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§1.  Cochain complexes

     Throughout this section, ! is an abelian category and ( (resp. 3) is the collection of

injective (resp. projective) objects of !.  Unless otherwise stated, functors are covariant

functors.

     Definition 1.1.  We denote by !Z the category of Z-graded objects in !, i.e., an object of

!Z is a family X = {Xn}n ∈  Z with the Xn ∈  Ob(!) and a morphism u : {Xn} → {Yn} is a family

u = {un}n ∈  Z with the un ∈  !(Xn, Yn).  We have an autofunctor T : !Z → !Z, called a shift

functor, such that (TX)n = Xn + 1 for X ∈  Ob(!Z) and (Tu)n = un + 1 for u ∈  !Z(X, Y).

     Remark 1.1.  Each X ∈  Ob(!) is considered as a family {Xn}n ∈  Z such that X 0 = X and Xn =

0 for n  0, so that we get a full embedding ! → !Z.

 

     Definition 1.2.  A cochain complex X•  = (X, dX) in ! is a pair of X ∈  Ob(!Z) and dX ∈
!Z(X, TX) with TdX o dX = 0, where X is called the underlying Z-graded object and dX is

called the differential.  A morphism u : X•  → Y •  of cochain complexes is defined as a

morphism u ∈  !Z(X, Y) such that Tu o dX =  dY o u.  We denote by C(!) the category of

cochain complexes in !.  We have an autofunctor T : C(!) → C(!), called the translation,

such that T X•  = (TX, – TdX) for X•  = (X, dX).  Sometimes, Tn( X•) is denoted by X•[n].

 

     Remark 1.2.  (1) Each X ∈  Ob(!Z) is considered as a cohain complex with dX = 0, so that

we get a full embedding !Z → C(!).  Then X = ⊕ n ∈  Z T– n(Xn), the direct sum in C(!), for all

X = {Xn}n ∈  Z ∈  Ob(!Z).

     (2) We set X
•
 = (X, – dX) for X• ∈  Ob(C(!)).  Then X•  > X

•
 for all X• ∈  Ob(C(!)).

 

     Proposition 1.1.  C(!) is an abelian category.

 

     Proof.  For each u ∈  C(!)( X• , Y • ), Ker u and Cok u are defined by the following

commutative diagram with exact rows:

 

↓ ↓ ↓ ↓

0 → Ker un → Xn → Yn → Cok un → 0

↓ ↓ dX

n ↓ dY

n ↓

0 → Ker un + 1 → Xn + 1 → Yn + 1 → Cok un + 1 → 0

↓ ↓ ↓ ↓ .
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Then Im u > Coim u canonically, so that we may identify Im u with Coim u.  Also, the direct

sum of two cochain complexes X• , Y •  is defined as follows

X•  ⊕  Y •  = (X ⊕  Y, 
d

d
X

Y

0

0





).

     Definition 1.3.  We define additive covariant functors Z• , B• , ′•Z , ′•B  and H•  : C(!) →
!Z as follows:

 

Zn( X•) = Ker dX
n ,

Bn( X•) = Im dX
n – 1,

Z’n( X•) = Cok dX
n – 1,

B’n( X•) = Coim dX
n  = Im dX

n  = Bn + 1( X•),

Hn( X•) = Zn( X•)/Bn( X•).

for X•  ∈  Ob(C(!)) and n ∈  Z.

     Remark 1.3.  (1) ′•B  = T o B• .

     (2) For any X•  ∈  Ob(C(!)), dX admits an epic-monic factorization

 

X•  → ′•B ( X•) → T( X•).

     Lemma 1.2.  (1) Z•  : C(!) → !Z is left exact and ′•Z  : C(!) → !Z is right exact.

     (2) We have a commutative diagram of functors with exact rows and columns

 

0 0

↓ ↓

0 → B• → Z• → H• → 0

|| ↓ ↓

0 → B• → 1C(!) → ′•Z → 0

↓ ↓

′•B  ′•B

↓ ↓
0 0 .
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     (3) We have an exact sequence of functors

 

0 → H•  → ′•Z  → T o Z•  → T o H•  → 0.

 

     Proof.  (1) Let 0 → X•  → Y •  → Z•  → 0 be an exact sequence in C(!).  Applying Snake

lemma to the commutative diagram with exact rows

 

0 → X• → Y • → Z• → 0

dX ↓ ↓ dY ↓ dZ

0 → T( X•) → T( Y • ) → T( Z•) → 0 ,

we get an exact sequence

0 → Z•( X•) → Z•( Y • ) → Z•( Z•) → ′•Z (T( X•)) → ′•Z (T( Y • )) → ′•Z (T( Z•)) → 0.

     (2) Straightforward.

     (3) In the diagram of the part (2), since ′•B  = T o B• , we can splice the top row, shifted by

one, with the right end column to get a desired exact sequence.

     Proposition 1.3.  Let 0 → X•  → Y •  → Z•  → 0 be an exact sequence in C(!).  Then we

have a long exact sequence in !

 

L → Hn( X•) → Hn( Y • ) → Hn( Z•) →
ω n

 Hn + 1( X•) → L .

     Proof.  By Lemma 1.2(1) we have a commutative diagram with exact rows

 

′•Z ( X•) → ′•Z ( Y • ) → ′•Z ( Z•) → 0

↓ ↓ ↓

0 → T( Z•( X•))→ T( Z•( Y • )) → T( Z•( Z•)),

to which we apply Snake lemma.  Then by Lemma 1.2(3) we get an exact sequence in !Z

H•( X•) → H•( Y • ) → H•( Z•) →
ω

 T( H•( X•)) → T( H•( Y • )) → T( H•( Z•)).

     Definition 1.4.  Let @ be another abelian category.  Then every additive covariant (resp.

3

contravariant) functor F : ! → @ can be extended to an additive covariant (resp. contravariant)



functor F : C(!) → C(@) as follows: if F : ! → @ is covariant, then F : C(!) → C(@)

associates with each X•  ∈  Ob(C(!)) a cochain complex F X•  such that (F X•)n = F(Xn) and

dFX
n  = F( dX

n ) for all n ∈  Z; and if F : ! → @ is contravariant, then F : C(!) → C(@)

associates with each X•  ∈  Ob(C(!)) a cochain complex F X•  such that (F X•)n = F(X– n) and

dFX
n  = F( dX

n– ( )+ 1 ) for all n ∈  Z.

 

     Proposition 1.4.  Let @ be another abelian category and F : ! → @ an additive functor.

Then for the extended functor F : C(!) → C(@) the following hold.

     (1) If F is covariant, then F o T = T o F.

     (2) If F is contravariant, then F o T  = T– 1 o F.

 

     Proof.  Straightforward.

 

     Proposition 1.5.  Let @ be another abelian category and  F : ! → @ an exact functor.

Then for the extended functor F : C(!) → C(@) the following hold.

     (1) If F is covariant, then F o Hn > Hn o F for all n ∈  Z.

     (2) If F is contravariant, then F o Hn > H – n o F for all n ∈  Z.

 

     Proof.  Straightforward

 

     Definition 1.5.  We denote by U : C(!) →  !Z the underlying functor, i.e., U associates

with each complex X•  = (X, dX) its underlying Z-graded object X.

 

     Proposition 1.6.  Let U : C(!) →  !Z denote the underlying functor.  Then the following

hold.

     (1) U is exact and has both a right adjoint S : !Z → C(!) which associates with each

Z-graded object X a complex

 

S(X) = (TX ⊕  X, 
0 0

1 0





)

and a left adjoint  T– 1 o S : !Z → C(!).

     (2) We have an exact sequence of functors

 

0 → 1111C(!) →
µ

 S o U →
ε

 T → 0,

where µ  = t[d   1], ε = [1   – d].
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     Proof.  (1) It is obvious that U is exact.  For any X•  ∈  Ob(C(!)) and Y ∈  Ob(!Z), we

have natural isomorphisms

 

!Z(U( X•), Y) →̃  C(!)( X• , S(Y)), u a 
  

Tu d

u
Xo




,

 

!Z(Y, U( X•)) →̃  C(!)(T– 1S(Y), X•), u a [u   T– 1(dX o u)].

     (2) Straightforward.

 

     Remark 1.4.  (1) T o S > S o T.

     (2) Let X•  ∈  Ob(C(!)).  If the canonical exact sequence

 

0 → X• →
µ X

 S(U( X•)) →
ε X

 T X• → 0

splits, then X•  > S( Z•( X•)).

     (3) An object I ∈  Ob(!Z) is injective if and only if so is S(I) ∈  Ob(C(!)).

     (4) An object X•  ∈  Ob(C(!)) is injective if and only if X•  > S(I) with I ∈  Ob(!Z)

injective.

 

     Definition 1.6.  An abelian category ! is said to have enough injectives (resp. projectives)

if for each X ∈  Ob(!) there exists a monomorphism X  → I with I ∈  ( (resp. an epimorphism

P → X with P ∈  3).

 

     Lemma 1.7.  Let + be a subcollection of Ob(!) containing zero objects and closed under

finite direct sums and assume for any X ∈  Ob(!) there exists a monomorphism X → I in !

with I ∈  +.  Then for any X•  ∈  Ob(C(!)) there exists a monomorphism X• → I•  in C(!)

with the In ∈  +.  In particular, if ! has enough injectives, so does C(!).

 

     Proof.  For each n ∈  Z, we have a monomorphism un : Xn → In in ! with In ∈  +.  Thus we

get a monomorphism u = {un} : U( X•) → I = {In} in !Z.  Then, since S : !Z → C(!) is

exact, we get a monomorphism S(u) : S(U( X•)) → S(I) in C(!).  Thus by Proposition 1.6(2)

we get a monomorphism X•  → S(I) in C(!).  Since by Proposition 1.6(1) S : !Z → C(!)

takes injective objects into injective objects, if the In  are injective, so is S(I).

     Definition 1.7.  A complex X•  is called bounded below if Xn = 0 for n ‹‹ 0, bounded above

if Xn = 0 for n ›› 0 and bounded if  Xn = 0 for n ‹‹ 0 and n ›› 0.  We denote by C+(!), C–(!)
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and Cb(!) the full subcategory of C(!) consisting of bounded below complexes, bounded



above complexes and bounded complexes, respectively.

     Also, a complex X•  is said to have a bounded below cohomology if Hn( X•) = 0 for n ‹‹ 0,

to have a bounded above cohomology if Hn( X•) = 0 for n ›› 0, and to have a bounded

cohomology if Hn( X•) = 0 for n ‹‹ 0 and for n ›› 0.  For * = + or –, we denote by C*, b(!) the

full subcategory of C*(!) consisting of X•  ∈  Ob(C*(!)) with bounded cohomology.

 

     Remark 1.5.  For * = +, – or b, C*(!) is an abelian exact full subcategory of C(!).

 

     Definition 1.8.  Let + be a subcollection of Ob(!).  For * = +, –, b or nothing, we denote

by C*(+) the full subcategory of C*(!) consisting of X•  ∈ Ob(C*(!)) with Xn ∈  + for all n

∈  Z.

 

     Remark 1.6.  Let + be a subcollection of Ob(!) containing zero objects and closed under

finite direct sums.  Then, for * = +, –, b or nothing,  C*(+) is an additive full subcategory of

C*(!).

     Definition 1.9.  A right resolution of X ∈  Ob(!) is a morphism µ : X → I•  in C(!) such

that H 0(µ) : X → H 0( I• ) is an isomorphism, In = 0 for all n < 0 and Hn( I• ) = 0 for all n > 0,

i.e., we have an exact sequence 0 → X →
µ

 I 0 → I 1 → L .

     A right resolution µ : X → I•  with I•  ∈  Ob(C(()) is called an injective resolution.  Let f

∈  !(X, Y) and µX : X → IX
• , µY : Y → IY

•  be right resolutions of X and Y, respectively.  Then a

morphism f̂  ∈  C(!)( IX
• , IY

• ) with f̂  o µX = µY o f is said to be lying over f.

      

     Lemma 1.8.  Let I•  ∈  Ob(C(()) with In = 0 for n < 0 and X•  ∈  Ob(C(!)) with Hn( X•) =

0 for n > 0.  Then for any f : H 0( X•) → H 0( I• ) the following hold.

     (1) There exists f̂  ∈  C(!)( X• , I• ) such that H 0( f̂ ) = f.

     (2) In case f = 0, for any f̂  ∈  C(!)( X• , I• ) with H 0( f̂ ) = f there exists h ∈  !Z(T X• , I• )

such that f̂  = h o dX + T– 1(dI o h).

 

     Proof.  (1) Put f̂ n  = 0 for n < 0.  By the injectivity of Z’ 0( I• ) = I 0, we get a commutative

diagram with exact rows

 

0 → H 0( X•) → Z’ 0( X•) → Z 1( X•) → 0

f ↓ ↓ g ↓ z1

0 → H 0( I• ) → I 0 → Z 1( I• ).
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Let π : X 0 → Z’ 0( X•) be the canonical epimorphism and put f̂ 0  = g o π.  Then f̂ 0  o dX
– 1 = 0.



Let n ≥ 1 and assume that zn : Zn( X•) → Zn( I• ) has been constructed.  Then, by the injectivity

of In, there exist f̂ n  : Xn → In and zn + 1 : Zn + 1( X•) → Zn + 1( I• ) which make the following

diagram with exact rows commute

 

0 → Zn( X•) → Xn → Zn + 1( X•) → 0

zn ↓ ↓ f̂
n ↓ zn + 1

0 → Zn( I• ) → In → Zn + 1( I• ).

Thus by induction we get a desired morphism f̂  ∈  C(!)( X• , I• ).

     (2) Put hn = 0 for n < 0.  Note that Z 0( f̂ ) = 0.  Let µ : Z 0( X•) → X 0 be the inclusion.

Since f̂ 0  o µ = 0, there exists h1 : X 1 → IY
0  such that f̂ 0  = h0 o dX

0  + h– 1 o dI
– 1.  It suffices to

prove the following.

 

     Claim: Let n ≥ 0 and assume that, for – 1 ≤ i ≤ n, the hi  : Xi + 1 → Ii have been constructed

to satisfy f̂ i  =  hi o dX
i  + dI

i – 1  o hi – 1  for all 0 ≤ i ≤ n.  Then there exists hn + 1 : Xn + 2 → In + 1

such that f̂ n + 1 = dI
n  o hn + hn + 1 o dX

n + 1.

 

     Proof.  We have ( f̂ n + 1 – dI
n  o hn) o dX

n  = 0, so that ( f̂ n + 1 – dI
n  o hn) factors through dX

n + 1.

     Definition 1.10.  A left resolution of X ∈  Ob(!) is a morphism ε : P•  → X in C(!) such

that H 0(ε) : H 0( P•) → X is an isomorphism, Pn = 0 for all n > 0 and Hn( P•) = 0 for all n < 0,

i.e., we have an exact sequence L → P – 1 → P 0 →
ε

 X → 0.

     A left resolution ε : P•  → X with P•  ∈  Ob(C(3)) is called a projective resolution.  Let f ∈
!(X, Y) and εX : PX

•  → X, εY : PY
•  → Y be left resolutions of X and Y, respectively.  Then a

morphism f̂  ∈  C(!)( PX
• , PY

•) with εY o f̂  = f o εX is said to be lying over f.

 

     Lemma 1.9 (Dual of Lemma 1.7).  Let + be a subcollection of Ob(!) such that for any X

∈  Ob(!) there exists an epimorphism P → X in ! with P ∈  +.  Then for any X•  ∈
Ob(K(!)) there exists an epimorphism P• → X•  in C(!) with the Pn ∈  +.  In particular, if

! has enough projectives, so does C(!).

      

     Lemma 1.10 (Dual of Lemma 1.8).  Let P• ∈  Ob(C(!)) with the Pn ∈  3 and Pn = 0 for n

> 0, and let X•  ∈  Ob(C(!)) with Hn( X•) = 0 for n < 0.  Then for any f : H P0 ( )•  → H X0 ( )•

the following hold.

     (1) There exists f̂  ∈  C(!)( P• , X•) such that H 0( f̂ ) = f.

     (2) In case f = 0, for any f̂  ∈  C(!)( P• , X•) with H 0( f̂ ) = f there exists h ∈  !Z(T P• , X•)
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such that f̂  = h o dP + T– 1(dX o h).



     Definition 1.11.  Let # be a category and Λ a set.  We may consider Λ  as a discrete

category.  Namely, Λ is considered as a category such that Ob(Λ) = Λ and there is no other

morphism than identity morphisms.  Note that Λop = Λ.  We denote by #Λ the functor

category [Λ, #].  Then an object of #Λ is just a family of objects {Xλ}λ ∈ Λ  in #.  We have a

functor P : # → #Λ, called the constant functor, which associates with each X ∈  Ob(#) a

family of objects {Xλ}λ ∈ Λ  such that Xλ = X for all λ ∈  Λ.

     A product of {Xλ} ∈  Ob(#Λ) is a terminal object in the following category: an object is a

morphism in #Λ of the form f ∈  #Λ(PX, {Xλ}) with X ∈  Ob(#), i.e., a pair (X, {fλ}) of X ∈
Ob(#) and a family of morphisms fλ ∈  #(X, Xλ); a morphism h : (X, {fλ}) → (Y, {gλ}) is a

morphism h ∈  #(X, Y) with fλ = gλ o h for all λ ∈  Λ .  If {Xλ} has a product (X, {pλ}), then the

morphisms pλ : X → Xλ are called projections.  In case # is an additive category, a product is

usually called a direct product.

 

     Remark 1.7.  Let # be a category and Λ a set.  Then the following hold.

     (1) A pair (X, {pλ}) is a product of {Xλ} ∈  Ob(#Λ) if and only if the mapping

 

#(Y, X) → ∏ #(Y, Xλ), f a (pλ o f)

is a bijection for all Y ∈  Ob(#).

     (2) Assume every {Xλ} ∈  Ob(#Λ) has a product (∏ Xλ, {pλ}).  Then ∏ : #Λ → # is a

functor and is a right adjoint of the constant functor P : # → #Λ.  Furthermore, the morphisms

p = {pλ} : P(∏ Xλ) → {Xλ} give rise to the counit.

     (3) Assume the constant functor P : # → #Λ has a right adjoint ∏ : #Λ → # and denote by

p : P o ∏ →   1# Λ  the counit.  Then every {Xλ} ∈  Ob(#Λ) has a product (∏ Xλ, {pλ}).

 

     Definition 1.12.  An abelian category ! is said to satisfy the condition Ab3* if arbitrary

direct products exist in !, and to satisfiy the condition Ab4* if arbitrary direct products exist

in ! and for any set Λ the functor ∏ : !Λ → ! is exact.

 

     Remark 1.8.  If ! satisfies the condition Ab3*, then for any set Λ the functor ∏ : !Λ → !
is a right adjoint of the constant functor ! → !Λ and thus left exact.

 

     Proposition 1.11.  (1) If ! satisfies the condition Ab3*, then so does C(!).

     (2) If ! satisfies the condition Ab4*, then so does C(!) and H•  : C(!) → !Z commutes

with direct products.
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     Proof.  (1) Let { Xλ
•}λ ∈ Λ  be an arbitrary family of complexes in C(!).  Then we have a



complex ∏ Xλ
•  such that

 

(∏ Xλ
•)n  =  ∏ Xn

λ ,     d
X

n

∏ •
λ
 =  ∏ d

X

n

λ
•

for all n ∈  Z.  Also, for each µ ∈ Λ , we have a homomorphism pµ : ∏ Xλ
•  → Xµ

•  in C(!)

such that pn
µ  : ∏ Xn

λ  → Xn
µ  is a projection for all n ∈  Z.  It is easy to see that for any Y • ∈

Ob(C(!)) the canonical homomorphism

C(!)( Y • , ∏ Xλ
•) → ∏ C(!)( Y • , Xλ

•), u a (pλ o u)

is an isomorphism.  Thus (∏ Xλ
• , {pλ}) is a direct product of { Xλ

•}λ ∈ Λ .

     (2) Straightforward.

     Definition 1.13.  Let # be a category and Λ  a set.  Denote by P : # → #Λ the constant

functor.  A coproduct of {Xλ} ∈  Ob(#Λ) is an initial object in the following category: an

object is a morphism in #Λ of the form f ∈  #Λ({Xλ}, PX) with X ∈  Ob(#), i.e., a pair ({fλ}, X)

of X ∈  Ob(#) and a family of morphisms fλ ∈  #(Xλ, X); a morphism h : ({fλ}, X) → ({gλ}, Y)

is a morphism h ∈  #(X, Y) with gλ = h o fλ for all λ ∈  Λ .  If {Xλ} has a coproduct ({iλ}, X),

then the morphisms iλ : Xλ → X are called Injections.  In case # is an additive category, a

coproduct is usually called a direct sum.

 

     Remark 1.9.  Let # be a category and Λ a set.  Then the following hold.

     (1) A pair ({iλ}, X) is a coproduct of {Xλ} ∈  Ob(#Λ) if and only if the mapping

 

#(X, Y) → ∏ #(Xλ, Y), f a (f o iλ)

is a bijection for all Y ∈  Ob(#).

     (2) Assume every {Xλ} ∈  Ob(#Λ) has a coproduct ({iλ}, ⊕  Xλ).  Then ⊕  : #Λ → # is a

functor and is a left adjoint of the constant functor P : # → #Λ.  Furthermore, the morphisms

i = {iλ} : {Xλ} → P(⊕  Xλ) give rise to the unit.

     (3) Assume the constant functor P : # → #Λ has a left adjoint ⊕  : #Λ → # and denote by i

:   1# Λ  → P o ⊕  the unit.  Then every {Xλ} ∈  Ob(#Λ) has a coproduct ({iλ}, ⊕  Xλ).

 

     Definition 1.14.  An abelian category ! is said to satisfy the condition Ab3 if arbitrary

direct sums exist in !, and to satisfiy the condition Ab4 if arbitrary direct sums exist in !

and for any set Λ the functor ⊕  : !Λ → ! is exact.
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     Remark 1.10.  If ! satisfies the condition Ab3, then for any set Λ the functor ⊕  : !Λ → !



is a left adjoint of the constant functor ! → !Λ and thus right exact.

