, ,U, ), where Q is the natural quotient K**(addU,) — D’(modA). Then
it suffices to show that Hom,(—, ,U, ) : K"(;%9 — K""(addU,) is a duality.
Clearly, Hom,(—, U, ) is fully faithful. Let X* be any complex in K*’(addU,).

We may assume X is the following complex:

0> 4 sy 45 SU—L2s5u ..,

where all U’ belong to addU, , such that H(X" ) = 0 for all i > n. Then Kerd,



belongs to cores(U,) for all i = n. Since rac(U,) = cores(U,), we have the

following short exact sequences:

0 — Homy(Kerd,,, , ;U, ) = HomyU", U, ) — HomyKerd, , ,U, ) — 0,
0 — Homy(Kerd, ,,, ,U,) — Hom, (U"", ,U,) — HomyKerd,,, , ,U,) — 0,

Then HHom, (X", ,U, ) = 0 for all i < — n, and therefore Hom,(X, ,U, ) belongs to
K", ). Since all U’ belong to addU, , Hom,(Hom,(X", ,U, ), ,U, ) is isomorphic
to X* in D’(modA). Hence Homy(—, zU, ) is dense.

Let R be a commutative Cohen-Macaulay ring. A finitely generated R-module
o is called a pointwise dualizing module if @, is a dualizing R ;module for every
be Spec R. A finitely generated R-module M is called a maximal Cohen-Macaulay
R-module if depthl,RpM »1s equal to Krull dimension of R, for all p € Spec R. In
case that R has a pointwise dualizing module w, M is a maximal Cohen-Macaulay
R-module if and only if Ext;(M,a)) =0 foralli >0 (see [1]). An R-algebraA is
called a finite R-algebra if A is a finitely generated R-module. We call a finite
R-algebra A a CM R-algebra if A is a finitely generated maximal Cohen-Macaulay
R-module. For a CM R-algebra A, we denote by CM(A,) the category of finitely
generated right A-modules which are maximal Cohen-Macaulay R-modules.

By [3], if R has a pointwise dualizing module ®, then RbHome(—, o, )
induces the duality on D’(modR p for every p € SpecR. According to [5], the
image of R"Hom,(—, w) : D’ (modR) — D(modR) is contained in D’(modR).
Hence, if R has a pointwise dualizing module @, then RbHomR(—, ) induces the
duality on D”(modR). Furthermore, we have the following example of infinite

injective dimension which satisfies the condition of Proposition 1.1.

THeoreM 1.2. Let R be a commutative Cohen-Macaulay ring with a pointwise
dualizing module @, A a CM R-algebra, and U = Homy(A,®). Then the following
hold.

(a) R'Hom, (-, U,) and R"Hom, (-, ,U) induce the duality between D"(modA)
and D’(A-mod).



(b) rac(U,) =cores(U,) =CM(A,).
(c) Every finitely generated right A-module has a CM(A, )-approximation and a
fres(U ,)-hull.

Proof. (a) Let I' be an injective resolution of @ in modR. Since A is a
finitely generated maximal Cohen-Macaulay R-module, Hom,(A,T’) is an injective
resolution of U = Hom,(A, w). For every complex X € D"(modA), we have the

following isomorphisms in D’(modR):

R"Hom, (X, U,) = Hom" (X", Hom(A,I") )
= Hom' (X", I'")
= R"Hom, (X", ).

Since X belongs to D’(modR), by the proof of [5, Theorem 1], R"Hom (X", @)
belongs to D’(modR), and then R”"Hom (X", U, ) belongs to D’(A-mod). Therefore
the image of R"Hom,(—, U, ) is contained in D’(A-mod). Similarly, the image of
RbHomA(—, 4,U) 1s contained in D’'(modA). For every integer i and every p €

SpecR, we have the following commutative diagram:

(HX"), - (HR"Hom,(R"Hom,(X", U), U)),
l l
H(X,) — H’RbHomAp(RbHomAp(X'p, U,, U,

where vertical arrows are isomorphisms. Since ®, is a dualizing R,-module for all
P € SpecR, by [6, Proposition 2.12], U, is a dualizing A -bimodule. Then the
bottom arrow in the above diagram is an isomorphism, and so is the top arrow in
the above. Hence the natural morphism id .4, — R"Hom,(R"Hom, (-, U,), ,U)
is an isomorphism. Similarly, the natural morphism id,, .., — R"Hom, (R"Hom,(-,
AU), U,) 1s an isomorphism.