 

     Proposition 1.12 (Dual of Proposition 1.11).  (1) If ! satisfies the condition Ab3, then so

does C(!).

     (2) If ! satisfies the condition Ab4, then so does C(!) and H•  : C(!) → !Z commutes
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with direct sums.



§2.  Mapping cones

     Throughout this section, ! is an abelian category and ( (resp. 3) is the collection of

injective (resp. projective) objects of !.  Unless otherwise stated, functors are covariant

functors.

     Definition 2.1.  The mapping cone of u ∈  C(!)( X• , Y • ) is a cochain complex of the form

 

C(u)  = (TX ⊕  Y, 
d

Tu d
TX

Y

0





).

     Remark 2.1.  (1) Tn(C(u)) > C((– 1)n Tnu) for all u ∈  C(!)( X• , Y • ) and n ∈  Z.

     (2) Let @ be another abelian category and F : ! → @ an additive functor.  Then F(C(u))

> C(Fu) for all u ∈  C(!)( X• , Y • ).  In case F is contravariant, F(C(u)) > C(T– 1(Fu)).

     (3) X•  ⊕  Y •  > C( 0 1T X Y– ,
) for all X• , Y •  ∈  Ob(C(!)).

     (4) For any X•  ∈  Ob(C(!)), U X•  > Z•(C(idX)) and we have an isomorphism

 
1

0 1

dX





 : C(idX) →̃ S(U( X•)).

     Proposition 2.1.  For any u ∈  C(!)( X• , Y • ) we have an exact sequence in C(!)

 

0 → Y •  →
µ

 C(u) →
ε

 T X•  → 0,

where µ = t[0  1] and ε = [1  0].

     Proof.  Straightforward.

     Proposition 2.2.  For any u ∈  C(!)( X• , Y • ) we have a commutative diagram with exact

rows

 

0 → X• →
µ

C(idX) →
ε

T X• → 0

u ↓ PO ↓ φ ||

0 → Y • →
µ

C(u) →
ε

T X• → 0

|| – ψ ↓ PB ↓ – Tu

0 → Y • →
– µ

C(idY) →
ε

T Y • → 0 ,

1



where µ = t[0  1],  ε = [1  0], φ = 
1 0

0 u





 and ψ = 

Tu 0

0 1





.

     Proof.  Straightforward.

     Definition 2.2.  A complex X•  ∈  Ob(C(!)) is caled acyclic if H•( X•) = 0.

 

     Remark 2.2.  Let µ : X → I•  be a right resolution of X ∈  Ob(!).  Then C(µ) is an acyclic

complex

 

L → 0 → X →
µ

 I 0 → I 1 → L .

     Proposition 2.3.  C(idX) is acyclic for all X•  ∈  Ob(C(!)).

 

     Proof.  Let n ∈  Z.  Let t[u   v] : Y → Xn + 1 ⊕  Xn be a morphism in ! with

 
– d

d
X
n

X
n

+









1 0

1

u

v






 = 0.

Then u = – dX
n  o v and we have

 
u

v






 = 
–

–

d

d
X
n

X
n

0

1 1











v

0





.

Thus Hn(C(idX)) = 0.

     Proposition 2.4.  For any u ∈  C(!)( X• , Y • ) we have a long exact sequence

 
L → Hn( X•) → Hn( Y • ) → Hn(C(u)) → Hn + 1( X•) → L .

     Proof.  By Proposition 2.2 we have an exact sequence of the form

      
0 → X•  → Y •  ⊕  C(idX) → C(u) → 0.

Since by Proposition 2.3 Hn(C(idX)) = 0 for all n ∈  Z, by Proposition 1.3 the assertion

follows.

     Proposition 2.5.  For any exact sequence 0 → X•  →
u

 Y •  →
v

 Z•  → 0 in C(!) the

following hold.
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     (1) We have the following exact diagram in C(!)



 

0 0

↓ ↓

0 → X• →
µ

C(idX) →
ε

T X• → 0

u ↓ PO ↓ φ ||

0 → Y • →
µ

C(u) →
ε

T X• → 0

v ↓ ↓ π

Z•  Z•

↓ ↓
0 0 ,

     

where µ = t[0  1], ε = [1  0], φ = 
1 0

0 u





 and π = [0   v].

     (2) H•(π) : H•(C(u)) → H•( Z•) is an isomorphism.

     (3) The composite

ω  = H•(ε) o H•(π)– 1 : H•( Z•) → H•(T X•) = T( H•( X•))

gives rise to a connecting morphism of a long exact sequence

L → Hn( Y • ) → Hn( Z•) →
ω n

 Hn + 1( X•) → Hn + 1( Y • ) → L .

     Proof.  (1) According to Proposition 2.2, it only remains to check that π is a morphism in

C(!).  We have

 

Tπ o dC(u)   = [0   Tv]
d

Tu d
TX

Y

0





= [0   Tv o dY ]
= [0   dZ o v]
=  dZ  o π.

     (2) By the part (1) we have an exact sequence 0 → C(idX) → C(u) →
π

 Z•  → 0.  Thus by

Propositions 1.3 and 2.3 Hn(π) is an isomorphism for all n ∈  Z.

     (3) Let n ∈  Z.  By Propositions 2.2, 2.3 and 1.3 we have an exact sequence

Hn( Y • )  →
H n ( )µ

 Hn(C(u))  →
H n ( )ε

 Hn + 1( X•)  →
+H un 1 ( )

 Hn + 1( Y • ).
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Since Hn(µ) = Hn(π)– 1 o Hn(v) and ω n = Hn(ε) o Hn(π)– 1, the diagram

 

Hn( Y • )  →
H vn ( )

Hn( Z•)  →
ω n

Hn + 1( X•)  →
+H un 1 ( )

Hn + 1( Y • )

|| ↓ Hn(π)– 1 || ||

Hn( Y • )  →
H n ( )µ

Hn(C(u))  →
H n ( )ε

Hn + 1( X•)  →
+H un 1 ( )

Hn + 1( Y • )

commutes and the top row is exact.

     Lemma 2.6.  Let 0 → X•  →
u

 Y •  →
v

 Z•  → 0 be an exact sequence in C(!) which splits as

an exact sequence in !Z.  Then there exist w : T– 1 Z•  → X•  and φ : Y •  → C(w) such that the

following diagram in C(!) commutes

 

0 → X• →
u

Y • →
v

Z• → 0

|| ↓ φ ||

0 → X• →
µ

C(w) →
ε

Z• → 0,

where µ = t[0  1], ε = [1  0].

     Proof.  Let f ∈  !Z( Y • , X•) with fu = idX.  Then g = Tf o dY – dX o f ∈  C(!)( Y • , T X•) and

gu = 0. Thus there exists w ∈  C(!)(T– 1 Z• , X•) such that g = Tw o v.  Finally, it is easy to see

that φ = t[v   f] ∈  C(!)( Y • , C(w)).

 

     Proposition 2.7.  Let 0 → X →
µ

 Y →
ε

 Z → 0 be an exact sequence in !.  Let µX : X → IX
•

be an injective resolution of X and µZ : Z → IZ
•  a right resolution of Z.  Then there exists a

right resolution µY : Y → IY
•  of Y such that we have a commutative diagram in C(!) with

exact rows

 

0 → X →
µ

Y →
ε

Z → 0

µX ↓ ↓ µY ↓ µZ

0 → IX
• →

µ̂
IY

• →
ε̂

IZ
• → 0 .

Furthermore, we may assume that IY
•  = C(δ) with δ ∈  C(!)(T– 1 IZ

• , IX
• ), µY = t[µZ o ε   δ – 1]

with δ – 1 ∈  !(Y, IX
0 ), µ̂  = t[0  1] and ε̂  = [1  0].

     Proof.  By Lemma 1.8 we have a commutative diagram in ! with exact rows
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0  → X  →
µ

Y
  
 →
– µ εZ o

IZ
0  →

– dIZ
0

IZ
1  →

– dIZ
1

L

|| ↓ δ – 1 ↓ δ  0 ↓ δ 1

0  → X  →
µ X

IX
0  →

dIX
0

IX
1  →

dIX
1

IX
2  →

dIX
2

L .

Taking the mapping cone of δ : T– 1 IZ
•  → IX

• , we get a desired right resolution µY : Y → IY
•  of

Y.  The last assertion follows by Lemma 2.6.

     Proposition 2.8.  Let 0 → X →
f

 Y → Z → 0 be an exact sequence in ! and X → IX
• , Y →

IY
•  injective resolutions of X and Y, respectively.  Then the following hold.

     (1) There exists f̂  ∈  C(!)( IX
• , IY

• ) such that H 0( f̂ ) = f.

     (2) There exists an injective resolution Z → IZ
•  of Z such that C( f̂ ) > C( id

I X
0 ) ⊕  IZ

•  in

C(!).

 

     Proof.  (1) By Lemma 1.8.

     (2) Note first that by Proposition 2.4 H 0(C( f̂ )) > Z and Hn(C( f̂ )) = 0 for all n  0.  We

have an exact sequence in C(!) of the form

 
0 → C( id

I X
0 ) → C( f̂ ) → IZ

•  → 0,

which splits because by Proposition 1.6(1) C( id
I X

0 ) is injective in C(!).  Note that IZ
n  ∈  ( for

all n ∈  Z and IZ
n  = 0 for all n < 0.  Also, by Proposition 1.3 H 0( IZ

• ) > Z and Hn( IZ
• ) = 0 for all

n  0.  It follows that IZ
•  is an injective resolution of Z.

     Corollary 2.9.  Let X ∈  Ob(!) and n ≥ 0.  Let

 
0 → Xn → L → X0 → X → 0

be an exact sequence in ! and Xi → IXi

•  an injective resolution of Xi for 0 ≤ i ≤ n.  Then there

exists a monomorphism X → i

n
X
iI

i=⊕ 0  in !.

 

     Proof.  In case n = 0, the assertion is obvious.  Let n > 0 and put ′Xn – 1 = Cok(Xn → Xn – 1).

By Proposition 2.8 there exist φ : IXn

•  → IXn – 1

•  and an injective resolution ′Xn – 1 → IXn′
•

– 1
 of

′Xn – 1 such that C(idI) ⊕  IXn′
•

– 1
 > C(φ), where I = IXn

0 .  In case n = 1, X > ′Xn – 1 and IX
n

n′ –

–

1

1  is a

direct summand of IX
n

n
 ⊕  IX

n

n –

–

1

1 , so that X embeds in IX
n

n
 ⊕  IX

n

n –

–

1

1 .  Let n > 1 and assume the

assertion is true for n – 1.  Then IX
n

n′ –

–

1

1  > IX
n

n
 ⊕  IX

n

n –

–

1

1  and by induction hypothesis X embeds in

( i

n
X
iI

i=⊕ 0

2– ) ⊕  IX
n

n′ –

–

1

1  > i

n
X
iI

i=⊕ 0 .
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     Proposition 2.10.  (1) Let n0 ∈  Z and define an automorphism ρ : 
    
1

!Z  →̃ 
    
1

!Z  of the

identity functor 
    
1

!Z  : !Z → !Z as follows: ρX
n  = (– )1 0n n

X n

+ id  for all X•  ∈  Ob(C(!)) and n

∈  Z.  Then ρ is an involution of 
    
1

!Z , i.e., ρ2 = id, and satisfies Tρ = – ρT.

     (2) Let ρ : 
    
1

!Z  →̃ 
    
1

!Z  be an involution of the identity functor 
    
1

!Z  such that Tρ = – ρT .

Then for any u ∈  C(!)( X• , Y • ) we have a cochain complex

 

Cρ(u)  = (TX ⊕  Y, 
  

– d

Tu d
TX

TX Y

0

o ρ





)

which makes the following diagram in C(!) commute

X• →
u

Y • →
µ

Cρ(u) →
ε

T X
•

|| || || ↓ ρTX

X• →
u

Y • →
µ

Cρ(u) →
′ε

T X•

|| || ↓ φ ||

X• →
u

Y • →
µ

C(u) →
ε

T X• ,

where µ = t[0  1], ε = [1  0], ε’ = [ρTX   0], φ = 
ρTX 0

0 1





 and X

•
 = (X, – dX).

     Proof.  Straightforward.

     Proposition 2.11. (Dual of Proposition 2.7).  Let 0 → X →
µ

 Y →
ε

 Z → 0 be an exact

sequence in !.  Let εX : PX
•  → X be a left resolution of X and εZ : PZ

•  → Z a projective

resolution Z.  Then there exists a left resolution εY : PY
•  → Y of Y such that we have a

commutative diagram in C(!) with exact rows

 

0 → PX
• →

µ̂
PY

• →
ε̂

PZ
• → 0

εX ↓ ↓ εY ↓ εZ

0 → X →
µ

Y →
ε

Z → 0 .

Furthermore, we may assume PY
n  = PZ

n  ⊕  PX
n  for all n ≥ 0 and µ̂  = t[0  1], ε̂  = [1  0].

 

     Proposition 2.12 (Dual of Proposition 2.8).  Let 0 → X → Y →
g

 Z → 0 be an exact

sequence in ! and PY
•  → Y, PZ

•  → Z be projective resolutions of Y and Z, respectively.  Then

the following hold.
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     (1) There exists ĝ  ∈  C(!)( PY
• , PZ

• ) such that H 0( ĝ) = g.



     (2) There exists a projective resolution PX
•  → X of X such that C( ĝ) > C( id

PZ
0 ) ⊕  T PX

•  in

C(!).

     Corollary 2.13 (Dual of Corollary 2.9).  Let X ∈  Ob(!) and n ≥ 0.  Let

 
0 → X → X 0 →  L → Xn → 0

be an exact sequence in ! and P
X i

•  → Xi a projective resolution of Xi for each 0 ≤ i ≤ n.  Then

there exists an epimorphism i

n

X

iP i=⊕ 0
–  → X in !.
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§3.  Homotopy categories
 

     Throughout this section, ! is an abelian category and ( (resp. 3) is the collection of

injective (resp. projective) objects of !.  Unless stated otherwise, functors are covariant

functors.

     Proposition 3.1.  For a morphism u ∈  C(!)( X• , Y • ) the following are equivalent.

     (1) There exists h ∈  !Z(T X• , Y • ) such that u = h o dX + T– 1(dY o h).

     (2) The canonical exact sequence 0 → Y •  → C(u) → T X•  → 0 splits.

     (3) u factors through t[0  1] : X•  → C(idX).

     (4) u factors through [1  0] : C( id
T Y– 1 ) → Y • .

     (5) u factors through C(idZ) for some Z•  ∈  Ob(C(!)).

 

     Proof.  The implications (3) ⇒  (5) and (4) ⇒  (5) are obvious.  Also, it follows by

Proposition 2.2 that (2) ⇔  (3) and (2) ⇔  (4).

     (1) ⇒  (2).  Let h ∈  !Z(T X• , Y • ) with u = h o dX + T– 1(dY o h).  Since

 

h 1[ ] 0

1





 = idY ,

it suffices to check that [h   1] : C(u) → Y •  is a morphism in C(!).  We have

Th 1[ ]
– Td

Tf d
X

Y

0




 =   Tf Th Td dX Y– o[ ]
=   d h dY Yo[ ]
= dY h 1[ ].

     (5) ⇒  (1).  Let u = h o v with v = t[v1  v2] : X•  → C(idZ), h = [h1  h2] : C(idZ) → Y • .  Then

 
– Td

d
Z

Z

0

1





 

v

v
1

2







= 
Tv

Tv
1

2






dX

implies v1 = Tv2 o dX – dZ o v2, and

dY h h1 2[ ] = Th Th1 2[ ] – Td

d
Z

Z

0

1






implies Th2 = dY o h1 + Th1 o TdZ,.  Thus

1



                               u = h1 o v1 + h2 o v2

= h1 o (Tv2 o dX – dZ o v2) + (T– 1dY o T– 1h1 + h1 o dZ) o v2

= h1 o Tv2 o dX + T– 1dY o T– 1h1 o v2

= (h1 o Tv2) o dX + T– 1dY o T– 1(h1 o Tv2).

     Definition 3.1.  For each pair of X• , Y •  ∈  Ob(C(!)), we denote by Htp( X• , Y • ) the

subset of C(!)( X• , Y •) consisting of morphisms u : X•  → Y •  which satisfy the equivalent

conditions of Proposition 3.1.

     Definition 3.2.  Let u, v ∈  C(!)( X• , Y •).  Then u is said to be homotopic to v, written u

. v, if u – v ∈  Htp( X• , Y • ).  If h ∈  !Z(T X• , Y •) satisfies u – v = h o dX + T– 1(dY o h), then h

is called a homotopy and written h : u . v.

     Lemma 3.2.  (1) For any X• , Y •  ∈  Ob(C(!)), Htp( X• , Y • ) is an additive subgroup of

C(!)( X• , Y • ).

     (2) For any two consecutive morphisms u : X•  → Y • , v : Y •  → Z•  in C(!), if either u ∈
Htp( X• , Y • ) or v ∈  Htp( Y • , Z•) then v o u ∈  Htp( X• , Z•).

     (3) For any X• , Y •  ∈  Ob(C(!)), the translation T induces an isomorphism Htp( X• , Y • )

→̃ Htp(T X• , TY • ).

 

     Proof.  By Proposition 3.1.

 

     Definition 3.3.  According to Lemma 3.2, we can define the residue category K(!) =

C(!)/Htp, called the homotopy category, as follows: Ob(K(!)) = Ob(C(!)); and for each

pair of objects X• , Y •  ∈  Ob(K(!)) we set

 

K(!)( X• , Y • ) = C(!)( X• , Y • )/Htp( X• , Y • ).

Then the translation T : C(!)→̃C(!) induces an autofunctor T : K(!)→̃K(!), which is also

called the translation.  Similarly, for a subcollection + of Ob(!) and for * = +, –, b, (+, b),

(–, b) or nothing, we define the homotopy category K*(+) = C*(+)/Htp.  Then the canonical

functor K*(+) → K(!) is fully faithful and K*(+) can be identified with the full subcategory

of K(!) consisting of X•  ∈ Ob(C*(+)).

     Remark 3.1.  Htp(X, Y) = 0 for all X, Y ∈  Ob(!Z), so that we have a full embedding !Z →
K(!).
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     Lemma 3.3.   For any X• , Y •  ∈  Ob(C(!)) we have exact sequences



 

C(!)(C(idX), Y • ) → C(!)( X• , Y • ) → K(!)( X• , Y • ) → 0,

C(!)( X• , C( id
T Y– 1 )) → C(!)( X• , Y • ) → K(!)( X• , Y • ) → 0.

     Proof.  Straightforward.

 

     Proposition 3.4.  Let + be a subcollection of Ob(!) containing zero objects and closed

under finite direct sums.  Then, for * = +, –, b or nothing, the following hold.

     (1) K*(+) is an additive category and the canonical functor C*(+) → K*(+) is additive.

     (2) The canonical functor C*(+) → K*(+) preserves direct products.  In particular, if !

satisfies the condition Ab3*, then arbitrary direct products exist in K(!).

     (3) The canonical functor C*(+) → K*(+) preserves direct sums.  In particular, if !

satisfies the condition Ab3, then arbitrary direct sum exist in K(!).

 

     Proof.  (1) Immediate by definition.

     (2) Let { Yλ
• }λ ∈  Λ be a family of objects in C*(+) indexed by a set Λ and assume the direct

product ∏ Yλ
•  exists in C*(+).  Let X•  ∈  Ob(C*(+)).  Since by Lemma 3.3 we have a

commutative diagram with exact rows

 

C(!)(C(idX) , ∏ Yλ
• ) → C(!)( X• , ∏ Yλ

• ) → K(!)( X•  ∏ Yλ
• ) → 0

↓ ↓ ↓

∏ C(!)(C(idX), Yλ
• ) → ∏ C(!)( X• , Yλ

• ) → ∏ K(!)( X• , Yλ
• ) → 0,

where the vertical maps are canonical ones, it follows that

K(!)( X• , ∏ Yλ
• ) →̃ ∏ K(!)( X• , Yλ

• )

canonically.  The last assertion follows by Proposition 1.11.

     (3) Dual of (2).

     Proposition 3.5.  For X•  ∈  Ob(C(!)) the following are equivalent.

     (1) X•  = 0 in K(!).

     (2) K(!)( X• , X•) = 0.

     (3) There exists h : idX . 0.

     (4) X•  > C(idZ) in C(!) for Z•  = Z•( X•).

     (5) X•  > C(idZ) in C(!) for some Z•  ∈  Ob(C(!)).
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     Proof.  The implications (1) ⇔ (2) ⇔  (3) and (4) ⇒  (5) are obvious.

     (3) ⇒  (4).  Let Z•  = Z•( X•).  By Proposition 3.1 t[0   1] : X•  → C(idX) is a section.  Since

C(idX) is acyclic, so is X• .  Thus we may consider that B•( X•) = Z•  and ′•B ( X•) = T Z• .  Let

j : Z•  → X•  be the inclusion and p : X•  → T Z•  the epimorphism with dX = Tj o p.  Note that

p o T– 1dX = 0.  Since idX = h o dX + T– 1(dX o h),

 

p = p o (h o dX + T– 1(dX o h))

= p o h o dX

= p o h o Tj o p.

Thus, since p is epic, idTZ = p o h o Tj.  Hence, since p o j = 0, we get an isomorphism in C(!)

[hT(j)   j] : C(idZ) →̃ X• .

     (5) ⇒  (1).  By Proposition 3.1.

     Proposition 3.6.  For X•  ∈  Ob(C(!)) the following are equivalent.

     (1) X•  is injective (resp. projective) in C(!).

     (2) Z•  = Z•( X•) is injective (resp. projective) in !Z and X•  > C(idZ).

     Proof.  (1) ⇒  (2).  The canonical exact sequence 0 → X•  → C(idX) → T X•  → 0 splits, so

that by Propositions 3.1 and 3.5 X•  > C(idZ) with Z•  = Z•( X•).  In case X•  is injective, so is

S Z•  = C(idZ).  Let j : Y → Y’ be a monomorphism in !Z and f ∈  !Z(Y, Z•).  Since Sj is

monic, there exists ĝ  ∈  C(!)(SY, S Z•) such that Sf = ĝ  o Sj.  Note that

 

ĝ  = 
Tg

h g

0




  with  g ∈  !Z(Y, Z•),  h ∈  !Z(TY’, Z•).

 

Thus, since US = T ⊕  
    
1

!Z ,  U(S(f)) = U( ĝ) o U(S(j)) implies f = gj.

     (2) ⇒  (1).  Since S has an exact left adjoint U, S takes injective objects into injective

objects.  Thus C(idZ) = S Z•  is injective.

           

     Lemma 3.7.  For any X ∈  Ob(!), Y •  ∈  Ob(C(!)) we have isomorphisms

 

K(!)(X, Y • ) > H 0(!(X, Y • )),   K(!)( Y • , X) > H 0(!( Y • , X)).

     Proof.  We may consider that
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C(!)(X, Y • ) = {u ∈  !(X, Y 0) |dY
0  o u = 0}

= Z 0(!(X, Y • )),

C(!)(C(idX), Y • ) = {(v, u) ∈  !(X, Y – 1) × !(X, Y 0) | u = dY
– 1  o v}.

Then, for µ = t[0  1] : X → C(idX), we have Im(C(!)(µ, Y • )) = B 0(!(X, Y • )).  Thus, since by

Lemma 3.3 we have an exact sequence

 

C(!)(C(idX), Y • ) → C(!)(X, Y • ) → K(!)(X, Y • ) → 0,

we get K(!)(X, Y • ) > H 0(!(X, Y • )).  Dually, we have K(!)( Y • , X) > H 0(!( Y • , X)).

      

     Proposition 3.8.  For any X ∈  Ob(!), Y •  ∈  Ob(C(!)) and n ∈  Z, we have isomorphisms

 

K(!)(X, Tn Y • ) > Hn(!(X, Y • )),   K(!)(T– n Y • , X) > Hn(!( Y • , X)).

     Proof.  By Lemma 3.7 and Proposition 1.4 we have

 

K(!)(X, Tn Y • ) > H 0(!(X, Tn Y • ))

> H 0(Tn !(X, Y • ))

> Hn(!(X, Y • )).

Dually, we have K(!)(T– n Y • , X) > Hn(!)( Y • , X)).

     Proposition 3.9.  The functor H•  : C(!) → !Z factors through K(!).

 

     Proof.  Let u ∈  Htp( X• , Y • ).  Then u factors through some C(idZ).  Since by Proposition

2.3 C(idZ) is acyclic, it follows that H•(u) = 0.

 

     Remark 3.2.  The converse of Proposition 3.9 fails, i.e., for u ∈  C(!)( X• , Y • ), H•(u) = 0

does not necessarily imply u . 0.  Let f ∈  !(X, Y) and µ = t[0   1] : Y → C(f).  Then H 0(µ) is

just the canonical epimorphism Y → Cok f.  Also, µ . 0 if and only if f is a retraction.  Thus,

in case f is an epimorphism and not a retraction, we have H•(u) = 0 and µ ³ 0.

      

     Proposition 3.10.  Let @ be another abelian category and F : ! → @ an additive functor.

Then the following hold.

     (1) F is extended to an additive functor F : K(!) → K(@) which commutes with the

translation.

5

     (2) Assume F has a right (resp. left) adjoint G : @ → !.  Then the extended functor G :



K(@) → K(!) is a right (resp. left) adjoint of F : K(!) → K(@).  Furthermore, if G : @ → !

is fully faithful, so is G : K(@) → K(!).

 

     Proof.  (1) It is obvious that the extended functor F : C(!) → C(@) commutes with the

translation.  Let X• , Y •  ∈  Ob(C(!)).  Since F(C(idZ)) > C(idFZ) for all Z•  ∈  Ob(C(!)), Fu

∈ Htp(F X• , FY • ) for all u ∈ Htp( X• , Y • ).

     (2) Let G : @ → ! be a right adjoint of F : ! → @ and let ε: 1! → GF, δ : FG → 1@ be

the unit and the counit, respectively.  Then ε, δ are extended to homomorphisms of functors

ε: 1K(!) → GF, δ : FG → 1K(@), respectively.  It is easy to see that the equations δF o Fε = idF,

Gδ o εG = idG are also satisfied by extended functors.  Furthermore, if δ : FG → 1@ is an

isomorphism, so is δ : FG → 1K(@).

     Proposition 3.11.  For any u, v ∈  C(!)( X• , Y • ) the following hold.

     (1) For h ∈  !Z(T X• , Y • ), h : u . v if and only if

 

φ = 
1 0

1h





 ∈  C(!)(C(u), C(v)).

     (2) There exists h : u . v if and only if there exists φ ∈  C(!)(C(u), C(v)) which makes the

following diagram commute

 

0 → Y • →
µ

C(u) →
ε

T X• → 0

|| ↓ φ ||

0 → Y • →
µ

C(v) →
ε

T X• → 0,

where µ = t[0  1] and ε = [1  0].

     Proof.  (1) Straightforward.

     (2) Note that φ ∈  !Z(C(u), C(v)) makes the diagram commute if and only if it is of the

form

φ = 
1 0

1h





 with h ∈  !Z(T X• , Y • ).

The assertion follows by the part (1).

     Lemma 3.12.  Let µX : X → IX
•  be a right resolution of X ∈  Ob(!) and µY : Y → IY

•  an
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injective resolution of Y ∈  Ob(!).  Then H 0: K(!) → ! induces an isomorphism



 

K(!)( IX
• , IY

• ) →̃ !(X, Y), φ a H 0(φ).

 

     Proof.  By Lemma 1.8.

 

     Proposition 3.13.  Assume ! has enough injectives.  Choose arbitrarily an injective

resolution µX : X → IX
•  of each X ∈  Ob(!).  Then IX

•  ∈  Ob(K(!)) is uniquely determined up

to isomorphisms and we get a full embedding

 

! → K(!), X a IX
• .

 

     Proof.  Let X → I•  be another injective resolution of X ∈  Ob(!).  By Lemma 1.8 there

exist φ ∈  C(!)( IX
• , I• ), ψ ∈  C(!)( I• , IX

• ) such that H 0(φ) = H 0(ψ) = idX.  Then H 0(ψ o φ) =

H 0(φ o ψ) = idX and it follows by Lemma 3.12 that ψ o φ = φ o ψ = idX in K(!).  Thus φ is an

isomorphism in K(!).  The last assertion follows by Lemma 3.12.

     Proposition 3.14.  Let

 

0 → X →
µ

Y →
ε

Z → 0

f ↓ ↓ g ↓ h

0 → X’ →
′µ

Y’ →
′ε

Z’ → 0

be a commutative diagram in ! with exact rows and let

0 → IX
•  →

µ̂
 IY

•  →
ε̂

 IZ
•  → 0,      0 → IX ′

•  →
′µ̂
 IY ′

•  →
′ε̂
 IZ ′

•  → 0

be exact sequences of injective resolutions over the top and the bottom rows, respectively.

Then for any f̂  : IX
•  → IX ′

•  over f and ĥ  : IZ
•  → IZ ′

•  over h, the following hold.

     (1) There exists ĝ  : IY
•  → IY ′

•  over g which makes the following diagram commute

 

0 → IX
• →

µ̂
IY

• →
ε̂

IZ
• → 0

f̂ ↓ ↓ ĝ ↓ ĥ

0 → IX ′
• →

′µ̂
IY ′

• →
′ε̂

IZ ′
• → 0 .

     (2) In case f = g = h = 0, for any u : f̂  . 0 and w : ĥ  . 0 there exists v : ĝ  . 0 which
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makes the following diagram in !Z commute



 

0 → T IX( )• →
Tµ̂

T IY( )• →
Tε̂

T IZ( )• → 0

u ↓ ↓ v ↓ w

0 → IX ′
• →

′µ̂
IY ′

• →
′ε̂

IZ ′
• → 0 .

     Proof.  (1) According to Proposition 2.7, we may assume

 

IY
•  = C(δ) with δ ∈  C(!)(T– 1 IZ

• , IX
• ),     IY ′

•  = C(δ’) with δ’ ∈  C(!)(T– 1 IZ ′
• , IX ′

• ),

 

µY = 
  

µ ε
δ
Z o

– 1






 with δ – 1 ∈  !(Y, IX

0 ),     µ ′Y  = 
  

µ ε
δ

′ ′
′







Z o
– 1  with δ’ – 1 ∈  !(Y’, IX ′

0 ),

µ̂  = t[0  1],     ε̂  = [1  0],     ˆ ′µ  = t[0  1]     and     ˆ′ε  = [1  0].

Then we have the following commutative diagrams with exact rows

0  → X  →
µ

Y
  
 →
– µ εZ o

IZ
0  →

– dIZ
0

IZ
1  →

– dIZ
1

L

|| ↓ δ – 1 ↓ δ 0 ↓ δ 1

0  → X  →
µ X

IX
0  →

dIX
0

IX
1  →

dIX
1

IX
2  →

dIX
2

L

f ↓ ↓ f̂
0 ↓ f̂

1 ↓ f̂
2

0  → X’  →
′µ X

IX ′
0  →

′
dIX

0

IX ′
1  →

′
dIX

1

IX ′
2  →

′
dIX

2

L ,

0  → X  →
µ

Y
  
 →
– µ εZ o

IZ
0  →

– dIZ
0

IZ
1  →

– dIZ
1

L

f ↓ ↓ g ↓ ĥ
0 ↓ ĥ

1

0  → X’  →
′µ

Y’
  
 →

′ ′– µ εZ o

IZ ′
0  →

′
– dIZ

0

IZ ′
1  →

′
– dIZ

1

L

|| ↓ δ’ – 1 ↓ δ’ 0 ↓ δ’ 1

0  → X’  →
′µ X

IX ′
0  →

′
dIX

0

IX ′
1  →

′
dIX

1

IX ′
2  →

′
dIX

2

L .

Thus, setting

ψ– 1 = f̂ 0  o δ – 1 – δ’ – 1 o g : Y → IX ′
0 ,

ψn = f̂ n + 1 o δ n – δ’n o ĥn  : IZ
n  → IX

n
′
+ 1 for n ≥ 0,
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we get a commutative diagram with exact rows



0  → X  →
µ

Y
  
 →
– µ εZ o

IZ
0  →

– dIZ
0

IZ
1  →

– dIZ
1

L

0 ↓ ↓ ψ– 1 ↓ ψ0 ↓ ψ1

0  → X’  →
′µ X

IX ′
0  →

′
dIX

0

IX ′
1  →

′
dIX

1

IX ′
2  →

′
dIX

2

L .

It follows by Lemma 1.8 that there exist ϕ n : IZ
n  → IX

n
′  for n ≥ 0 such that ψ– 1 = – ϕ 0 o µZ o ε

and ψ n = dI
n

X ′
 o ϕ n – ϕ n + 1 o dI

n

Z
 for all n ≥ 0.  Hence, setting

ĝn  = 
ˆ

ˆ
h

f

n

n n

0

ϕ








  : IZ

n  ⊕  IX
n  → IZ

n
′  ⊕  IX

n
′

for n ≥ 0, we get a desired morphism ĝ  : IY
•  → IY ′

• .

     (2) Put ϕ’ = ϕ  – (u o Tδ + δ’ o T– 1w).  It is not difficult to check that ϕ ’ ∈  C(!)( IZ
• , IX ′

• )

and ϕ ’ 0 o µZ = 0.  Thus by Lemma 1.8 there exists v’ : ϕ’ . 0 and we get a desired homotopy

v = 
w

v u

0

′





 : ĝ  . 0.

     Lemma 3.15 (Dual of Lemma 3.12).  Let εX : PX
•  → X be a projective resolution of X ∈

Ob(!) and εY : PY
•  → Y a left resolution of Y ∈  Ob(!).  Then H 0: K(!) → ! induces an

isomorphism

 

K(!)( PX
• , PY

• ) →̃ !(X, Y), φ a H 0(φ).

 

     Proposition 3.16 (Dual of Proposition 3.13).  Assume ! has enough projectives.  Choose

arbitrarily a projective resolution εX : PX
•  → X of each X ∈  Ob(!).  Then PX

•  ∈  Ob(K(!)) is

uniquely determined up to isomorphisms and we get a full embedding

 

! → K(!), X a PX
• .

     Proposition 3.17 (Dual of Proposition 3.14).  Let

 

0 → X →
µ

Y →
ε

Z → 0

f ↓ ↓ g ↓ h

0 → X’ →
′µ

Y’ →
′ε

Z’ → 0
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be a commuta diagram in ! with exact rows and let



0 → PX
•  →

µ
 PY

•  →
ε

 PZ
•  → 0,      0 → PX ′

•  →
′µ̂
 PY ′

•  →
′ε̂
 PZ ′

•  → 0

be exact sequences of projective resolutions over the top and the bottom rows, respectively.

Then for any f̂  : PX
•  → PX ′

•  over f and ĥ  : PZ
•  → PZ ′

•  over h, the following hold.

     (1) There exists ĝ  : PY
•  → PY ′

•  over g which makes the following diagram commute

 

0 → PX
• →

µ̂
PY

• →
ε̂

PZ
• → 0

f̂ ↓ ↓ ĝ ↓ ĥ

0 → PX ′
• →

′µ̂
PY ′

• →
′ε̂

PZ ′
• → 0 .

     (2) In case f = g = h = 0, for any u : f̂  . 0 and w : ĥ  . 0 there exists v : ĝ  . 0 which

makes the following diagram in !Z commute

 

0 → T IX( )• →
Tµ̂

T IY( )• →
Tε̂

T IZ( )• → 0

u ↓ ↓ v ↓ w

0 → IX ′
• →

′µ̂
IY ′

• →
′ε̂

IZ ′
• → 0 .
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§4.  Quasi-isomorphisms

     Throughout this section, ! is an abelian category and ( (resp. 3) is the collection of

injective (resp. projective) objects of !.

     Proposition 4.1.  The following conditions for u ∈  K(!)( X• , Y • ) do not depend on the

choice of a representative of u in C(!)( X• , Y • ) and are equivalent.

     (1) H•(u) is an isomorphism.

     (2) C(u) is acyclic.

 

     Proof.  According to Propositions 3.9 and 3.11, both the conditions do not depend on the

choice of a representative of u in C(!)( X• , Y • ).  It follows by Propoaition 2.4 that (1) and

(2) are equivalent for u ∈  C(!)( X• , Y • ).

 

     Definition 4.1.  A morphism u ∈  K(!)( X• , Y • ) is called a quasi-isomorphism if it

satisfies the equivalent conditions of Proposition 4.1.  We also call a morphism  u in C(!) a

quasi-isomorphism if it represents a quasi-isomorphism in K(!).

 

     Proposition 4.2.  For any two consecutive morphisms u : X•  → Y • , v : Y •  → Z•  in K(!)

the following hold.

     (1) If two of u, vu and v are quasi-isomorphisms, then the rest is also a quasi-isomorphism.

     (2) If two of C(u), C(vu) and C(v) are acyclic, then the rest is also acyclic.

 

     Proof.  (1) Since H•(v) o H•(u) = H•(vu), if two of H•(u), H•(vu) and H•(v) are

isomorphisms, then the rest is also an isomorphism.

     (2) By the part (1) and Proposition 4.1.

 

     Proposition 4.3.  For any exact sequence 0 → X•  →
u

 Y •  →
v

 Z•  → 0 in C(!) the

following hold.

     (1) v is a quasi-isomorphism if and only if X•  is acyclic.

     (2) u is a quasi-isomorphism if and only if Z•  is acyclic.

     (3) [0   v] : C(u) → Z•  is a quasi-isomorphism.

     (4)  t[Tu   0] : T X•  → C(v) is a quasi-isomorphism.

 

     Proof.  (1) and (2) By Proposition 1.3.

     (3) By Proposition 2.5 we have an exact sequence

 

0 → C(idX) →
φ

 C(u) →
π

 Z•  → 0,

1



where φ = 
1 0

0 u





, π = [0   v].  Then by Propositions 2.3 and 2.4 π is a quasi-isomorphism.

     (4) Dual of (3).

 

     Lemma 4.4.  Let I•  ∈ Ob(K+(()).  Then K(!)(–, I• ) vanishes on the acyclic complexes.

In particular, if I•  is acyclic, then I•  = 0 in K(!).

 

     Proof.  Let u ∈ K(!)( X• , I• ) with X•  acyclic.  We will construct a homotopy h : u . 0.

We may assume In = 0 for all n < 0.  Let h– 1 = 0 : X0 → I – 1.  Then (u0 – dI
– 1 o h – 1) o dX

– 1 = 0.

Thus, the following Claim enables us to make use of induction to construct a desired homotopy

h : u . 0.

 

     Claim: Let n ≥ 0 and assume that hn – 1 : Xn → In – 1 satisfies (un – dI
n – 1 o hn – 1) o dX

n – 1 = 0.

Then there exists hn  : Xn + 1 → In such that

 

un = hn o dX
n  + dI

n – 1 o hn – 1   and   (un + 1 – dI
n  o hn ) o dX

n  = 0.

 

     Proof.  Since un – dI
n – 1 o hn – 1 factors through Z’n( X•) = Bn( X•), and since In is injective,

un – dI
n – 1 o hn – 1 factors through dX

n .  Thus there exists hn  : Xn + 1 → In with un – dI
n – 1 o hn – 1 =

hn o dX
n .  Then we have

 

(un + 1 – dI
n  o hn ) o dX

n  = un + 1 o dX
n  – dI

n  o (un – dI
n – 1 o hn – 1)

= un + 1 o dX
n  – dI

n  o un

= 0.

     Proposition 4.5.  Let s ∈ K(!)( I• , X•) be a quasi-isomorphism with I•  ∈ Ob(K+(()).

Then s has a left inverse t ∈ K(!)( X• , I• ) which is also a quasi-isomorphism.

 

     Proof.  Let s ∈ C(!)( I• , X•) be a quasi-isomorphism with I•  ∈ Ob(K+(()).  We claim

that idI – ts ∈ Htp( I• , I• ) for some t ∈ C(!)( X• , I• ).  By Proposition 2.2 we have a

push-out diagram in C(!)

 

0 → I• → C(idI) →
v

T I• → 0

s ↓ PO ↓ f ||

0 → X• →
u

C(s) →
w

T I• → 0.

Since C(s) is acyclic, by Lemma 4.4 w ∈ Htp(C(s), T I• ).  Thus by Proposition 3.1 w factors

2

through v and we get a push-out diagram



 

0 → X• →
u

C(s) →
w

T I• → 0

t ↓ PO ↓ g ||

0 → I• → C(idI) →
v

T I• → 0.

Composing these diagrams, we get a push-out diagram

 

0 → I• → C(idI) →
v

T I• → 0

ts ↓ PO ↓ gf ||

0 → I• → C(idI) →
v

T I• → 0.

Thus by Propositions 2.2 and 3.11 idI – ts ∈ Htp( I• , I• ), i.e., t is a left inverse of s.  It

follows by Proposition 4.2 that t is a quasi-isomorphism.

     Corollary 4.6.  Let s ∈ K(!)( I• , ′•I ) be a quasi-isomorphism with I• , ′•I  ∈ Ob(K+(()).

Then s is an isomorphism.

 

     Proof.  By Proposition 4.5 s has a left inverse t ∈ K(!)( ′•I , I• ).  Then again by

Proposition 4.5 t has a left inverse s’ ∈ K(!)( I• , ′•I ).  Thus s = s’ and s is an isomorphism.

 

     Proposition 4.7.  Let + be a subcollection of Ob(!) such that for any X ∈  Ob(!) there

exists a monomorphism X → I in ! with I ∈  +.  Then for any X•  ∈ Ob(K+(!)) there exists a

monomorphism X•  → I•  in C(!) with I•  ∈ Ob(K+(+)) which is a quasi-isomrphism.

 

     Proof.  We may assume Xn = 0 for all n < 0.  For each n  0, we have an exact sequence of

the form

 

0 → Hn( X•) → Z’n( X•) →
′d n

 Xn + 1 → Z’n + 1( X•) → 0.

We have a monomorphism u0 : X0 → I 0 with I 0 ∈ +.  Since Z’ 0( X•) = X0, by putting Z’ 0 = I 0,

we get a monomorphism u0 : Z’ 0( X•) → Z’ 0.  Thus the following provides a desired

morphism u : X•  → I• .

     Claim: Let n ≥ 0 and un : Z’n( X•) → Z’n a monomorphism.  Then there exists a

commutative diagram with exact rows

 

3

0 → Hn( X•) → Z’n( X•) →
′d n

Xn + 1 → Z’n + 1( X•) → 0



|| un ↓ PO ↓ vn + 1 ||

0 → Hn( X•) → Z’n → Yn + 1 → Z’n + 1( X•) → 0

|| || ↓ wn + 1 ↓ un + 1

0 → Hn( X•) → Z’n →
f n

In + 1 →
+gn 1

Z’n + 1 → 0,

where vn + 1, wn + 1 and un + 1 are monomorphisms and In + 1 ∈ +.

     Proof.  Straightforward.

 

     Lemma 4.8 (Dual of Lemma 4.4).  Let P•  ∈ Ob(K–(3)).  Then K(!)( P• , –) vanishes on

the acyclic complexes.  In particular, if P•  is acyclic, then P•  = 0 in K(!).

     Proposition 4.9 (Dual of Proposition 4.5).  Let s ∈ K(!)( X• , P•) be a quasi-isomorphism

with P•  ∈ Ob(K–(3)).  Then s has a right inverse t ∈ K(!)( P• , X•) which is a quasi-isomorphism.

     Corollary 4.10 (Dual of Corollary 4.6).  Let s ∈ K(!)( ′•P , P•) be a quasi-isomorphism

with P• , ′•P  ∈ Ob(K–(3)).  Then s is an isomorphism.