(b) For every M € modA, we have the following isomorphisms:

Ext',(M,U) = H'Hom (M, Homy(A,I"))
= H'Hom(M,I")



~ Ext (M, ).

Then we have rac(U,) = CM(4,). According to [6, Theorem 2.10, Corollary
2.11], it is easy to see thet rac(U,) is contained in cores(U,). Conversely, given M
€ cores(U,), M, belongs to cores((U,) Au) for all p € SpecR. By [6, Theorem 2.10,
Corollary 2.11], M, belongs to rac((U ) Ap). For all p € SpecR, we have

Ext', (M, U), = Ext ;v M,,U,)
=0 foralli>O0.

Therefore Ext’A(M, U) =0 for all i >0, and hence M belongs to rac(U,).

(c) Let M be a finitely generated right A-module. Considering M as a complex in
D’(modA), by Proposition 1.1, M is isomorphic to the following complex in
D’(modA):

05U = ..U Byeh U'sU’-> ..U —>..,

where U ' € add,U (-s <i ). Then we have the following short exact sequences:

0 = Imd, = Kerd)—> M — 0,
0—->M — Cokd, —Imd, — 0.

Furthermore, Kerd, and Imd, belong to cores(U,), and Cokd , and Imd, belong
to fres(U ).
By (b), we complete the proof.

Remark. More generally, for a finite R-algebra A, let a complex U be Hom, (A,
I'), where I’ is an injective resolution of @. Then, according to the proof of
Theorem 1.2 and [7, Corollary 2.14], R"Hom”" (-, U", ) and R"Hom,(—, ,U") also
induce the duality between D”(modA) and D’(A-mod). Hence we get an example

of a dualizing bimodule complex of infinite injective dimension.

2. MinimaL CM-APPROXIMATIONS
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For an additive category o, we will call s{ semiperfect if End (X ) is a
semiperfect ring for every object X € . Let R be a commutative Noetherian
local ring, Na completion of R with respect to the maximal ideal of R, and A a
finite R-algebra. For a finitely generated right A-module M, we denote M®RR/ by
W,

THEOREM 2.1 [6]. Let A be a right coherent ring , B a left coherent ring, and
sU, a B-A-bimodule satisfying the conditions of Proposition 1.1.

(a) If rac(U, ) is semiperfect, then there exists a unique minimal rac(U,)-
approximation in modA.

(b) If fres(U,) is semiperfect, then there exists a unique minimal fres(U ,)-hull

in modaA.

CoroLLARY 2.2 [6]. Let R be a commutative Noetherian complete local ring, A
and B finite R-algebras, and U a cotilting B-A-bimodule. Then every finitely
generated right A-module has a minimal rac(U , )-approximation and a minimal
fres(U ,)-hull.

Proof. By the assumption, End,(M) is a semiperfet ring for every finitely
generated right A-module M. Then rac(U,) and fres(U,) are semiperfect. According
to [6, Corollary 2.11] and Theorem 2.1, we complete the proof.

Lemma 2.3. Let R be a commutative Noetherian local ring, and A an R-algebra.
For every finitely generated right A-module X, every right A-module Y, we have
the following natural isomorphisms:

Ext' (X, ¥) = Ext\,(X,N®, K for all i 2 0.

Proof. See [2].

ProposiTioN 2.4. Let R be a commutative Noetherian local ring, A and B finite
R-algebras. If U is a cotilting B-A-bimodule, then Vis a cotilting B- A-bimodule.

Proof. By Lemma 2.3, U satisfies the conditions (C1), (C3r) and (C4r). LetJ



be the radical of A. For all i, we also have the following isomorphism:
Ext’ (A/¥, ) = Ext',(AlL,U)®, K.

Since A is a finite K -algerba and ¥ = rad A, idim v  1s finite by Auslander [8,
Proposition 2.7]. Therefore U satisfies the condition (C2r). Similarly, U satisfies
the conditions (C2/), (C3/) and (C41).

Lemma 2.5. Let A be a right Noetherian ring, B a left coherent ring, and U a
cotilting B-A-bimodule. Assume that every finitely generated right A-module has
a minimal rac(U ,)-approximation. For a rac(U,)-approximation of a finitely
generated right A-module M: 0 — Y —*—> X — M — 0, the following are
equivalent.