 

     Proposition 4.11 (Dual of Proposition 4.7).  Let + be a subcollection of Ob(!) such that

for any X ∈  Ob(!) there exists an epimorphism P → X in ! with P ∈  +.  Then for any X•  ∈
Ob(K–(!)) there exists an epimorphism P•  → X•  in C(!) with P•  ∈ Ob(K–(+)) which is a

quasi-isomrphism.
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§5.  Mapping cylinders

     Throughout this section, ! is an abelian category.  Unless otherwise stated, functors are

covariant functors.

     Definition 5.1.  Let # be a category with an autofunctor T : # →̃ #.  A cylinder in # is a

sextuple (X, Y, Z, u, v, w) of X, Y, Z ∈  Ob(#) and u ∈  #(X, Y), v ∈  #(Y, Z), w ∈  #(Z, TX).  A

homomorphism of cylinders

 

(f, g, h) : (X, Y, Z, u, v, w) → (X’, Y’, Z’, u’, v’, w’)

is a triple (f, g, h) of f ∈  #(X, X’), g ∈  #(Y, Y’), h ∈  #(Z, Z’) which make the following

diagram commute

X →
u

Y →
v

Z →
w

TX

f ↓ ↓ g ↓ h ↓ Tf

X’ →
′u

Y’ →
′v

Z’ →
′w

TX’ .

      Definition 5.2.  For any u ∈  K(!)( X• , Y • ) we have a cylinder ( X• , Y • , C(u), u, v, w) in

K(!), where v = t[0  1] : Y •  → C(u) and w = [1  0] : C(u) → T X• , which we call the mapping

cylinder of u.

  

     Definition 5.3.  A cylinder ( X• , Y • , Z• , u, v, w) in K(!) is called a (distinguished)

triangle if it is isomorphic to some mapping cylinder.

 

     Proposition 5.1.  The mapping cylinder of u ∈  K(!)( X• , Y • ) does not depend on the

choice of a representative of u in C(!)( X• , Y • ).

 

     Proof.  Let u, u’ ∈  C(!)( X• , Y • ) with u = u’ in K(!), i.e., u – u’ ∈  Htp( X• , Y • ).  Then

by Proposition 3.11 we have an isomorphism of mapping cylinders

X• →
u

Y • → C(u) → T X•

|| || ↓ ||

X• →
′u

Y • → C(u’) → T X• .

     Proposition 5.2.  For any triangle ( X• , Y • , Z• , u, v, w) we have a long exact sequence

1

 



L → Hn( X•) → Hn( Y • ) → Hn( Z•) → Hn + 1( X•) → L .

     Proof.  By Propositions 2.4 and 3.9.

 

     Proposition 5.3.  For any X•  ∈  Ob(C(!)), ( X• , X• , 0, idX, 0, 0) is a triangle.

 

     Proof.  By definition, C(idX) = 0 in K(!) for all X•  ∈  Ob(C(!)).

     Proposition 5.4.  For any mapping cylinder ( X• , Y • , C(u), u, v, w) the following hold.

     (1) ( Y • , C(u), T X• , v, w, – Tu) is isomorphic to the mapping cylinder of v.

     (2) (T– 1(C(u)), X• , Y • , – T– 1w, u, v) is isomorphic to the mapping cylinder of – T– 1w.

     Proof.  (1) Put

 

ĥ  = 

– Tu 1 0

1 0 0

0 0 1
















 : T X•  ⊕  C(idY) → C(v),

ĝ  = 

0 1 0

1 0

0 0 1

Tu
















 : C(v) → T X•  ⊕  C(idY).

Then ĥ , ĝ  are isomorphisms in C(!) with ĝ  = ĥ – 1.  Put

ŵ  = 

1 0

0

0 1

Tu
















 : C(u) → T X•  ⊕  C(idY),

û  = [– Tu   1   0] : T X•  ⊕  C(idY) → T Y • .

Then the following diagram in C(!) commutes

Y • →
v

C(u) →
ŵ

T X•  ⊕  C(idY) →
û

T Y •

|| || ↓ ĥ ||

Y • →
v

C(u) →
′w

C(v) →
′u

T Y • ,

where w’ = 

0 0

1 0

0 1
















 : C(u) → C(v), u’ = [1   0   0] : C(v) → T Y • .  Thus we get the following
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commutative diagram in K(!)

Y • →
v

C(u) →
w

T X• →
– Tu

T Y •

|| || ↓h ||

Y • →
v

C(u) →
′w

C(v) →
′u

T Y • ,

where h = t[– Tu   1   0] is an isomorphism in K(!).

     (2) Put

 

ĥ  = 

0 1 0

1 0

0 0 1

u

–
















 : Y •  ⊕  C(idX) → C(– T– 1w),

ĝ  = 

0 1

1 0 0

0 0 1

u

–
















 : C(– T– 1w) → Y •  ⊕  C(idX).

Then ĥ , ĝ  are isomorphisms in C(!) with ĝ  = ĥ – 1.  Put

û  = 

u

0

1
















 : X•  → Y •  ⊕  C(idX),

v̂  = 
0 1 0

1 0 u






 : Y •  ⊕  C(idX) → C(u).

Then the following diagram in C(!) commutes

T– 1(C(u)) →
– –T w1

X• →
û

Y •  ⊕  C(idX) →
v̂

C(u)

|| || ↓ ĥ ||

T– 1(C(u)) →
– –T w1

X• →
′u

C(– T– 1w) →
′v

C(u),

where u’ = 

0

0

1
















 : X•  → C(– T– 1w), v’ = 

1 0 0

0 1 0






 : C(– T– 1w) → C(u).  Thus we get the

following commutative diagram in K(!)
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T– 1(C(u)) →
– –T w1

X• →
u

Y • →
v

C(u)

|| || ↓h ||

T– 1(C(u)) →
– –T w1

X• →
′u

C(– T– 1w) →
′v

C(u) ,

where h = t[0  1  0] is an isomorphism in K(!).

 

     Proposition 5.5.  For any commutative square in K(!)

X• →
u

Y •

f ↓ ↓ g

′•X →
′u

′•Y

there exists h ∈  K(!)(C(u), C(u’)) such that

 

(f, g, h) : ( X• , Y • , C(u), u, v, w) → ( ′•X , ′•Y , C(u’), u’, v’, w’)

is a homomorphism of mapping cylinders.

     Proof.  Let û  = t[u  0  1] : X•  → Y •  ⊕  C(idX).  Since u’f – gu ∈  Htp( X• , ′•Y ), by

Proposition 2.1 there exists [a   b] : C(idX) → ′•Y  such that u’f = gu + b.  Put

v̂  = 

0 0 0

1 0 0

0 1 0

0 0 1



















 : Y •  ⊕  C(idX) → C(u) ⊕  C(idX),

ŵ  = [1   0   0   0] : C(u) ⊕  C(idX) → T X• ,

ĝ  = [g   a   b] : Y •  ⊕  C(idX) → ′•Y ,

ĥ  = 
Tf

a g a b

0 0 0

–





 : C(u) ⊕  C(idX) → C(u’).

Then the following diagram in C(!) commutes

X• →
û

Y •  ⊕  C(idX) →
v̂

C(u) ⊕  C(idX) →
ŵ

T X•

f ↓ ↓ ĝ ↓ ĥ ↓ Tf

4

′•X →
′u

′•Y
′

 →
v

C(u’) →
′w

T ′•X ,



where v’ = t[0  1] : ′•Y  → C(u’),  w’ = [1  0] : C(u’) → T ′•X .  Thus we get the following

commutative diagram in K(!)

X• →
u

Y • →
v

C(u) →
w

T X•

f ↓ ↓ g ↓ h ↓ Tf

′•X →
′u

′•Y →
′v

C(u’) →
′w

T ′•X ,

where v = t[0  1] : Y •  → C(u),  w  = [1  0] : C(u) → T X•  and h = 
Tf

a b

0

–





.

     Proposition 5.6.  For two consecutive morphisms u : X•  → Y • , v : Y •  → Z•  in C(!),

take the mapping cylinders

 

( X• , Y • , C(u), u, i, ⋅),  ( X• , Z• , C(vu), vu, j, ⋅),  ( Y • , Z• , C(v), v, ⋅, k)

and put f = 
1 0

0 v





 : C(u) → C(vu), g = 

Tu 0

0 1





: C(vu) → C(v).  Then the following hold.

     (1) The following diagram in C(!) commutes

 

X• →
u

Y • →
i

C(u) → T X•

|| ↓ v ↓ f ||

X• →
vu

Z• →
j

C(vu) → T X•

u ↓ || ↓ g ↓ Tu

Y • →
v

Z• → C(v) →
k

T Y •

i ↓ ↓ j || ↓ Ti

C(u) →
f

C(vu) →
g

C(v) →
( )Ti k

T(C(u)) .

     (2) (C(u), C(vu), C(v), f, g, T(i)k) is isomorphic to the mapping cylinder of f.

 

    Proof.  (1) Straightforward.

    (2) Put

5

 



φ = 

0 0 1 0

1 0 0

0 0 0 1

0 1 0 0

– Tu


















 : C(v) ⊕  C(idTX) → C(f),

ψ = 

0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

Tu

















 : C(f) → C(v) ⊕  C(idTX).

Then φ, ψ are isomorphisms in C(!) with ψ = φ – 1.  Put

ĝ  = 

Tu 0

0 1

0 0

1 0



















 : C(vu) → C(v) ⊕  C(idTX),

ĥ  = 
0 0 1 0

1 0 0 – Tu





 : C(v) ⊕  C(idTX) → T(C(u)).

Then the following diagram in C(!) commutes

C(u) →
f

C(vu) →
ĝ

C(v) ⊕  C(idTX) →
ĥ

T(C(u))

|| || ↓φ ||

C(u) →
f

C(vu) →
′g

C(f) →
′h

T(C(u)) ,

where g’ = 

0 0

0 0

1 0

0 1



















 : C(vu) → C(f), h’ = 
1 0 0 0

0 1 0 0





 : C(f) → T(C(u)).  Thus we get the

following commutative diagram in K(!)

C(u) →
f

C(vu) →
g

C(v) →
( )Ti k

T(C(u))

|| || ↓ φ ||

C(u) →
f

C(vu) →
′g

C(f) →
′h

T(C(u)) ,

6
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where φ  = 

0 0

1 0

0 0

0 1



















 is an isomorphism in K(!).



§6.  Triangulated categories

     Throughout this section, unless otherwise stated, functors are covariant functors.

     Definition 6.1.  A triangulated category is an additive category _, together with (1) an

autofunctor T : _ →̃ _, called the translation, and (2) a collection of cylinders (X, Y, Z, u, v,

w), called (distinguished) triangles.  This data is subject to the following four axioms:

 

     (TR1) (1) Every cylinder (X, Y, Z, u, v, w) which is isomorphic to a triangle is a triangle.

     (2) Every morphism u : X → Y is embedded in a triangle (X, Y, Z, u, v, w).

     (3) The cylinder (X, X, 0, idX, 0, 0) is a triangle for all X ∈  Ob(_).

 

     (TR2) A cylinder (X, Y, Z, u, v, w) is a triangle if and only if (Y, Z, TX, v, w, – Tu) is a

triangle.

     (TR3) For any triangles (X, Y, Z, u, v, w), (X’, Y’, Z’, u’, v’, w’) and morphisms f : X → X’,

g : Y → Y’ with gu = u’f, there exists h : Z → Z’ such that (f, g, h) is a homomorphism of

triangles.

     (TR4) (Octahedral axiom) For any two consecutive morphisms u : X → Y and v : Y → Z, if

we embed u, vu and v in triangles

      

(X, Y, Z’, u, i, ⋅),  (X, Z, Y’, vu, j, ⋅)  and  (Y, Z, X’, v, ⋅, k),

respectively, then there exist morphisms f : Z’ → Y’,  g : Y’ → X’ such that the following

diagram commute

X →
u

Y →
i

Z’ → TX

|| ↓ v ↓ f ||

X →
vu

Z →
j

Y’ → TX

u ↓ || ↓ g ↓ Tu

Y →
v

Z → X’ →
k

TY

i ↓ ↓ j || ↓ Ti

Z’ →
f

Y’ →
g

X’ → TZ’

and the bottom row is a triangle.

1



     Remark 6.1.  (TR4) is equivalent to the following.

 

     (TR4)’ For any two consecutive morphisms u : X → Y and v : Y → Z, if we embed u, vu

and v in triangles

      

(X, Y, Z’, u, i, ⋅),  (X, Z, Y’, vu, j, ⋅)  and  (Y, Z, X’, v, ⋅, k),

respectively, then there exists a commutative diagram

 

T– 1X’  T– 1X’

– T– 1k ↓ ↓

X →
u

Y →
i

Z’ → TX

|| ↓ v ↓ ||

X →
vu

Z →
j

Y’ → TX

↓ ↓

X’  X’

with the rows and the columns being triangles.

     Remark 6.2.  If _ is a triangulated category, then the opposite category _op is also a

triangulated category with the translation T – 1.

      

     Proposition 6.1.  Let ! be an abelian category.  Then, for * = +, –, b, (+, b), (–, b) or

nothing, the following hold.

     (1) K*(!) is a triangulated category.

     (2) If + is a subcollection of Ob(!) containing zero objects and closed under finite diret

sums, then K*(+) is a full triangulated subcategory of K*(!).

 

     Proof.  (1) See Section 5.

     (2) It is obvious that K*(+) is stable under the translation T.  Since + is closed under finite

direct sums, K*(+) is closed under mapping cones.

 

     Throughout the rest of this section, we work over a triangulated category _.  However,

except Lemma 6.12, we will not need the octahedral axiom.

 

     Lemma 6.2.  If (X, Y, Z, u, v, w) is a triangle, then

2

 



(X, Y, Z, – u, – v, w),  (X, Y, Z, – u, v, – w)  and  (X, Y, Z, u, – v, – w)

  are triangles.

     Proof.  According to (TR2), it suffices to prove one of them is a triangle.  Since we have a

commutative diagram

 

X →
u

Y →
v

Z →
w

TX

|| ↓ – 1 || ||

X →
– u

Y →
– v

Z →
w

TX ,

(X, Y, Z, – u, – v, w) is a triangle.

     Lemma 6.3.  Let (X, Y, Z, u, v, w), (X’, Y’, Z’, u’, v’, w’) be triangles.  Then the following

hold.

     (1) For any f : X → X’ and h : Z → Z’ with T(f)w = w’h, there exists g : Y → Y’ such that

(f, g, h) is a homomorphism of triangles.

     (2) For any g : Y → Y’ and h : Z → Z’ with hv = v’g, there exists f : X → X’ such that (f, g,

h) is a homomorphism of triangles.

 

     Proof.  (1) Since f o (– T – 1w) = – T – 1(T(f) o w) = – T – 1(w’ o h) = – T – 1w’ o T – 1h, and since

by (TR2)

 

(T – 1Z, X, Y, – T – 1w, u, v),     (T – 1Z’, X’, Y’, – T – 1w’, u’, v’)

are triangles, (TR3) applies.

     (2) Similar to (1).

 

     Lemma 6.4.  If (X, Y, Z, u, v, w) is a triangle, then vu = 0, wv = 0 and T(w)u = 0.

 

     Proof.  According to (TR2), it suffices to show vu = 0.  By (TR2) and (TR3) we have a

commutative diagram

 

X →
1

X → 0 → TX

|| ↓ u ↓ ||

X →
u

Y →
v

Z →
w

TX .
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     Definition 6.2.  Let ! be an abelian category.  An additive functor H : _ → ! is called a

cohomological functor if, for any triangle (X, Y, Z, u, v, w), the induced sequence

 

L → H(TnX) → H(TnY) → H(TnZ) → H(Tn + 1X) → L

is exact.  If H : _ → ! is a cohomological functor, we set Hn = H o Tn for all n ∈  Z and

define an additive functor

H•  : _ → !Z, X a {Hn(X)}n ∈  Z.

     A contravariant cohomological functor H : _ → ! is defined as a covariant cohomological

functor H : _op → !.  In this case, we set Hn = H o T– n : _ → ! for n ∈  Z.

     Proposition 6.5.  For any W ∈  Ob(_) the following hold.

     (1) _(W, –) : _ → Mod Z is a covariant cohomological functor.

     (2) _(–, W) : _ → Mod Z is a contravariant cohomological functor.

 

     Proof.  (1) Let (X, Y, Z, u, v, w) be a triangle.  Then, since by Lemma 6.5 vu = 0, we have

_(W, v) o _(W, u) = 0.  Conversely, let g ∈  _(W, Y) with _(W, v)(g) = vg = 0.  Then by

Lemma 6.3 there exists f ∈  _(W, Y) which makes the following diagram commute

 

W →
1

W → 0 → TW

f ↓ ↓ g ↓ ↓ Tf

X →
u

Y →
v

Z →
w

TX .

Thus g = _(W, u)(f) and the sequence

_(W, X) → _(W, Y) → _(W, Z)

is exact.  It follows by (TR2) that _(W, –) is a cohomological functor.

     (2) Dual of (1).

 

     Proposition 6.6.  For any homomorphism of triangles

      

(f, g, h) : (X, Y, Z, u, v, w) → (X’, Y’, Z’, u’, v’, w’),

if two of f, g and h are isomorphisms, then the rest is also an isomorphism.
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     Proof.  According to (TR2), it is enough to deal with the case where f, g are isomorphisms.

By Proposition 6.5 we have a commutative diagram with exact rows

 

_(TY’, –) → _(TX’, –) → _(Z’, –) → _(Y’, –) → _(X’, –)

_(Tg, –) ↓ ↓ _(Tf, –) ↓ _(h, –) ↓ _(g, –) ↓ _(f, –)

_(TY, –) → _(TX, –) → _(Z, –) → _(Y, –) → _(X, –).

Thus, since by five-lemma _(h, –) is an isomorphism, it follows by Yoneda lemma that h is

an isomorphism.

     Corollary 6.7.  For any morphism u ∈  _(X, Y), the triangle (X, Y, Z, u, v, w) is unique up

to isomorphisms.

 

     Proof.  Let (X, Y, Z’, u, v’, w’) be another triangle.  Then by (TR3) there exists h : Z → Z’

which makes the following diagram commute

 

X →
u

Y →
v

Z →
w

TX

|| || ↓ h ||

X →
u

Y →
′v

Z’ →
′w

TX .

It follows by Proposition 6.6 that h is an isomorphism.

     Definition 6.3.  Let (X, Y, Z, u, v, w) be a triangle.  Then by Corollary 6.7 Z is uniquely

determined by u up to isomorphisms.  So, sometimes we call Z the mapping cone of u and

denote it by C(u).

     Lemma 6.8.  For a triangle (X, Y, Z, u, v, w) the following are equivalent.

     (1) u is a section, i.e., _(u, X) is surjective.

     (2) v is a retraction, i.e., _(Z, v) is surjective.

     (3) w = 0.

 

     Proof.  (1) ⇒  (3).  We have the following commutative diagram

 

X →
u

Y →
v

Z →
w

TX

|| ↓ f ↓ ||

X →
1

X → 0 → TX .
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     (2) ⇒  (3).  Dual of (1) ⇒  (3).

     (3) ⇒  (1) and (2).  By Proposition 6.5.

 

     Lemma 6.9.  For a triangle (X, Y, Z, u, v, w) the following are equivalent.

     (1) u is an isomorphism.

     (2) Z = 0.

 

     Proof.  (1) ⇒  (2).  Since by (TR2) and (TR3) we have a commutative diagram

 

X →
1

X → 0 → TX

|| ↓ u ↓ ||

X →
u

Y →
v

Z →
w

TX ,

by Proposition 6.6 Z = 0.

     (2) ⇒  (1).  By Lemma 6.8 u is a section.  Also, according to (TR2), again by Lemma 6.8 u

is a retraction.

 

     Proposition 6.10.  Let Λ be a set and {(Xλ, Yλ, Zλ, uλ, vλ, wλ)}λ ∈  Λ a family of cylinders.

Then the following hold.

     (1) Assume the constant functor _ → _Λ has a right adjoint ∏λ ∈  Λ : _Λ → _.  Then the

direct product of cylinders

 

(∏ Xλ, ∏ Yλ, ∏ Zλ, ∏ uλ, ∏ vλ, ∏ wλ)

is a triangle if and only if every cylinder (Xλ, Yλ, Zλ, uλ, vλ, wλ) is a triangle.

     (2) Assume the constant functor _ → _Λ has a left adjoint ⊕ λ ∈  Λ : _Λ → _.  Then the

direct sum of cylinders

 

(⊕  Xλ, ⊕ Yλ, ⊕ Zλ, ⊕ uλ, ⊕ vλ, ⊕ wλ)

is a triangle if and only if every cylinder (Xλ, Yλ, Zλ, uλ, vλ, wλ) is a triangle.

     Proof.  (1) Note first that there exists a natural isomorphism T(∏ Wλ) →̃ ∏ TWλ for a

family of objects {Wλ}λ ∈  Λ.  For each µ ∈  Λ, we denote by

 

pµ : ∏ Xλ → Xµ,     qµ : ∏ Yλ → Yµ     and     rµ : ∏ Zλ → Zµ

6

projections.



     “If” part.  By (TR1) we have a triangle of the form (∏ Xλ, ∏ Yλ, Z, ∏ uλ, v, w).  Then, for

each µ ∈  Λ , by (TR3) we have a homomorphism of triangles

∏ Xλ →
∏ uλ

∏ Yλ →
v

Z →
w

∏ TXλ

pµ ↓ ↓ qµ ↓ hµ ↓ Tpµ

Xµ →
uµ

Yµ →
vµ

Zµ →
wµ

TXµ .

Thus we get a commutative diagram

∏ Xλ →
∏ uλ

∏ Yλ →
v

Z →
w

∏ TXλ

|| || ↓ h ||

∏ Xλ →
∏ uλ

∏ Yλ →
∏ vλ

∏ Zλ →
∏ wλ

∏ TXλ .

It suffices to show that h is an isomorphism.  We have a commutative diagram of functors

 

_(–, ∏ Xλ) → _(–, ∏ Yλ) → _(–, Z) → _(–, ∏ TXλ) → _(–, ∏ TYλ)

|| || ↓ _(–, h) || ||

_(–, ∏ Xλ) → _(–, ∏ Yλ) → _(–, ∏ Zλ) → _(–, ∏ TXλ) → _(–, ∏ TYλ)

↓ ↓ ↓ ↓ ↓

∏ _(–, Xλ) → ∏ _(–, Yλ) → ∏ _(–, Zλ) → ∏ _(–, TXλ) → ∏ _(–, TYλ) .

By Proposition 6.5 the top and the bottom rows are exact, so is the middle one.  Thus by

five-lemma _(–, h) is an isomorphism, so is h by Yoneda lemma.

     “Only if” part.  By (TR1) we have a family of triangles {(Xλ, Yλ, Zλ’, uλ, vλ’, wλ’)}λ ∈  Λ.

Since by the “if” part we have a triangle of the form

 

(∏ Xλ, ∏ Yλ, ∏ Zλ’, ∏ uλ, ∏ vλ’, ∏ wλ’),

by (TR3) we have a commutative diagram

∏ Xλ →
∏ uλ

∏ Yλ →
∏ vλ

∏ Zλ →
∏ wλ

∏ TXλ

|| || ↓ h ||

∏ Xλ →
∏ uλ

∏ Yλ →
∏ ′vλ

∏ Zλ’ →
∏ ′wλ

∏ TXλ .

7

For each µ ∈  Λ, we denote by rµ’ : ∏ Zλ’ → Zµ’ the projection.  Also, for each ν  ∈  Λ , there



exists iν : Zν → ∏ Zλ such that

rµ o iν  = 
idZν

µ ν
µ ν

( )

( )

=
≠



 0

.

Thus, by setting

hµ : Zµ →
iµ

 ∏ Zλ →
h

 ∏ Zλ’ →
′rµ

 Zµ’

for each µ ∈  Λ , we get a commutative diagram

∏ Xλ →
∏ uλ

∏ Yλ →
∏ vλ

∏ Zλ →
∏ wλ

∏ TXλ

|| || ↓ ∏ hλ ||

∏ Xλ →
∏ uλ

∏ Yλ →
∏ ′vλ

∏ Zλ’ →
∏ ′wλ

∏ TXλ .

By Proposition 6.6 ∏ hλ : ∏ Zλ → ∏ Zλ’ is an isomorphism and, for each λ ∈  Λ, we get an

isomorphism of cylinders

 

Xλ →
uλ

Yλ →
vλ

Zλ →
wλ

TXλ

|| || ↓ hλ ||

Xλ →
uλ

Yλ →
′vλ

Zλ’ →
′wλ

TXλ .

     (2) Dual of (1).

     Corollary 6.11.  A triangle (X, Y, Z, u, v, 0) decomposes into a direct sum

 

(X, Z ⊕ X, Z, 
0

1





, [1  0], 0).

     Proof.  Since we have triangles (X, X, 0, idX, 0, 0), (0, Z, Z, 0, idZ, 0), by Proposition 6.10

(X, Z ⊕ X, Z, t[0  1], [1  0], 0) is a triangle.  Also, since by Lemma 6.8 there exists h : Z → Y

with vh = idZ. we have a commutative diagram

 

X →
′u

Z ⊕ X →
′v

Z →
0

TX

|| ↓ [u  h] || ||

X →
u

Y →
v

Z →
0

TX ,
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where u’ = t[0  1], v’ = [1  0].  Thus by Proposition 6.6 the assertion follows.

     Lemma 6.12.  For any homomorphism of triangles

 

(f, g, h) : (X, Y, Z, u, v, w) → (X’, Y’, Z’, u’, v’, w’)

with h an isomorphism, there exists g’ : Y → Y’ such that

 

(X, Y ⊕  X’, Y’, 
u

f





, [g’   – u’], wh–1v’)

is a triangle and (f, g’, h) is a homomorphism of triangles.

     Proof.  Put ω = wh–1v’.  We have an isomorphism of cylinders

Y’ →
′v

Z’ →
′w

TX’ →
′– Tu

TY’

|| ↓ h– 1 ↓ – 1 ||

Y’ →
′h v– 1

Z →
′– w h

TX’ →
′Tu

TY’.

Since the top row is a triangle, so is the bottom one.  Note that by Lemma 6.4 w’hv = T(f)wv

= 0.  Thus by (TR4) we have a commutative diagram

Y’ →
′h v– 1

Z →
′– w h

TX’ →
′Tu

TY’

|| ↓ w ↓ γ ||

Y’ →
ω

TX →
φ

C(ω) →
ψ

TY’

h– 1v’ ↓ || ↓ δ ↓ T(h– 1v’)

Z →
w

TX →
– Tu

TY →
– Tv

TZ

w’h ↓ ↓ φ || ↓ T(w’h)

TX’ →
γ

C(ω) →
δ

TY →
0

T2X’

with the rows being triangles.  Thus by Corollary 6.11 we have an isomorphism of triangles

TX’ →
µ

TY ⊕ TX’ →
ε

TY →
0

T2X’

|| ↓ [η  γ] || ||

TX’ →
γ

C(ω) →
δ

TY →
0

T2X’,
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where µ = t[0  1], ε = [1  0].  Note that [η    γ]– 1 is of the form t[δ   θ], where δη = idTY, δγ = 0,

θη = 0, θγ = idTX’ and ηδ + γθ = idC(ω).  Also, δφ = – Tu and ψγ = Tu’.  Put φ’ = t[– Tu   θφ]

and ψ’ = [ψη   Tu’].  Then we have an isomorphism of cylinders

Y’ →
ω

TX →
′φ

TY ⊕ TX’ →
′ψ

TY’

|| || ↓ [η  γ] ||

Y’ →
ω

TX →
φ

C(ω) →
ψ

TY’

and the top row is also a triangle.  Put f’ = – T– 1(θφ) and g” = – T– 1(ψη).   Then – T– 1(φ’) =
t[u   f’], – T– 1(ψ’) = [g”   – u’] and by (TR2)

 

(X, Y ⊕  X’, Y’, 
u

f ′






, [g”   – u’], ω)

is a triangle.  In particular, by Lemma 6.4 u’f’ = g”u.  Since δη = idTY, we have

T(v’)T(g”) = – T(v’)ψη
= – T(h)T(h– 1v’)ψη
= T(h)T(v)δη
= T(h)T(v),

so that v’g” = hv.  Also, sinceθγ = idTX ′ , we have

T(f’)w = – θφw
= θγw’h
= w’h.

Thus (f’, g”, h) is a homomorphism of triangles, so is (f’ – f, g” – g, 0).  Hence by

Proposition 6.5 there exists ϕ : Y → X’ such that f’ – f = u’ϕ .  Put g’ = g” – u’ϕ.  Then we

have an isomorphism of cylinders

X →
f̂

Y ⊕ X’ →
′ĝ

Y’ →
ω

TX

|| ↓ ϕ̂ || ||

X →
′f̂

Y ⊕ X’ →
′′ĝ

Y’ →
ω

TX ,

where f̂  = t[u   f], ˆ′g  = [g’   – u’],  ˆ ′f  = t[u   f’], ˆ′′g  = [g”   – u’] and ϕ̂  = 
1 0

1ϕ






.  Thus the

top row is a triangle.  Since ˆ′g f̂  = 0, g’u = u’f.  Also, v’g’ = v’(g” – u’ϕ) = v’g” = hv and
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T(f)w = (T(f’) – T(ϕ )T(u))w = T(f’)w = w’h.  Thus (f, g’, h) is a homomorphism of triangles.



     Lemma 6.13.  Let (X, Y, Z, u, v, w) be a triangle and ϕ  : Y → Y with u = ϕu.  Then t[v   ϕ]

: Y → Z ⊕  Y is a section.

 

     Proof.  By (TR2) and  (TR3) we have a homomorphism of triangles

Y →
v

Z →
w

TX →
– Tu

TY

ϕ ↓ ↓ || ↓ Tϕ

Y →
v

Z →
w

TX →
– Tu

TY .

Since by Lemma 6.4 T(u)w = 0, by Lemma 6.12 we have a triangle of the form

 

(Y, Z ⊕  Y, Z, 
v

ϕ





, ⋅, 0).

It follows by Lemma 6.8 that t[v   ϕ] : Y → Z ⊕  Y is a section.

     Lemma 6.14.  Let (f, g, h) : (X, Y, Z, u, v, w) → (X’, Y’, Z’, u’, v’, w’) be a homomorphism

of triangles.  Then for any g’ : Y → Y’ the following are equivalent.

     (1) (f, g’, h) is also a homomorphism of triangles.

     (2) There exists φ : Y → X’ such that g’ = g + u’φ and u’φu = 0.

     (3) There exists ψ : Z → Y’ such that g’ = g + ψv and v’ψv = 0.

     Proof.  (1) ⇒  (2).  Since (0, g’ – g, 0) is a homomorphism of triangles, v’(g’ – g) = 0 and

by Proposition 6.5 there exists φ : Y → X’ such that g’ – g = u’φ.  Then u’f = g’u = (g + u’φ)u

= gu + u’φu = u’f + u’φu, so that u’φu = 0.

     (2) ⇒  (1).  We have g’u = (g + u’φ)u = gu = u’f.  Also, since by Lemma 6.4 v’u’ = 0, v’g’

= v’(g + u’φ) = v’g = hv.

     (1) ⇔ (3).  Dual of (1) ⇔ (2).

 

     Lemma 6.15.  Let ! be an abelian category and ( (resp. 3) the collection of injective

(resp. projective) objects of !.  Then for any quasi-isomorphism u : X•  → Y •  the following

hold.

     (1) K(!)(u, I• ) is an isomorphism for all I•  ∈ Ob(K+(()).

     (2) K(!)( P• , u) is an isomorphism for all P•  ∈ Ob(K–(3)).

 

     Proof.  (1) Let I•  ∈ Ob(K+(()).  Since ( X• , Y • , C(u), u, ⋅, ⋅) is a triangle in K(!), by

Proposition 6.5 we have an exact sequence

11

 



L → K(!)(C(u), I• ) → K(!)( Y • , I• ) → K(!)( X• , I• ) → K(!)(T– 1C(u), I• ) → L .

Also, since C(u) is acyclic, by Lemma 4.4 we have

K(!)(C(u), I• ) = K(!)(T– 1C(u), I• ) = 0.

Thus K(!)(u, I• ) is an isomorphism.

     (2) Dual of (1).
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§7.  Épaisse subcategories

     Throughout this section, _, * and & are triangulated categories.  Unless otherwise stated,

functors are covariant functors.

 

     Definition 7.1.  An épaisse subcategory 8 of a triangulated category _ is a full

triangulated subcategory of _ such that if u ∈  _(X, Y) factors through (an object of) 8 and is

embedded in a triangle (X, Y, Z, u, ⋅, ⋅) in _ with Z ∈  Ob(8) then X, Y ∈  Ob(8).

 

     Proposition 7.1.  For a full triangulated subcategory 8 of _, the following are equivalent.

     (1) 8 is an épaisse subcategory of _.

     (2) 8 is closed underisomorphism classes and  taking direct summands.

 

     Proof.  (1) ⇒  (2).  For any isomorphism u : X → Y with Y ∈  Ob(8), since by Lemma 6.9

we have a triangle of the form (X, Y, 0, u, 0, 0), X ∈  Ob(8).  Note that zero morphisms factor

through 8.  Thus, for any X, Y ∈  Ob(_), since by Corollary 6.11 we have a triangle of the

form (T– 1X, Y, X ⊕  Y, 0, ⋅, ⋅), X ⊕  Y ∈  Ob(8) implies T– 1X, Y ∈  Ob(8).

     (2) ⇒  (1).  Let (X, Y, Z, u, ⋅, ⋅) be a triangle in _ such that Z ∈  Ob(8) and u factors

through Y’ ∈  Ob(8).  We claim X, Y ∈  Ob(8).  Let u’ : X → Y’, u” : Y’ → Y with u = u”u’.

Then by (TR3) we have a homomorphism of triangles

 

X →
′u

Y’ → Z’ → TX

|| ↓ u” ↓ ||

X →
u

Y → Z → TX .

Thus by Lemma 6.12 we have a triangle of the form (Y’, Z’ ⊕  Y, Z, ⋅, ⋅, ⋅).  Thus Z’ ⊕  Y ∈
Ob(8), so that Y ∈  Ob(8).  It then follows that X ∈  Ob(8).

 

     Definition 7.2.  For an épaisse subcategory 8 of _, we denote by Φ(8) the collection of

morphisms u in _ such that C(u) ∈  Ob(8).

     Lemma 7.2.  Let 8 be an épaisse subcategory of _.  Then for f ∈  _(X, Y) the following

are equivalent.

     (1) f factors through (an object of) 8.

     (2) There exists s ∈  Φ(8) such that sf = 0.

     (3) There exists t ∈  Φ(8) such that ft = 0.
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     Proof.  (1) ⇒  (2).  Let f = vu for u : X → Z, v : Z → Y with Z ∈  Ob(8).  We have a



triangle (Y, C(v), TZ, s, ⋅, – Tv).  Since TZ ∈  Ob(8), s ∈  Φ(8).  Thus, since by Lemma 6.4

T(s)T(v) = 0, we have sf = svu = 0.

     (2) ⇒  (1).  Let sf = 0 for s ∈  Φ(8).  Then we have a triangle (Y, Z, C(s), s, ⋅, w) and by

Proposition 6.5 there exists g : X → T–1C(s) such that f = T–1(w)g.

     (1) ⇔ (3).  Dual of (1) ⇔ (2).

     Definition 7.3.  We call a square in _

 

X →
u

Y

f ↓ ↓ g

X’ →
′u

Y’

a ∂-square if there exists a triangle of the form

(X, Y ⊕  X’, Y’, 
u

f





, [g   – u’], ⋅).

     Lemma 7.3.  The following hold.

     (1) ∂-squares are commutative.

     (2) Every diagram in _

 

X →
u

Y

f ↓

X’

can be completed to a ∂-square.

     (3) Every diagram in _

      

Y

↓ g

X’ →
′u

Y’

can be completed to a ∂-square.

     Proof.  Obvious.

2

     Lemma 7.4.  Let



      

X →
u

Y

f ↓ ↓ g

X’ →
′u

Y’

be a ∂-square with

(X, Y ⊕  X’, Y’, 
u

f





, [g   – u’], ω)

a triangle and embed u, u’ in triangles (X, Y, Z, u, v, w) and (X’, Y’, Z’, u’, v’, w’),

respectively.  Then there exists an isomorphism h : Z →̃ Z’ such that ω = wh– 1v’ and (f, g, h)

is a homomorphism of triangles.

     Proof.  Put f̂  = t[u   f], ĝ  = [g  – u’].  Since [1  0] f̂  = u, by (TR4) and Lemma 6.8 we

have a commutative diagram

 

X →
f̂

Y ⊕  X’ →
ĝ

Y’ →
ω

TX

|| ↓ π ↓ φ ||

X →
u

Y →
v

Z →
w

TX

f̂ ↓ || ↓ ψ ↓ T f̂

Y ⊕  X’ →
π

Y →
0

TX’ →
µ

TY ⊕  TX’

ĝ ↓ ↓ v || ↓ T ĝ

Y’ →
φ

Z →
ψ

TX’ →
′– Tu

TY’

with the rows being triangles, where π = [1  0] and µ = t[0  1].  Thus we get a homomorphism

of triangles

X →
u

Y →
v

Z →
w

TX

f ↓ ↓ g || ↓ Tf

X’ →
′u

Y’ →
φ

Z →
ψ

TX’ .

Also, by (TR3) there exists h : Z → Z’ which makes the following diagram commute

3

X’ →
′u

Y’ →
φ

Z →
ψ

TX’



|| || ↓ h ||

X’ →
′u

Y’ →
′v

Z’ →
′w

TX’ .

Hence (f, g, h) is a homomorphism of triangles.  By Proposition 6.6 h is an isomorphism, so

that ω = wφ = wh– 1v’.

     Lemma 7.5.  Every commutative square

      

X1 →
u1

Y1

f ↓ ↓ g

X2 →
u2

Y2

can be embedded in a commutative diagram

 

X1 →
u1

Y1 →
v1

C(u1) →
w1

TX1

f ↓ ↓ g ↓ ↓ Tf

X2 →
u2

Y2 →
v2

C(u2) →
w2

TX2

a ↓ ↓ b ↓ ↓ Ta

C(f) → C(g) → Z → TC(f)

i ↓ ↓ j ↓ ↓ Ti

TX1 →
Tu1

TY1 →
Tv1

TC(u1) →
– Tw1

T2X1

with the rows and the columns except the right end being triangles.

     Proof.  Put f̂  = t[u1   f], ĝ  = [g  – u1] and ˆ′g  = [g’  – u1].  Let

           

X1 →
u1

Y1

f ↓ ↓ g’

X2 →
′u2

Y2’

be a ∂-square with (X1, Y1 ⊕  X2, Y2’, f̂ , ˆ′g , ω) a triangle.  Since ĝ f̂  = 0, by Proposition 6.5

there exists h : Y2’ → Y2 such that ĝ  = h ˆ′g .  Embed f, g’ in triangles (X1, X2, C(f), f, a, i) and

(Y1, Y2’, C(g’), g’, b’, j), respectively.  Then, since (X1, Y1 ⊕  X2, Y2’, f̂ , – ˆ′g , – ω) is a

triangle, it follows by Lemma 7.4 that there exists an isomorphism σ : C(f) →̃ C(g’) such that

4

– ω = iσ – 1b’ and (u1, u2’, σ) is a homomorphism of triangles.  Thus by (TR4) we have a



commutative diagram

X1 →
u1

Y1  Y1 →
′g

Y2’ →
′b

C(g’) →
σ – 1

C(f)

f ↓ ↓ g’ ↓ g ↓ h ↓ α ↓ ασ

X2 →
′u2

Y2’ →
h

Y2  Y2 →
b

C(g)  C(g)

a ↓ ↓ b’ ↓ b ↓ c ↓ β ↓ β

C(f) →
σ

C(g’) →
α

C(g) →
β

C(h)  C(h)  C(h)

i ↓ ↓ j’ ↓ j ↓ k ↓ T(b’)k ↓ T(σ – 1b’)k

TX1 →
Tu1

TY1  TY1 →
′Tg

TY2’ →
′Tb

TC(g’) →
Tσ – 1

TC(f)

with the columns being triangles.  Next, embed f, g’ in triangles (X1, Y1, C(u1), u1, v1, w1) and

(X1, Y2’, C(u2’), u1’, v1’, w1’), respectively.  Then by Lemma 7.4 there exists an isomorphism τ
: C(u1) →̃ C(u2’) such that ω = w1τ

 – 1v2’ and (f, g’, τ) is a homomorphism of triangles.  Thus

by (TR4) we have a commutative diagram

X1 →
u1

Y1 →
v1

C(u1) →
w1

TX1

f ↓ ↓ g’ ↓ τ ↓ Tf

X2 →
′u2

Y2’ →
′v2

C(u2’) →
′w2

TX2

|| ↓ g ↓ γ ||

X2 →
u2

Y2 →
v2

C(u2) →
w2

TX2

u2’ ↓ || ↓ δ ↓ Tu2’

Y2’ →
h

Y2 →
c

C(h) →
k

TY2’

v2’ ↓ ↓ v2 || ↓ Tv2’

C(u2’) →
γ

C(u2) →
δ

C(h)  →
′T v k( )2

TC(u2’)

τ – 1 ↓ || || ↓ Tτ – 1

C(u1) →
γ τ

C(u2) →
δ

C(h)  →
′T v k( )–τ 1
2

TC(u1)

with the rows being triangles.  Thus, since – iσ – 1b’ = ω = w1τ
 – 1v2’, we get a commutative

diagram

X1 →
u1

Y1 →
v1

C(u1) →
w1

TX1

5

f ↓ ↓ g ↓ γτ ↓ Tf



X2 →
u2

Y2 →
v2

C(u2) →
w2

TX2

a ↓ ↓ b ↓ δ ↓ Ta

C(f) →
ασ

C(g) →
β

C(h)  →
′T b k( )–τ 1

TC(f)

i ↓ ↓ j ↓ T(σ – 1v2’)k ↓ Ti

TX1 →
Tu1

TY1 →
Tv1

TC(u1) →
– Tw1

T2X1

with the rows and the columns except the right end being triangles.

     Definition 7.4.  A multiplicative system in a category # is a collection S of morphisms in

# which satisfies the following axioms:

 

     (FR1) (1) idX ∈  S for every X ∈  Ob(#).

     (2) For s, t ∈  S, if st is defined, then st ∈  S.

 

     (FR2) (1) Every diagram in #

 

X →
s

Y

f ↓ with  s ∈  S

X’

can be completed to a commutative square

 

X →
s

Y

f ↓ ↓ g with  s, t ∈  S.

X’ →
t

Y’

    (2) Every diagram in #

      

Y

↓ g with  t ∈  S

X’ →
t

Y’

can be completed to a commutative square
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X →
s

Y



f ↓ ↓ g with  s, t ∈  S.

X’ →
t

Y’

     (FR3) For f, g ∈  #(X, Y) the following are equivalent.

     (1) There exists s ∈  S such that sf  = sg.

     (2) There exists t ∈  S such that ft = gt.

 

     Definition 7.5.  A multiplicative system S in a category # is called saturated if it satisfies

the following axiom:

 

     (FR0) For a morphism s in #, if there exist f, g such that sf, gs ∈  S, then s ∈  S.

 

     Definition 7.6.  A multiplicative system S in a triangulated category _ is said to be

compatible with the triangulation if it satisfies the following axioms:

 

     (FR4) For a morphism u in _, u ∈  S if and only if Tu ∈  S.

 

     (FR5) For triangles (X, Y, Z, u, v, w), (X’, Y’, Z’, u’, v’, w’) and morphisms f : X → X’, g :

Y → Y’ in S with gu = u’f, there exists h : Z → Z’ in S such that (f, g, h) is a homomorphism

of triangles.

       

     Proposition 7.6.  Let 8 be an épaisse subcategory of _.  Then Φ(8) is a saturated

multiplicative system in _ compatible with the triangulation.