(@) 0> Y —> X— M — 0 is a minimal rac( U,)-approximation.

(b) There is no non-zero submodule Z of Y such that hl, is a split monomorphism.

Proof. (a) = (b): If there is a non-zero submodule Z of Y such that Al is a
split monomorphism. By the proof of [6, Theorem 3.4], we get the following

rac(U,)-approximation:
0-Y > X ->M-—0,

where Y =7Z@0Y’, X =Z®X’ and Z € addU, =rac(U,)Nfres(U,). Then it is easy to
see that0 - ¥ — X — M — 0 is not minimal.

(b)=(a): Let0 = Y’ — X’ — M — 0 be a minimal rac(U,)-approximation. By
the property of rac(U,)-approximations, we have the following commutative

diagram:

0—-Y —>X ->M-—=0

U odlg
0—-Y —>X ->-M-—=0
W g |

0—-Y—>X ->M-—DO0.



By the minimality, gog and pef are isomorphisms. If 0 - Y— X - M — 0 is not
minimal, then p is not a isomorphism. Hence Kerp is a non-zero submodule of Y

such that Ay, is a split monomorphism.

THEOREM 2.6. Let R be a commutative Noetherian local ring, A and B finite
R-algebras, and U a cotilting B-A-bimodule. If B is a semiperfect ring, then every
finitely generated right A-module has a minimal rac(U , )-approximation and a

minimal fres(U ,)-hull.

Proof. By [6, Proposition 3.2], every finitely generated right A-module M has
a rac(U ,)-approximation and a fres(U,)-hull. Lete: 0 =Y X Lt Mo

0 be a rac(U,)-approximation of M. Since Y is Noetherian, there is a maximal
submodule Z of Y such that 4|, is a split monomorphism. By the proof of Lemma
2.5, we may assume that € satisfies the condition (b) of Lemma 2.5. Applying ®,
R toe,wehavea rac( v )-approximation of M-

§:0> ¥V LNV SNy VAN

If & does not satisfy the condition (b) of Lemma 2.5, then there exists a non-zero
submodule Z of ¥ such that /1, is a split monomorphism. Since B =End(U,) is a
semiperfect ring, U, is a direct sum @_, U, where all U, have local endomorphism
rings. Then it is easy to see that ly o is a direct sum @ 7| lfl where all D/l have
local endomorphism rings. We may assume that Z is isomorphic to D/l . There
exist morphisms f: D/l — Wand g: X‘/% D/l such that go Hof =1 o In Hom,(U,,Y)®,
K = Hom A ()/1 ¥), there existf,: U, —» Y and r, € K such that a sum 2 [®r, is
corresponding to f. In Hom,(X,U,)®, K = Hom | X/, D/l), there exist g;: X = U,
ands; € R such that a sum %, g®s; is corresponding to g. Therefore, in End, (U,)®, X
= End ( D/l), asum X, gohof,®s;r, is corresponding to 1 o Since End,(U)) is a
local finite R-algebra, there exists g ohof; which is an isomorphism. This contradicts
€ satisfies the condition (b) of Lemma 2.5. By Corollary 2.2, Proposition 2.4 and
Lemma 2.5, & is a minimal rac( U/ p/)—approximation. If € is not a minimal rac(U ,)-
approximation, then there exists a non-isomorphism v : X — X such that kov = k.

Since R is faithfully flat R-module, w is a non isomorphism such that Kow = &.
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This contradicts the minimality of &. Simlarly, M has a minimal fres(U ,)-hull.

CoroLLARY 2.7. Let R be a commutative local Cohen-Macaulay ring with a
dualizing module ®, A a semiperfect CM R-algebra, and U := Homy A, @). Then
every finitely generated right A-module has a minimal CM(A, )-approximation
and a minimal fres(U ,)-hull.

Example. Let k be a field, R a commutative local Cohen-Macaulay k-algebra,
and A a finite dimensional k-algebra. Then A® R is a semiperfect CM R-algebra
if either of the following conditions holds:

(1) A/radA is isomorphic to Mnl(k)Xan(k)X e XMnr(k),

(2) R/radR is isomorphic to k.

Moreover if R has a dualizing R-module, then A® R satisfies the condition of
Corollary 2.7.
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