 

     Proof.  (FR0) (1) Let  f : X’ → X,  s : X → Y,  g : Y → Y’ with sf, gs ∈  Φ(8).  By (TR3) we

have a commutative diagram

X →
s

Y → C(s) →
u

TX

|| ↓ g ↓ ||

X →
gs

Y’ → C(gs) → TX .

Also, by (TR4) we have a commutative diagram

X’ →
f

X →
v

C(f) → TX’

|| ↓ s ↓ ||
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X’ →
sf

Y → C(sf) → TX’



f ↓ || ↓ ↓ Tf

X →
s

Y → C(s) →
u

TX

v ↓ ↓ || ↓ Tv

C(f) → C(sf) → C(s) →
w

TC(f)

with the rows being triangles.  Note that w = T(v)u factors through C(gs) ∈  Ob(8), and that

C(w) ù TC(sf) ∈  Ob(8).  Thus C(s) ∈  Ob(8).

     (FR1) (1) C(idX) = 0 ∈  Ob(8) for all X ∈  Ob(_).

     (2) Let  t : X → Y, s : Y → Z be in Φ(8).  By (TR4) we have a triangle of the form (C(t),

C(st), C(s), ⋅, ⋅, w).  Since C(s), TC(t) ∈  Ob(8), TC(st) ù C(w) ∈  Ob(8).

     (FR2) By Lemmas  7.3 and 7.4.

     (FR3) By Lemma 7.2.

     (FR4) C(Tn(s)) ù TnC(s) ∈  Ob(8) for all s ∈  Φ(8) and n ∈  Z.

     (FR5) By Lemma 7.5.

 

     Proposition 7.7.  Let ! be an abelian category and H : _ → ! a cohomological functor.

Let 8 be the full subcategory of _ consisting of X ∈  Ob(_) with Hn(X) = 0 for all n ∈  Z.

Then the following hold.

     (1) 8 is an épaisse subcategory of _.

     (2) For a morphism s in _, s ∈  Φ(8) if and only if Hn(s) is an isomorphism for all n ∈  Z.

 

     Proof.  (1) It is obvious that 8 is stable under T.  Let u ∈  _(X, Y).  Then for each n ∈  Z,

we have an exact sequence

 
Hn(X) → Hn(Y) → Hn(C(u)) → Hn + 1(X) → Hn + 1(Y).

Thus, if X, Y ∈  Ob(8), then C(u) ∈  Ob(8).  Thus 8 is a full triangulated subcategory of _.

Assume next that u factors through an object of 8 and that C(u) ∈  Ob(8).  Then, since Hn(u)

= 0 for all n ∈  Z, it follows that X, Y ∈  Ob(8).

     (2) “If” part.  For any n ∈  Z, since we have an exact sequence

 
Hn(X) →̃ Hn(Y) → Hn(C(u)) → Hn + 1(X) →̃ Hn + 1(Y),

we have Hn(C(u)).

     “Only if” part.  For any n ∈  Z, since we have an exact sequence

 
Hn – 1(C(u)) → Hn(X) → Hn(Y) → Hn(C(u)),

8

Hn(s) is an isomorphism.



     Corollary 7.8.  Each X ∈  Ob(_) defines épaisse subcategories of _

 

    
I
n ∈Z

 Ker (_(X, –) o Tn),     
    
I
n ∈Z

 Ker (_(–, X) o T– n).

     Proof.  By Proposition 6.5 _(X, –), _(–, X) are cohomological functors.  Thus Proposition

7.7 applies.

     Corollary 7.9.  Let X ∈  Ob(_) be a nonzero object and assume _ has no proper épaisse

subcategory 8 such that X ∈  Ob(8).  Then the following hold.

     (1) For any nonzero object Y ∈  Ob(_) there exists n ∈  Z such that _(X, TnY)  0.

     (2) For any nonzero object Y ∈  Ob(_) there exists n ∈  Z such that _(T– nY, X)  0.

 

     Proof.  (1) Suppose to the contrary that _(X, TnY) = 0 for all n ∈  Z.  Then, since _(Y, Y) 

0, and since _(T– nX, Y) = 0 for all n ∈  Z, by Corollary 7.8 we have a proper épaisse

subcategory

 

8 = 
    
I
n ∈Z

 Ker (_(–, Y) o T– n)

 

such that X ∈  Ob(8), a contradiction.

     (2) Similar to (1).

     Definition 7.7.  Let * be another triangulated category.  A ∂-functor F = (F, θ) : _ → * is

a pair of an additive functor F : _ → * and an isomorphism of functors θ : FT →̃ TF such

that, for any triangle (X, Y, Z, u, v, w) in _, (FX, FY, FZ, Fu, Fv, θX o Fw) is a triangle in *.

     A contravariant ∂-functor F : _ → * is defined as a covariant ∂-functor F : _op → *.

 

     Proposition 7.10.  (1) The identity functor 1_ = (1_, id) is a ∂-functor.

     (2) The translations T = (T, – id
T 2 ), T– 1 = (T– 1, – 

  
id1_

) : _ → _ are ∂-functors.

     (3) Let F, G : _ → * be functors and σ : F → G an isomorphism.  Then, if F = (F, θ) is a

∂-functor, so is G = (G, Tσ o θ o σT
 – 1).  Conversely, if G = (G, η) is a ∂-functor, so is F =   (F,

Tσ – 1 o η  o σT).

     (4) For any two consecutive ∂-functors F = (F, θ) : _ → *, G = (G, η) : * → &, the

composite GF = (GF,  η F o Gθ) : _ → & is a ∂-functor.

     (5) If F = (F, θ) is a ∂-functor, then TnF = (TnF, (– 1)n Tnθ) and FTn = (FTn, (– 1)n θ
T n ) are

∂-functors for all n ∈  Z.

     (6) Let !, @ be abelian categories and F : ! → @ an additive functor.  Then the

extended functor F : K(!) → K(@) is a ∂-functor.

9

 



     Proof.  Straightforward.

 

     Definition 7.8.  Let F = (F, θ), G = (G, η) : _ → * be ∂-functors.  A homomorphism of

∂-functors  ζ : (F, θ) → (G, η) is a homomorphism of functors ζ : F → G such that η o ζT =

Tζ o θ.  We denote by Hom (F, G) the collection of homomorphisms of ∂-functors  ζ : (F, θ)

→ (G, η ).

 

     Proposition 7.11.  (1) If F = (F, θ) : _ → * is a ∂-functor, then idF ∈  Hom (F, F) and θ
∈  Hom (FT, TF).

     (2) If F, G : _ → * are ∂-functors, then ξ – ζ ∈  Hom (F, G) for all ξ, ζ ∈  Hom (F, G).

     (3) If F, G, H : _ → * are ∂-functors, then ξ o ζ ∈  Hom (F, H) for all ζ ∈  Hom (F, G)

and ξ ∈  Hom (G, H).

     (4) If F, G : _ → * and H : * → & are ∂-functors, then Hζ ∈  Hom (HF, HG) for all ζ ∈
Hom (F, G).

     (5) If H : & → _ and F, G : _ → * are ∂-functors, then ζH ∈  Hom (FH, GH) for all ζ ∈
Hom (F, G).

 

     Proof.  Straightforward.

 

     Proposition 7.12.  Let F : _ → * be a ∂-functor and 8 = Ker F the full subcategory of _

consisting of X ∈  Ob(_) with FX = 0.  Then the following hold.

     (1) 8 is an épaisse subcategory of _.

     (2) For a morphism s in _, s ∈  Φ(8) if and only if F(s) is an isomorphism.

 

     Proof.  (1) It is obvious that 8 is stable under T.  Let (X, Y, Z, u, ⋅, ⋅) be a triangle in _.

Since we have a triangle in * of the form (FX, FY, FZ, F(u), ⋅, ⋅), if FX = FY = 0 then by

Lemma 6.9 FZ = 0.  Thus 8 is a full triangulated subcategory of _.  Assume next that u

factors through an object of 8 and that FZ = 0.  Then, since F(u) = 0, and since by Lemma

6.9 F(u) is an isomorphism, it follows that FX = FY = 0.

     (2) By Lemma 6.9.

 

     Proposition 7.13.  Let ! be an abelian category and + a subcollection of Ob(!)

containing zero objects and closed under finite direct sums.  Let * = +, –, b or nothing and let

F = (F, θ) : C*(+) → _ be an additive functor together with an isomorphism of functors θ :

FT →̃ TF.  Assume (F X• , FY • , FC(u), Fu, Fv, θX o Fw) is a triangle in _ for all mapping

cylinder ( X• , Y • , C(u), u, v, w) in C*(+).  Then F factors through K*(+) and the induced

functor K*(+) → _ is a ∂-functor.
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     Proof.  Let X• , Y •  ∈  Ob(C*(+)) and u ∈  Htp( X• , Y • ).  We have only to show Fu = 0.



Let ( X• , Y • , C(u), u, v, w) the mapping cylinder of u, where v = t[0   1] and w = [1   0].  Then

by Proposition 3.1 v is a section, so is Fv.  Thus, it follows by Lemma 6.8 that Fu = 0.
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§8.  Quotient categories

     Throughout this section, # is a category and S is a multiplicative system in #.  Unless

otherwise stated, functors are covariant functors.

 

     Definition 8.1.  For a morphism f : X → Y, we set source(f) = X and sink(f) = Y.

 

     Definition 8.2.  For each X ∈  Ob(#), we have a category SX such that

 

Ob(SX) = {s ∈  S | source(s) = X},

SX(s, s’) = {f ∈  #(sink(s), sink(s’)) | s’ = fs} for s, s’ ∈  Ob(SX),

and a category SX such that

 

Ob(SX) = {t ∈  S | sink(t) = X},

SX(t, t’) = {f ∈  #(source(t), source(t’)) | t = t’f} for t, t’ ∈  Ob(SX).

     Lemma 8.1.  For any X ∈  Ob(#), SX satisfies the following axioms:

 

     (L1) For any f1 ∈  SX(s, s1’),  f2 ∈  SX(s, s2’), there exist s” ∈  SX and g1 ∈  SX(s1’, s”), g2 ∈
SX(s2’, s”) such that g1f1 = g2f2.

     (L2) For any f1, f2 ∈  SX(s, s’), there exist s” ∈  SX and g ∈  SX(s’, s”) such that gf1 = gf2.

 

     (L3’) SX has an initial object idX.

 

     Proof.  (L1) Let s : X → Y, s1’ : X → Y1’, s2’ : X → Y2’.  Then si’ = fis for i = 1, 2.  By

(FR2) there exist hi : Yi’ → Z such that h1s1’ = h2s2’ and h1 ∈  S.  Since (h1f1)s = h1s1’ = h2s2’ =

(h2f2)s with s ∈  S, by (FR3) there exists t : Z → Y” in S such that (th1)f1 = t(h1f1) = t(h2f2) =

(th2)f2.  Put s” = th1s1’ = th2s2’.  Then by  (FR1) s” ∈  Ob(SX) and thi ∈  SX(si’, s”) for i = 1, 2.

     (L2) Let s : X → Y, s’ : X → Y’.  Since f1s = s’ = f2s, by (FR3) there exists g : Y’ → Z in S

such that gf1 = gf2.  Put s” = gs’.  Then by  (FR1) s” ∈  Ob(SX) and g ∈  SX(s’, s”).

     (L3’) By (FR1) idX ∈  Ob(SX).

 

     Corollary 8.2.  Let X ∈  Ob(#) and s1, s2, L, sn ∈  Ob(SX).  Then there exists s’ ∈  Ob(SX)

such that SX(si, s’)  Ø  for all 1 ≤ i ≤ n.
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     Proof.  By (L1) and (L3’).



 

     Definition 8.3.  For X, Y ∈  Ob(#), we have a covariant functor

 

#(X, –) : SY → (Sets),

where #(X, s) = #(X, sink(s)) for s ∈  Ob(SY), and a contravariant functor

 

#(–, Y) : SX → (Sets),

where #(t, Y) = #(source(t), Y) for t ∈  Ob(SX).

     Lemma 8.3.  Let X, Y ∈  Ob(#).  Define a relation , on the collection

 

{(f, s) | s ∈  Ob(SY), f ∈  #(X, sink(s))}

as follows: (f1, s1) , (f2, s2) if and only if there exist h1 ∈  SY(s1, s’), h2 ∈  SY(s2, s’) such that

(h1f1, s’) = (h2f2, s’).  Then , is an equivalence relation and we have

lim
→
SY

 #(X, –) = {(f, s) | s ∈  Ob(SY), f ∈  #(X, sink(s))}/,.

     Proof.  It only remains to check the trnsitivity.  Let (f1, s1) , (f2, s2), (f2, s2) , (f3, s3).

Then, there exist g1 ∈  SX(s1, s1’), g2 ∈  SX(s2, s1’) such that g1f1 = g2f2, and there exist g2’ ∈
SX(s2, s”), g3 ∈  SX(s3, s”) such that g2’f2 = g3f3.  Thus, since by (L1) there exist h1 ∈  SX(s1’, s”),

h2 ∈  SX(s2’, s”) such that h1g2 = h2g2’, we have h1g1f1 = h1g2f2 = h2g2’f2 = h2g3f3, so that (f1, s1)

, (f3, s3).

 

     Definition 8.4.  For X, Y ∈  Ob(#), we denote by [(f, s)] the equivalence class of (f, s) with

s ∈  Ob(SY), f ∈  #(X, sink(s)).

 

     Lemma 8.4.  For any X, Y, Z ∈  Ob(S– 1#) we have a well-defined mapping

 

lim
→
SY

 #(X, –) × lim
→
S Z

 #(Y, –) → lim
→
S Z

 #(X, –)

which is defined as follows: with each pair ([(f, s)], [(g, t)]), since by (FR2) there exist s’ ∈  S

with source(s’) = sink(t), g’ ∈  #(sink(s), sink(s’)) such that g’s = s’g, we associate the

equivalence class [(g’f, s’t)].
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     Proof.  Straightforward.



     Definition 8.5.  We define a category S– 1#, called the quotient category of #, as follows:

(1) Ob(S– 1#) = Ob(#); (2) for X, Y ∈  Ob(#), the morphism set is given by

 

S– 1#(X, Y) = lim
→
SY

 #(X, –);

(3) for X, Y, Z ∈  Ob(S– 1#), the law of composition is given by

 

S– 1#(X, Y) × S– 1#(Y, Z) → S– 1#(X, Z), ([(f, s)], [(g, t)]) a [(g’f, s’t)],

where [(g’, s’)] ∈  S– 1#(sink(s), sink(t)) with g’s = s’g; and (4) the identity of X ∈  Ob(S– 1#)

is given by the equivalence class [(idX, idX)].

     Definition 8.6.  We have a functor Q : # → S– 1#, called the canonical functor, such that

Q(X) = X  for  X ∈  Ob(#),

Q(f) = [(f, idY)]  for  f ∈  #(X, Y).

     Lemma 8.5.  Q : # → S– 1# takes terminal objects to terminal objects.

 

     Proof.  Let Y ∈  Ob(#) be a terminal object.  Denote by ξX the unique element of #(X, Y)

for X ∈  Ob(#).  Then [(f, s)] = [(ξZ f, ξZ s)] = [(ξX, idY)] for all (f, s) with s ∈  #(Y, Z) ∩ S and f

∈  #(X, Z).

     Proposition 8.6.  For f, g ∈  #(X, Y) the following are equivalent.

     (1) Q(f) = Q(g).

     (2) There exists s ∈  Ob(SY) such that sf = sg.

     (3) There exists t ∈  Ob(SX) such that ft = gt.

 

     Proof.  (1) ⇒  (2).  Note that SY(idY, s) = {s} for all s ∈  Ob(SY).  Thus by definition there

exists s ∈  Ob(SY) such that (sf, s) = (sg, s).

     (2) ⇒  (1).  We have Q(f) = [(f, idY)] = [(sf, s)] = [(sg, s)] = [(g, idY)] = Q(g).

     (2) ⇔ (3).  By (FR3).

 

     Proposition 8.7.  The following hold.

     (1) Q(s) is an isomorphism for all s ∈  S.

     (2) For any X, Y ∈  Ob(S– 1#) we have
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S– 1#(X, Y) = {Q(s)– 1Q(f) | s ∈  Ob(SY), f ∈  #(X, sink(s))}

= {Q(g)Q(t)– 1 | t ∈  Ob(SX), g ∈  #(source(t), Y)}.

      

     Proof.  (1) Let s ∈  S with source(s) = X, sink(s) = Y.  Then by definition Q(s) o [(idY, s)] =

[(idY, idY)].  Also, [(idY, s)] o Q(s) = [(s, s)] = [(idX, idX)].

     (2) For any (f, s) with s ∈  Ob(SY) and f ∈  #(X, sink(s)), since Q(s) o [(f, s)] = Q(f), by the

part (1) we get [(f, s)] = Q(s)– 1Q(f).  Also, since by (FR2) there exist t ∈  Ob(SX), g ∈
#(source(t), Y) such that ft = sg, Q(f)Q(t) = Q(s)Q(g) and by the part (1) we get Q(g)Q(t)– 1 =

Q(s)– 1Q(f).

 

     Proposition 8.8.  For f ∈  #(X, Y) the following are equivalent.

     (1) Q(f) is an isomorphism.

     (2) There exist morphisms g, h in # with gf, fh ∈  S.

 

     Proof.  (1) ⇒  (2).  There exist s ∈  S with source(s) = X, g ∈  #(Y, sink(s)) such that Q(f)– 1

= Q(s)– 1Q(g).  Since Q(s) = Q(g)Q(f) = Q(gf), [(s, idX)] = [(gf, idX)] and there exists s’ ∈
Ob(SX) such that s’s = s’gf.  Then by (FR2) (s’g)f ∈  S.  Dually, there exist t ∈  S with sink(t) =

Y, h ∈  #(source(t), X) and t’ ∈  Ob(SY) such that f(ht’) ∈  S.

     (2) ⇒  (1).  Since Q(g)Q(f) = Q(gf) has a left inverse, so does Q(f).  Also, since Q(f)Q(h) =

Q(fh) has a right inverse, so does Q(f).

 

     Corollary 8.9.  Assume S is saturated.  Then for any f ∈  #(X, Y) the following hold.

     (1) Q(f) is an isomorphism if and only if f ∈  S.

     (2) If there exists s ∈  Ob(SY) with sf ∈  S, then f ∈  S.

     (3) If there exists t ∈  Ob(SX) with ft ∈  S, then f ∈  S.

 

     Proof.  (1) By Propositions 8.7(1) and 8.8.

     (2) By Proposition 8.8 Q(f) = Q(s)– 1Q(sf) is an isomorphism, thus by the part (1) f ∈  S.

     (3) By Proposition 8.8 Q(f) = Q(ft)Q(t)– 1 is an isomorphism, thus by the part (1) f ∈  S.

 

     Proposition 8.10.  Let $ be another category and F : # → $ a functor such that F(s) is

an isomorphism for all s ∈  S.  Then there exists a unique functor F’ : S– 1# → $ such that F

= QF’.

 

     Proof.  By Proposition 8.7(2).

 

     Proposition 8.11.  Let $ be another category and F, G : S– 1# → $ functors.  Then we
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have a bijective correspondence



Hom(F, G) →̃ Hom(FQ, GQ), τ  a τQ,

where Hom(–, –) denotes the collection of homomorphisms of functors.

 

     Proof.  Since Ob(S– 1#) = Ob(#), we may consider Hom(F, G) as a subcollection of

Hom(FQ, GQ).  Let σ ∈  Hom(FQ, GQ).  For any φ = Q(s)– 1Q(f) ∈  S– 1#(X, Y) with sink(s) =

Z, since we have a commutative diagram in $

 

FQX  →
FQf

FQZ ← 
FQs

FQY

σX ↓ ↓ σZ ↓ σY

GQX  →
GQf

GQZ ← 
GQs

GQY ,

σY o Fφ = Gφ o σX.  Thus σ ∈  Hom(F, G).

      

     Lemma 8.12 (Dual of Lemma 8.1).  For any X ∈  Ob(#), SX satisfies the following

axioms:

 

     (L1)o For any g1 ∈  SX(s1’, s”), g2 ∈  SX(s2’, s”), there exist s ∈  SX and f1 ∈  SX(s, s1’), f2 ∈
SX(s, s2’) such that g1f1 = g2f2.

 

     (L2)o For any g1, g2 ∈  SX(s’, s”), there exist s ∈  SX and f ∈  SX(s, s’) such that g1f = g2f.

 

     (L3’)o SX has a terminal object idX.

 

     Corollary 8.13 (Dual of Corollary 8.2).  Let X ∈  Ob(#) and t1, t2, L, tn ∈  Ob(SX).  Then

there exists t’ ∈  Ob(SX) such that SX(t’, ti)  Ø  for all 1 ≤ i ≤ n.

     Lemma 8.14 (Dual of Lemma 8.3).  Let X, Y ∈  Ob(#).  Define a relation , on the

collection

  {(t, g) | t ∈  Ob(SX), g ∈  #(source(t), Y)}

as follows: (t1, g1) , (t2, g2) if and only if there exist h1 ∈  SX(t’, t1), h2 ∈  SX(t’, t2) such that

(t’, g1h1) = (t’, g2h2).  Then , is an equivalence relation and we have

lim
→
SX

 #(–, Y) = {(t, g) | t ∈  Ob(SX), g ∈  #(source(t), Y)}/,.

5



     Definition 8.7.  For X, Y ∈  Ob(#), we denote also by [(t, g)] the equivalence class of (t, g)

with t ∈  Ob(SX), g ∈  #(source(t), Y).

       

     Proposition 8.15.  For any X, Y ∈  Ob(#) we have a bijection

 

θ = θX , Y : lim→
SY

 #(X, –) →̃ lim
→
SX

 #(–, Y)

which associates with each [(f, s)] the equivalence class of (t, g) such that ft = sg.

     Proof.  Let (f1, s1), (f2, s2) with [(f1, s1)] = [(f2, s2)], and let (t1, g1), (t2, g2) with f1t1 = s1g1, f2t2

= s2g2.  We claim [(t1, g1)] = [(t2, g2)].   By definition, there exist h1 ∈  SY(s1, s’), h2 ∈  SY(s2, s’)

such that (h1f1, s’) = (h2f2, s’).  Put h’ = h1f1 = h2f2.  Then by (FR2) there exist t’ ∈  Ob(SX) and

g’ ∈  #(source(t’), Y) such that h’t’ = s’g’.  Again by (FR2), there exist j ∈  S with sink(j) =

source(t’) and j1 ∈  #(source(j), source(t1)) such that t1j1 = t’j.  Since s’g’j = h’t’j = h1f1t’j =

h1f1t1j1 = h1s1g1j1 = s’g1j1, by (FR3) there exists j’ ∈  S such that g’jj’ = g1j1j’.  Note also that by

(FR1) t1j1j’ = t’jj’ ∈  Ob(SX).  Thus [(t1, g1)] = [(t’, g’)].  Similarly, [(t2, g2)] = [(t’, g’)], so that

[(t1, g1)] = [(t2, g2)].  Thus θX, Y is well-defined.  Dually, we have a well-defined mapping

 

η = ηX , Y :  lim→
SX

 #(–, Y) → lim
→
SY

 #(X, –)

which associates with each [(t, g)] the equivalence class of (f, s) such that ft = sg.  It is

obvious that ηX , Y is the inverse of θX , Y.

     Remark 8.1.  For [(f, s)] ∈  lim
→
SY

 #(X, –) and [(t, g)] ∈  lim
→
SX

 #(–, Y) the following are

equivalent.

     (1) θX , Y([(f, s)]) = [(t, g)].

     (2) Q(s)– 1Q(f) = Q(g)Q(t)– 1.

     Remark 8.2.  Let X, Y, Z ∈  Ob(#).  Define a law of composition

 

lim
→
SX

 #(–, Y) × lim
→
SY

 #(–, Z) → lim
→
SX

 #(–, Z)

as follows: with each pair ([(s, f)], [(t, g)]), since by (FR2) there exist t’ ∈  S with sink(t’) =

source(s) and f’ ∈  #(source(t’), source(t)) such that tf’ = ft’, we associate the equivalence

class [(st’, gf’)].  Then the isomorphism in Proposition 8.15 is compatible with the law of

composition.
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     Lemma 8.16 (Dual of Lemma 8.5).  Q : # → S– 1# takes initial objects to initial objects.

     Proposition 8.17.  Let $ be a full subcategory of #.  Assume S ∩ $ is a multiplicative

system in $ and one of the following conditions is satisfied:

     (1) For any s ∈  Ob(SY) with Y ∈  Ob($), there exists f ∈  #(sink(s), Y’) with Y’ ∈  Ob($)

such that fs ∈  S.

     (2) For any t ∈  Ob(SX) with X ∈  Ob($), there exists g ∈  #(X’, source(t)) with X’ ∈  Ob($)

such that tg ∈  S.

     Then the canonical functor (S ∩  $)– 1$ → S– 1# is fully faithful, so that (S ∩ $)– 1$ can

be considered as a fullsubcategory of S– 1#.

 

     Proof.  Straightforward.

 

     Proposition 8.18.  Assume # is an additive category.  Then S– 1# is an additive category

and Q : # → S– 1# is an addtive functor.

 

     Proof.  We divide the proof into several steps.

 

     Claim 1: Q : # → S– 1# takes zero objects to zero objects.

 

     Proof.  By Lemmas 8.5 and 8.16.

 

     Let X, Y ∈  Ob(S– 1#).  We now define an addition on S– 1#(X, Y).  For each pair of

morphisms [(f1, s1)], [(f2, s2)] ∈  S– 1#(X, Y), since by Corollary 8.2 there exist s’ ∈  Ob(SY) and

g1 ∈   SY(s1, s’), g2 ∈   SY(s2, s’), we can define the sum of them as follows

 

[(f1, s1)] + [(f2, s2)] = [(g1f1 + g2f2, s’)].

     Claim 2: The addition above is well-defined.

 

     Proof.  Let [(f1, s1)] = [(f1’, s1’)] and [(f2, s2)] = [(f2’, s2’)].  According to Corollary 8.2, we

may assume s1 = s2 = s and s1’ = s2’ = s’.  We claim [(f1 + f2, s)] = [(f1’ + f2’, s’)].  By (L1) and

(L3’) there exist ti ∈  Ob(SY) and gi ∈   SY(s, ti), gi’ ∈   SY(s’, ti) such that gifi = gi’fi’ for i = 1, 2,

then by (L1) there exist t’ ∈  Ob(SY) and h1 ∈  SY(t1, t’), h2 ∈  SY(t2, t’) such that h1g1 = h2g2, and

then by (L2) there exist t” ∈  Ob(SY) and j ∈  SY(t’, t”) such that jh1g1’ = jh2g2’.  Thus we get

 

[(f1 + f2, s)] = [(jh1g1(f1 + f2), t”)]

= [(jh1g1f1 + jh1g1f2, t”)]
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= [(jh1g1f1 + jh2g2f2, t”)]



= [(jh1g1’f1’ + jh2g2’f2’, t”)]

= [(jh1g1’f1’ + jh1g1’f2’, t”)]

= [(jh1g1’(f1’ + f2’), t”)]

= [(f1’ + f2’, s’)].

     Claim 3: S– 1#(X, Y) is an additive group with 0 = [(0, idY)] and Q : # → S– 1# induces a

homomorphism of additive groups #(X, Y) → S– 1#(X, Y).

 

     Proof.  By definition, [(f, idY)] + [(g, idY)] = [(f + g, idY)] for all f, g ∈  #(X, Y).  Next, for

any [(f, s)] ∈  S– 1#(X, Y), since [(0, idY)] = [(0, s)], we have

 

[(f, s)] + [(0, idY)] = [(f, s)] + [(0, s)]

= [(f, s)],

so that [(0, idY)] is the zero element of S– 1#(X, Y).  Also, for any [(f, s)] ∈  S– 1#(X, Y), since

[(f, s)] + [(– f, s)] = [(0, s)]

= [(0, idY)],

we have – [(f, s)] = [(– f, s)].

     Claim 4: The law of composition is bilinear.

 

     Proof.  Straightforward.

     Remark 8.3.  Assume # is an additive category.  Let X, Y ∈  Ob(#).  Define an addition on

lim
→
SX

 #(–, Y) as follows: for each pair of [(t1, g1)], [(t2, g2)] ∈  lim
→
SX

 #(–, Y), since by Corollary

8.13 there exist t’ ∈  Ob(SX) and f1 ∈   SX(t’, t1), f2 ∈   SX(t’, t2), we set

 

[(t1, g1)] + [(t2, g2)] = [(t’, g1f1 + g2f2)].

Then the isomorphism in Proposition 8.15 is compatible with the addtion.

 

     Proposition 8.19.  Assume # is an additive category.  Then for f ∈  #(X, Y) the following

are equivalent.

     (1) Q(f) = 0.

     (2) There exists s ∈  Ob(SY) such that sf = 0.
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     (3) There exists t ∈  Ob(SX) such that ft = 0.



 

     Proof.  By Proposition 8.6.

 

     Corollary 8.20.  Assume # is an additive category.  Then for X ∈  Ob(#) the following are

equivalent.

     (1) Q(X) = 0.

     (2) idQ(X) = Q(idX) = 0.

     (3) SX contains a zero morphism.

     (4) SX contains a zero morphism.

      

     Proposition 8.21.  Assume # is an additive category.  Let $ be another additive category

and F : # → $ an additive functor such that F(s) is an isomorphism for all s ∈  S.  Then there

exists a unique additive functor F’ : S– 1# → $ such that F = QF’.

 

     Proof.  By Proposition 8.10 there exists a unique functor F’ : S– 1# → $ such that F =

QF’.  It follows by the definition of addition in S– 1# that F’ is additive.
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§9.  Quotient categories of triangulated categories

     Throughout this section, _ is a triangulated category, 8 is an épaisse subcategory of _

and S = Φ(8) is the collection of morphisms u in _ with C(u) ∈  8.  Unless otherwise stated,

functors are covariant functors.

   

     Lemma 9.1.  S is a saturated multiplicative system in _ compatible with the triangulation.

 

     Proof.  By Proposition 7.6.

 

     Definition 9.1.  We denote by _/8 the quotient category S– 1_ and by Q : _ → _/8 the

canonical functor.

 

     Lemma 9.2.  _/8 is an additive category and Q : _ → _/8 is an additive functor.

 

     Proof.  By Proposition 8.18.

 

     Proposition 9.3.  (1) For a morphism u in _, Q(u) is an isomorphism if and only if u ∈  S.

     (2) For a morphism u in _, Q(u) = 0 if and only if u factors through (an object of) 8.

     (3) 8 = Ker Q, i.e., 8 consists of the objects X ∈  Ob(_) with QX = 0.

 

     Proof.  (1) By Proposition 7.6 and Corollary 8.9(1).

     “Only if” part of (2).  Let X = source(u).  By Proposition 8.19 there exist t ∈  Ob(SX) such

that ut = 0.  Then by Proposition 6.5 u factors through C(t) ∈  Ob(8).

     (3) Let X ∈  Ob(8) and 0X : 0 → X the zero morphism.  Since C(0X) > X ∈  Ob(8), 0X ∈
Ob(SX).  Thus by Proposition 8.7(1) Q(0X) is an isomorphism and 0 = QX.  Conversely, let X

∈  Ob(_) with QX = 0.  Since Q(idX) = 0, by the “only if” part of (1) idX factors through (an

object of) 8.  Also, by (TR1) C(idX) = 0 ∈  Ob(8).  Thus X ∈  Ob(8).

     “If” part of (2).  Assume u factors through Z ∈  Ob(8).  Then by the part (2) Q(u) factors

through QZ = 0, so that Q(u) = 0.

 

     Proposition 9.4.  For any u ∈  _/8(X, Y) the following are equivalent.

     (1) u is an isomorphism.

     (2) u = Q(s)– 1Q(f) with s, f ∈  S.

     (3) u = Q(g)Q(t)– 1 with g, t ∈  S.

 

     Proof.  By Lemma 9.1 and Corollary 8.9.
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     Lemma 9.5.  The trnslation T : _ → _ induces an autofunctor _/8 → _/8, which we



denote also by T.

 

     Proof.  By (FR4) and Proposition 8.10.

 

     Remark 9.1.  The canonical functor Q : _ → _/8 commutes with the translation T, so

that Q takes cylinders into cylinders.

 

     Lemma 9.6.  Let (X, Y, Z, u, ⋅, ⋅) and (X’, Y’, Z’, u’, ⋅, ⋅) be triangles in _ and let f ∈
_(X, X’), g ∈  _(Y, Y’) with Q(g)Q(u) = Q(u’)Q(f).  Then there exists φ ∈  _/8(Z, Z’) which

makes the following diagram in _/8 commute

 

QX  →
Q u( )

QY  → QZ  → TQX

Q(f) ↓ ↓ Q(g) ↓ φ ↓ TQ(f)

QX’  →
′Q u( )

QY’  → QZ’  → TQX’ .

     Proof.  Since Q(u’f – gu) = 0, by Proposition 9.3(2) u’f – gu factors through some W ∈
Ob(8).  Let v ∈  _(X, W), w ∈  _(W, Y’) with u’f – gu = wv.  Set û  = t[u  v] : X → Y ⊕  W, ĝ

= [g  w] : Y ⊕  W → Y’ and s = [1  0] : Y ⊕  W → Y.  Then s û  = u and ˆ ˆgu  = u’f.  Thus by

(TR3) we get homomorphisms of triangles in _

      

X →
u

Y → Z → TX

|| ↑ s ↑ t ||

X →
û

Y ⊕  W → Z” → TX

f ↓ ↓ ĝ ↓ h ↓ Tf

X’ →
′u

Y’ → Z’ → TX’ .

Furthermore, by (FR5) we may assume t ∈  S.  Thus, since by Proposition 9.3(3) Q(s) = idQY

and Q( ĝ) = Q(g), it follows that φ = Q(h)Q(t)– 1 is a desired morphism.

     Lemma 9.7.  Let

 

QX  →
Q u( )

QY

φ ↓ ↓ ψ

QX’  →
′Q u( )

QY’
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be a commutative diagram in _/8.  Let φ = Q(s)– 1Q(f) and X” = sink(s).  Then there exist u”



∈  _(X”, Y”), t ∈  _(Y’, Y”) ∩  S and g ∈  _(Y, Y”) such that

     (1) u”s = tu’,

     (2) ψ = Q(t)– 1Q(g), and

     (3) Q(g)Q(u) = Q(u”)Q(f).

 

     Proof.  Let ψ = Q(t’)– 1Q(g’) with Z = sink(t’).  By (FR2) there exist v ∈  _(X”, Z’) and s’

∈  _(Y’, Z’) ∩  S such that vs = s’u’ .  Then again by (FR2) there exist s” ∈  _(Z’, Y”) and t”

∈  _(Z, Y”) ∩ S  such that t”t’ = s”s’.  Put t = t”t’, g = t”g’ and u” = s”v.  Then by (FR1) t ∈
S and we have

 

     (1)                                                tu’ = t”t’u’

= s”s’u’

= s”vs

= u”s,

     (2)                                   Q(t)– 1Q(g) = Q(t”t’)– 1Q(t”g’)

= Q(t’)– 1Q(t”)– 1Q(t”)Q(g’)

= Q(t’)– 1Q(g’)

= ψ

and

     (3)                                     Q(g)Q(u) = Q(t”)Q(g’)Q(u)

= Q(t”)Q(t’)ψQ(u)

= Q(t”)Q(t’) Q(u’)φ
= Q(t”)Q(t’)Q(u’)Q(s)– 1Q(f)

= Q(t”)Q(t’)Q(s’)– 1Q(v)Q(f)

= Q(t”)Q(t”)– 1Q(s”)Q(v)Q(f)

= Q(u”)Q(f).

     Definition 9.2.  A cylinder (QX’, QY’, QZ’, λ , µ, ν) in _/8 is called a triangle if there

exists a triangle (X, Y, Z, u, v, w) in _ such that (QX’, QY’, QZ’, λ, µ, ν) is isomorphic to

(QX, QY, QZ, Qu, Qv, Qw).

 

     Proposition 9.8.  _/8 is a triangulated category and Q : _ → _/8 is a ∂-functor.

 

     Proof.  It remains to check that _/8 satisfies the axioms (TR1)-(TR4).
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     (TR1) Let λ ∈  _/8(X, Y).  Let λ  = Q(s)– 1Q(u) with sink(u) = Y’ and embed u in a triangle



(X, Y’, Z, u, ⋅, ⋅) in _.  Then we have an isomorphism of cylinders

      

QX  →
λ

QY  → QZ  → TQX

|| ↓ Q(s) || ||

QX  →
Q u( )

QY’  → QZ  → TQX .

Also, for any X ∈  Ob(_/8), since Q(idX) = idQX, (QX, QX, 0, idQX, 0, 0) is a triangle in _/8.

     (TR2) By the fact that QT = TQ.

 

     (TR3) Let (X, Y, Z, u, ⋅, ⋅), (X’, Y’, Z’, u’, ⋅, ⋅) be triangles in _ and α  ∈  _/8(X, X’), β ∈
_/8(Y, Y’) with βQ(u) = Q(u’)α .  Let α  = Q(s)– 1Q(f) with sink(s) = X”.  Then by Lemma 9.7

there exist u” ∈  _(X”, Y”), t ∈  _(Y’, Y”) ∩ S and g ∈  _(Y, Y”) such that u”s = tu’, β =

Q(t)– 1Q(g) and Q(g)Q(u) = Q(u”)Q(f).   Let (X”, Y”, Z”, u”, ⋅, ⋅) be a triangle in _.  Then by

Lemma 9.6 we have a commutative diagram

      

QX  →
Q u( )

QY  → QZ  → TQX

Q(f) ↓ ↓ Q(g) ↓ φ ↓ TQ(f)

QX”  →
′′Q u( )

QY”  → QZ”  → TQX” .

Also, by (FR5) we have a commutative diagram

      

X” →
′′u

Y” → Z” → TX”

s ↑ ↑ t ↑ q ↑ Ts

X’ →
′u

Y’ → Z’ → TX’ .

Thus, setting γ = Q(q)– 1φ, we get a commutative diagram

      

QX  →
Q u( )

QY  → QZ  → TQX

α ↓ ↓ β ↓ γ ↓ Tα

QX’  →
′′Q u( )

QY’  → QZ’  → TQX’ .

     (TR4) Let φ : QX → QY, ψ : QY → QZ be consecutive morphisms in _/8.  Let φ =

Q(u)Q(s)– 1 with source(s) = X’ and ψ = Q(t)– 1Q(v) with sink(t) = Z’.  Then we have a

commutative diagram
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QX  →
φ

QY  →
ψ

QZ

Q(s)– 1 ↓ || ↓ Q(t)

QX’  →
Q u( )

QY  →
Q v( )

QZ’,

so that we may assume φ = Q(u) and ψ = Q(v).  Thus, since _ satisfies (TR4), so does _/8.

 

     Proposition 9.9.  Let ! be an abelian category and H : _ → ! a cohomological functor

vanishing on 8, i.e., HX = 0 for all X ∈  Ob(8).  Then there exists a unique cohomological

functor H : _/8 → ! such that H =  HQ.

 

     Proof.  Let s ∈  S.  We claim that H(s) is an isomorphism.  Put X = source(s) and Y =

sink(s).  Since C(s) ∈  Ob(8), H(Tn(C(s))) = 0 for all n ∈  Z.  Thus, since we have an exact

sequence

 

H(T– 1(C(s)))  →  HX  →
H s( )

 HY  →  H(T(C(s))),

H(s) is an isomorphism.  Hence by Proposition 8.21 there exists a unique additive functor H :

_/8 → ! such that H = HQ.  It is obvious that H : _/8 → ! is a cohomological functor.

      

     Proposition 9.10.  Let * be another triangulated category and F = (F, θ) : _ → * a

∂-functor vanishing on 8, i.e., FX = 0 for all X ∈  Ob(8).  Then there exists a unique

∂-functor F = (F, θ) : _/8 → * such that F = FQ and θ = θQ.

 

     Proof.  Let s ∈  S.  We claim that F(s) is an isomorphism.  Put X = source(s) and Y =

sink(s).  Since C(s) ∈  Ob(8), F(C(s)) = 0.  Thus (FX, FY, 0, F(s), 0, 0) is a triangle and by

Lemma 6.9 F(s) is an isomorphism.  Hence by Proposition 8.21 there exists a unique additive

functor F : _/8 → * such that F = FQ.  Since QT = TQ, we have an isomorphism θ : FQT =

FTQ →̃ TFQ.  Thus by Proposition 8.11 we have an isomorphism θ : FT →̃ TF such that θ =

θQ.  It is obvious that F = (F, θ): _/8 → * is a ∂-functor.

      

     Proposition 9.11.  Let * be another triangulated category and F = (F, θ), G = (G, η ) :

_/8 → * ∂-functors.  Then we have a bijective correspondence

 

Hom (F, G) →̃ Hom (FQ, GQ), ζ a ζQ.

     Proof.  For any ζ ∈ Hom (F, G), since
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ηQ o (ζQ)T = ηQ o ζQT



= ηQ o ζTQ

= (η o ζT)Q

= (Tζ o θ)Q

= T(ζQ) o θQ ,

we have ζQ ∈ Hom (FQ, GQ).  Conversely, let ξ ∈ Hom (FQ, GQ).  Then by Proposition

8.11 there exists a unique ζ ∈ Hom(F, G) such that ξ = ζQ.  We claim ζ ∈ Hom (F, G).  Since

 

(η o ζT)Q = ηQ o ζTQ

= ηQ o ζQT

= ηQ o ξT

= Tξ o θQ

= T(ζQ) o θQ

= (Tζ o θ)Q,

by Proposition 8.11 η  o ζT = Tζ o θ and ζ ∈ Hom (F, G).

     Definition 9.3.  An object Y ∈  Ob(_) is called 8-local if _(–, Y) vanishes on 8.

     Proposition 9.12.  The collection of 8-local objects forms an épaisse subcategory and is

closed under direct products, i.e., for a family of 8-local objects {Yλ}λ ∈  Λ, if the direct

product ∏ Yλ exists in _, then ∏ Yλ is 8-local.

 

     Proof.  By Corollary 7.8 the first assertion follows.  Let {Yλ}λ ∈  Λ be a family of 8-local

objects such that ∏ Yλ exists in _.  Then _(X, ∏ Yλ) > ∏ _(X, Yλ) = 0 for all X ∈  Ob(8) and

∏ Yλ is 8-local.

 

     Proposition 9.13.  For any 8-local object Y ∈  Ob(_) the following hold.

     (1) For any t ∈  _(X’, X) ∩ S, _(t, Y) is an isomorphism.  In particular, if Y’ ∈  Ob(_) is

another 8-local object, then every s ∈  _(Y, Y’) ∩ S is an isomorphism.

     (2) The canonical functor Q : _ → _/8 induces an isomorphism of functors on _

 

_(–, Y) →̃ _/8(–, QY) o Q.

     Proof.  (1) Embed t in a triangle (X’, X, Z, t, ⋅, w) in _.  Since Z, T– 1Z ∈  Ob(8), it follows

by Proposition 6.5(2) that _(t, Y) is an isomorphism.  Next, let s ∈  _(Y, Y’) ∩ S with Y’ ∈
Ob(_) 8-local.  Then by the above there exists s’ ∈  _(Y’, Y) such that s’s = idY.  It then

follows by Lemma 9.1 that s’ ∈  S.  Thus, again by the above, there exists s” ∈  _(Y, Y’) such
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that s”s’ = id ′Y .  Hence s” = s”s’s = s and s’ = s– 1.



     (2) Let X ∈  Ob(_).  Let f ∈  _(X, Y) with Q(f) = 0.  Then by Proposition 9.3(2) f factors

through some Z ∈  Ob(8) and f = 0.  Conversely, let u = Q(g) o Q(t)– 1 ∈  _/8(QX, QY) with t

∈  _(X’, X) ∩ S.  Then by the part (1) there exists f ∈  _(X, Y) such that g = ft.  It follows that

u = Q(f).

     Proposition 9.14.  Assume 8 is closed under direct products, i.e., for a family of objects

{Zλ}λ ∈  Λ in 8, if the direct product ∏ Zλ exists in _, then ∏ Zλ ∈  Ob(8).  Then the canonical

functor Q : _ → _/8 preserves direct products.  In particular, if _ has arbitrary direct

products, so does _/8.

 

     Proof.  Let {Xλ}λ ∈  Λ be a family of objects in _ and assume the direct product ∏ Xλ exists

in _.  For each µ ∈  Λ we denote by pµ : ∏ Xλ → Xµ the projection.  We claim that for any Y

∈  Ob(_/8) the canonical homomorphism

 

ξY : _/8(Y, Q(∏ Xλ)) → ∏ _/8(Y, Q(Xλ)), u a (Q(pλ) o u)

is an isomorphism.

     Claim 1: ξY is an epimorphism.

     Proof.  Let (uλ) ∈  ∏ _/8(Y, Q(Xλ)).  For each µ ∈  Λ, let uµ = Q(sµ)
– 1 o Q(fµ) with sµ ∈

_(Xµ, Xµ’) ∩  S and embed sµ in a triangle (Xµ, Xµ’, Zµ, sµ, ⋅, ⋅) in _.  Then by Proposition

6.10 the direct product

 

(∏ Xλ’, ∏ Xλ, ∏ Zλ, ∏ sλ, ⋅, ⋅)

is a triangle in _.  Also, since Zµ ∈  Ob(8) for all µ ∈  Λ, ∏ Zλ ∈  Ob(8) and ∏ sλ ∈  S.  For

each µ ∈  Λ, we denote by pµ’ : ∏ Xλ’ → Xµ’ the projection.  There exists f ∈  _(Y, ∏ Xλ’)

such that fµ = pµ’ o f for all µ ∈  Λ.  Set u = Q(∏ sλ)
– 1 o Q(f).  Then for any µ ∈  Λ we have

Q(pµ) o u = Q(pµ) o Q(∏ sλ)
– 1 o Q(f)

= Q(sµ)
– 1 o Q(pµ’) o Q(f)

= Q(sµ)
– 1 o Q(fµ)

= uµ.

     Claim 2: ξY is a monomorphism.

     Proof.  Let u ∈  _/8(Y, Q(∏ Xλ)) with Q(pµ) o u = 0 for all µ ∈  Λ.  Let u = Q(g) o Q(t)– 1
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with t ∈  _(Y’, Y) ∩  S.  We claim Q(g) = 0.  For any λ  ∈  Λ, since Q(pλ o g) o Q(t)– 1 = 0, we



have Q(pλ o g) = 0 and by Proposition 9.3(2) pλ o g factors through some Zλ ∈  Ob(8).  It

follows that g factors through ∏ Zλ ∈  Ob(8).  Thus again by Proposition 9.3(2) Q(g) = 0.

 

     Remark 9.2.  Let ! be an abelian category satisfying the condition Ab4* and 8 the

épaisse subcategory of K(!) consisting of acyclic complexes.  Then K(!) has arbitrary direct

products and 8 is closed under direct products.

     Definition 9.4.  An object X ∈  Ob(_) is called 8-colocal if _(X, –) vanishes on 8.

     Proposition 9.15 (Dual of Proposition 9.12).  The collection of 8-colocal objects forms

an épaisse subcategory which is closed under direct sums, i.e., for a family of 8-colocal

objects {Xλ}λ ∈  Λ, if the direct sum ⊕  Xλ exists in _, then ⊕  Xλ is 8-colocal.

 

     Proposition 9.16 (Dual of Proposition 9.13).  For any 8-colocal object X ∈  Ob(_) the

following hold.

     (1) For any s ∈  _(Y, Y’) ∩ S, _(X, s) is an isomorphism.  In particular, if X’ ∈  Ob(_) is

another 8-colocal object, then every t ∈  _(X’, X) ∩  S is an isomorphism.

     (2) For any 8-colocal object X ∈  Ob(_) the canonical functor Q : _ → _/8 induces an

isomorphism of functors on _

 

_(X, –) →̃ _/8(QX, –) o Q.

     Proposition 9.17 (Dual of Proposition 9.14).  Assume 8 is closed under direct sums, i.e.,

for a family of objects {Zλ}λ ∈  Λ in 8, if the direct sum ⊕  Zλ exists in _, then ⊕  Zλ ∈  Ob(8).

Then the canonical functor Q : _ → _/8 preserves direct sums.  In particular, if _ has

arbitrary direct products, so does _/8.

 

     Remark 9.3.  Let ! be an abelian category satisfying the condition Ab4 and 8 the épaisse

subcategory of K(!) consisting of acyclic complexes.  Then K(!) has arbitrary direct sums

and 8 is closed under direct sums.
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§10.  Derived categories

     Throughout this section, ! is an abelian category, ( (resp. 3) is the collection of injective

(resp. projective) objects of ! and 8 is the full subcategory of K(!) consisting of acyclic

complexes, i.e., 8 = Ker H• .

 

     Lemma 10.1.  For * = +, –, b, (+, b), (–, b) or nothing, the following hold.

     (1) 8 ∩ K*(!) is an épaisse subcategory of K*(!).

     (2) Φ(8 ∩ K*(!)) consists of the quasi-isomorphisms in K*(!).

     (3) Φ(8 ∩ K*(!)) = Φ(8) ∩ K*(!).

 

     Proof.  By Propositions 5.2 and 7.7.

 

     Definition 10.1.  For * = +, –, b, (+, b), (–, b) or nothing, according to Lemma 10.1(1), we

have a quotient category

 

D*(!) = K*(!)/8 ∩ K*(!),

called the derived category of !.  We denote by Q : K*(!) → D*(!) the canonical functor.

 

     Proposition 10.2.  For a morphism f ∈  K(!)( X• , Y • ) the following are equivalent.

     (1) Q(f) = 0.

     (2) There exists a quasi-isomorphism s ∈  K(!)( Y • , ′•Y ) such that sf = 0.

     (3) There exists a quasi-isomorphism t ∈  K(!)( ′•X , X•) such that ft = 0.

     (4) f factors through an acyclic complex.

 

     Proof.  By Propositions 8.6 and 9.3(2).

 

     Remark 10.1.  For X•  ∈  Ob(D(!)), since 8 = Ker H• , by Proposition 9.3(3) H•( X•) = 0

if and only if X•  = 0.  However, for u ∈  D(!)( X• , Y • ), H•(u) = 0 does not necessarily imply

u = 0, i.e., for f ∈  K(!)( X• , Y • ), H•(f) = 0 does not necessarily imply Q(f) = 0.  Consider for

example the following homomorphism f : X•  → Y •  in C(Mod Z):

 

L → 0 → Z →
dX

0

Z → 0 → L

↓ f  0 ↓ ↓ f  1 ↓

L → 0 → Z →
dY

0

Z/3Z → 0 → L ,

1

where dX
0(n) = 2n, dY

0(n) = n mod 3, f 0(n) = n, and f 1(n) = 2n mod 3 for n ∈  Z.  Then we



have H•(f) = 0.  Let t : ′•X  → X•  be a quasi-isomorphism.  Let x ∈ Z 1( ′•X ) such that t1(x) ∉
B 1( X•) = 2Z.  Since t1(2x) = 2t1(x) ∈  B  1( X•), 2x ∈  B 1( ′•X ) and there exists x’ ∈ X’ 0 such

that 2x = dX ′
0 (x’).  Then 2t0(x’) = dX

0(t0(x’)) = t1( dX ′
0 (x’)) = t1(2x) = 2t1(x), so that t0(x’) = t1(x).

Let h0 : X’ 1 → Y 0 = Z.  If t0 = f 0 o t0 = h0 o dX ′
0 , then t1(x) = t0(x’) = h( dX ′

0 (x’)) = h(2x) = 2h0(x)

∈  B 1( X•).  Consequently, there can not exist h : ft . 0.

 

     Proposition 10.3.  For a morphism f ∈  K(!)( X• , Y • ) the following are equivalent.

     (1) Q(f) is an isomorphism.

     (2) f is a quasi-isomorphism.

 

     Proof.  By Proposition 9.3(1).

 

     Proposition 10.4.  For a morphism u ∈  D(!)( X• , Y • ) the following are equivalent.

     (1) u is an isomorphism.

     (2) u = Q(s)– 1Q(f) with s, f ∈  Φ(8).

     (3) u = Q(g)Q(t)– 1 with g, t ∈  Φ(8).

     (4) H•(u) is an isomorphism.

 

     Proof.  (1) ⇔ (2) ⇔  (3).  By Proposition 9.4.

     (1) ⇒  (4).  Obvious.

     (4) ⇒  (1).  Embed u in a triangle ( X• , Y • , Z• , u, ⋅, ⋅).  For any n ∈  Z, since we have an

exact sequence

 

Hn ( X•) →̃ Hn ( Y • ) → Hn ( Z•) → Hn  + 1( X•) →̃ Hn + 1( Y • ),

Hn ( Z•) = 0.  Thus Z•  is acyclic, so that Z•  = 0 in D(!).  It follows by Lemma 6.9 that u is

an isomorphism.

 

     Definition 10.2.  For each n ∈  Z, we define truncation functors σ> n, σ  n : C(!) → C(!) as

follows:

 

σ> n( X•)i = 

X i n

B X i n

i n

i

n

( )

( ) ( )

( )

>
′ =

<









•

0

,     σ  n( X•)i = 

0 ( )

( ) ( )

( )

i n

Z X i n

X i n

n

i

>
=
<






•

for X•  ∈  Ob(C(!)).  We set σ≥ n = σ> n – 1 and σ< n = σ  n – 1.

     Lemma 10.5.  For any n ∈  Z and X•  ∈  Ob(C(!)) the following hold.
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     (1) There exists a natural exact sequence 0 → σ  n( X•) → X•  → σ> n( X•) → 0.



     (2)                                      Hi (σ> n( X•)) = 
H X i n

i n

i ( ) ( )

( )

• >
≤



 0

.

     (3)                                      Hi (σ  n( X•)) = 
0 ( )

( ) ( )

i n

H X i ni

>
≤





• .

     Proof.  Straightforward.

 

     Lemma 10.6.  For any n ∈  Z and X•  ∈ Ob(C(!)) the following are equivalent.

     (1) The canonical epimorphism X•  → σ> n( X•) is a quasi-isomorphism.

     (2) σ  n( X•) is acyclic.

     (3) Hi ( X•) = 0 for i ≤ n.

 

     Proof.  (1) ⇔ (2).  By Lemma 10.5(1) and Proposition 4.3(1).

     (2) ⇔ (3).  By Lemma 10.5(3).

 

     Lemma 10.7 (Dual of Lemma 10.6).  For any n  ∈  Z and X•  ∈  Ob(C(!)) the following

are equivalent.

     (1) The canonical monomorphism σ  n( X•) → X•  is a quasi-isomorphism.

     (2) σ> n( X•) is acyclic.

     (3) Hi ( X•) = 0 for i > n.

 

     Lemma 10.8.  For any n ∈  Z we have well-defined truncation functors

 

σ> n : D(!) → D+(!)   and   σ  n : D(!) → D–(!).

      Proof.  Let n ∈  Z.  For any X•  ∈ Ob(C(!)) we denote by

  

π X
n  : Xn → B’n( X•)   and   µX

n  : B’n( X•) → Xn + 1

the canonical epimorphism and the inclusion, respectively.  Let u ∈  Htp( X• , Y • ) and h ∈
!Z(T X• , Y • ) with h : u . 0.  Define h’ ∈  !Z(T(σ> n( X•)), σ> n( Y • )) as follows:

h’i = 

  

h i n

h i n

i n

i

Y
n n

X
n

( )

( )

( )

>
=
<








π µo o

0

.

Then it is easy to check that h’ : σ> n(u) . 0.  Thus we get a well-defined functor σ> n : K(!)
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→ K+(!).  Next, for any quasi-isomorphism u ∈  C(!)( X• , Y • ), by Lemma 10.5(2) σ> n(u) is



also a quasi-isomorphism.  Thus by Proposition 8.10 we get a well-defined functor σ> n :

D(!) → D+(!).  Similarly, we get a well-defined functor σ  n : D(!) → D–(!).

 

     Proposition 10.9.  The canonical functor D+(!) → D(!) is fully faithful, so that D+(!)

can be identified with the full triangulated subcategory of D(!) consisting of X•  ∈  Ob(D(!))

with bounded below cohomology, i.e., Hn( X•) = 0 for n ‹‹ 0.

 

     Proof.  For any quasi-isomorphism Y •  → ′•Y  in K(!) with Y •  ∈  Ob(K+(!)), by Lemma

10.6 we have a quasi-isomorphism ′•Y  → σ> n( ′•Y ) with σ> n( ′•Y ) ∈  Ob(K+(!)) for some n ∈
Z.  Thus Proposition 8.17(1) applies.

 

     Proposition 10.10 (Dual of Proposition 10.9).  The canonical functor D–(!) → D(!) is

fully faithful, so that D–(!) can be identified with the full triangulated subcategory of D(!)

consisting of X•  ∈  Ob(D(!)) with bounded above cohomology, i.e., Hn( X•) = 0 for n ›› 0.

 

     Proposition 10.11.  For * = + or –, the following hold.

     (1) The canonical functor D*, b(!) → D*(!) is fully faithful.

     (2) The canonical functor Db(!) → D*, b(!) is an equivalence.

 

     Proof.  Similar to Propositions 10.9 and 10.10.

 

     Definition 10.4.  According to Proposition 10.11, we identify each of Db(!), D+, b(!) and

D–, b(!) with the full triangulated subcategory of D(!) consisting of complexes with bounded

cohomology.

 

     Proposition 10.12.  The canonical functor K(!) → D(!) induces an isomorphism

 

K(!)( X• , I• ) →̃ D(!)( X• , I• )

for all X•  ∈  Ob(K(!)) and I•  ∈  Ob(K+(()).

 

     Proof.  By Lemma 4.4 and Proposition 9.13(2).

 

     Proposition 10.13.  Assume ! has enough injectives.  Then the following hold.

     (1) K+((), K+, b(() are full triangulated subcategories of K+(!).

     (2) The canonical functor K+(() → D+(!) is an equivalence of triangulated categories.

     (3) The canonical functor K+, b(() → D+, b(!) is an equivalence of triangulated categories.
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     Proof.  (1) By Proposition 6.1(2).



     (2) The canonical functor K+(() → D+(!) is fully faithful by Proposition 10.12 and dense

by Proposition 4.7.

     (3) Similar to (2).

 

     Proposition 10.14 (Dual of Proposition 10.12).  The canonical functor K(!) → D(!)

induces an isomorphism

 

K(!)( P• , Y • ) →̃ D(!)( P• , Y • )

for all P•  ∈  Ob(K–(3)) and Y •  ∈  Ob(K(!)).

 

     Proposition 10.15 (Dual of Proposition 10.13).  Assume ! has enough projectives.  Then

the following hold.

     (1) K–(3), K–, b(3) are full triangulated subcategories of K–(!).

     (2) The canonical functor K–(3) → D–(!) is an equivalence of triangulated categories.

     (2) The canonical functor K–, b(3) → D–, b(!) is an equivalence of triangulated categories.

     Definition 10.4.  A thick subcategory !’ of ! is an abelian exact full subcategory of !

which is closed under extensions.

 

     Remark 10.2.  For a ring A the following hold.

     (1) The coherent left A-modules form a thick subcategory of Mod A.  In case A is left

coherent (resp. left noetherian), a left A-module X is coherent if and only if it is finitely

presented (resp. finitely generated).

     (2) For any two-sided ideal a of A,

 

  U n ≥ 1 Mod A/an  = {X ∈  Mod A | an X = 0 for some n ≥ 1}

is a thick subcategory of Mod A.

     (3) For a two-sided ideal a of A,

 

Mod A/a = {X ∈  Mod A | a X = 0}

is a thick subcategory of Mod A if and only if a is idempotent, i.e., a2 = a.

     (4) For each X ∈  Mod A we set

 

r(X) = {x ∈  X | Ax has finite length}.
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Then r : Mod A → Mod A is a subfunctor of the identity functor 1Mod A.  In case A is left



noetherian, the modules X ∈  Mod A with X = r(X) form a thick subcategory of Mod A.

     Definition 10.5.  Let !’ be a thick subcategory of !.  For * = +, –, b or nothing, we

denote by   K ′!
* ( )!  the full subcategory of K*(!) consisting of X•  ∈  Ob(K*(!)) with Hn( X•)

∈  Ob(!’) for all n ∈  Z.

 

     Remark 10.3.  (1) In case !’ = !, we have   K ′!
* ( )!  = K*(!).

     (2) In case !’ = {0}, we have   K ′!
* ( )!  = 8 ∩  K*(!).

 

     Lemma 10.16.  Let !’ be a thick subcategory of !.  Then, for * = +, –, b or nothing, the

following hold.

     (1)   K ′!
* ( )!  is a full triangulated subcategory of K* (!).

     (2) 8 ∩ K* (!) is an épaisse subcategory of   K ′!
* ( )! .

     (3) If u : X•  → Y •  is a quasi-isomorphism in K* (!), then X•  ∈  Ob(  K ′!
* ( )! ) if and only

if Y •  ∈  Ob(  K ′!
* ( )! ).

 

     Proof.  (1) Let u : X•  → Y •  with X• , Y •  ∈  Ob(  K ′!
* ( )! ).  Then, for any n ∈  Z, since by

Proposition 2.4 we have an exact sequence of the form

 

0 → Cok Hn(u) → Hn(C(u)) → Ker Hn + 1(u) → 0,

it follows that Hn(C(u)) ∈  Ob(  K ′!
* ( )! ).

     (2) It is obvious that 8 ∩ K* (!) ,   K ′!
* ( )! .  Thus by Lemma 10.1(1) 8 ∩ K* (!) is an

épaisse subcategory of   K ′!
* ( )! .

     (3) Obvious.

     Definition 10.6.  Let !’ be a thick subcategory of !.  For * = +, –, b or nothing, according

to Lemma 10.16, we have a derived category

 

  D ′!
* ( )!  =   K ′!

* ( )! /8 ∩ K* (!).

 

     Proposition 10.17.  Let !’ be a thick subcategory of !.  For * = +, –, b or nothing, the

canonical functor   D ′!
* ( )!  → D*(!) is fully faithful, so that   D ′!

* ( )!  can be identified with

the full triangulated subcategory of D*(!) consisting of X•  ∈  Ob(D*(!)) with Hn( X•) ∈
Ob(!’) for all n ∈  Z.

 

     Proof  By Lemma 10.16(3) and Proposition 8.17.
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     Definition 10.7.  Let !’ be a thick subcategory of !.  We denote by !’ ∩ ( the collection



of objects Ob(!’) ∩ (.  Then !’ is said to have enough !-injectives if every X ∈  Ob(!’)

can be embedded in some I ∈  !’ ∩  (.

 

     Lemma 10.18.  Let !’ be a thick subcategory of !.  Assume !’ has enough !-injectives.

Then for any X•  ∈  Ob(  K ′
+

!
( )! ) there exists a quasi-isomorphism u : X•  → I•  with I•  ∈

Ob(K+(!’ ∩ ()).

 

     Proof.  We may assume Xn = 0 for n < 0.  Put Z 0 = Z 0( X•) = H 0( X•) ∈ Ob(!’) and let v0 :

Z 0( X•) → Z 0 be the identity.  The following Claim enables us to make use of induction to

construct a desired morphism u : X•  → I• .

     Claim: Let n ≥ 0 and vn : Zn( X•) → Zn with Zn ∈ Ob(!’).  Then there exists a commutative

diagram with exact rows

 

0 → Zn( X•) → Xn → Zn + 1( X•) → Hn + 1( X•) → 0

vn ↓ ↓ un ↓ vn + 1 ||

0 → Zn → In → Zn + 1 → Hn + 1( X•) → 0

with In ∈  !’ ∩  ( and Zn + 1 ∈ Ob(!’).

     Proof.  Since Zn embeds in some In ∈ !’ ∩ (, we get a commutative diagram with exact

rows

 

0 → Zn( X•) → Xn → Bn + 1( X•) → 0

vn ↓ ↓ un ↓ wn + 1

0 → Zn → In → Bn + 1 → 0,

with which splice the following push-out diagram

 

0 → Bn + 1( X•) → Zn + 1( X•) → Hn + 1( X•) → 0

wn + 1 ↓ PO ↓ vn + 1 ||

0 → Bn + 1 → Zn + 1 → Hn + 1( X•) → 0 .

     Proposition 10.19.  Let !’ be a thick subcategory of !.  Assume !’ has enough

!-injectives.  Then K+(!’ ∩ () is a full triangulated subcategory of   K ′
+

!
(!) and the canonical

functor K+(!’ ∩ () →   D ′
+

!
(!) is an equivalence.
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     Proof.  By Proposition 6.1(2) K+(!’ ∩ () is a full triangulated subcategory of   K ′
+

!
(!).

The canonical functor K+(!’ ∩ () →   K ′
+

!
(!) is fully faithful by Proposition 10.12 and dense

by Lemma 10.18.

     Definition 10.8.  Let !’ be a thick subcategory of !.  We denote by !’ ∩  3 the

collection of objects Ob(!’) ∩ 3.  Then !’ is said to have enough !-projectives if every X

∈  Ob(!’) is an epimorph of some P ∈  !’ ∩ 3.

 

     Lemma 10.20 (Dual of Lemma 10.18).  Let !’ be a thick subcategory of !.  Assume !’

has enough !-projectives.  Then, for any X•  ∈  Ob(  K ′!
– ( )! ), there exists a quasi-isomorphism

u : P•  → X•  with P•  ∈  Ob(K–(!’ ∩ 3)).

     Proposition 10.21 (Dual of Proposition 10.19).  Let !’ be a thick subcategory of !.

Assume !’ has enough !-projectives.  Then K–(!’ ∩ 3) is a full triangulated subcategory

of   K ′!
– ( )!  and the canonical functor K–(!’ ∩ 3) →   D ′!

– ( )!  is an equivalence.

 

     Proposition 10.22.  Assume ! satisfies the condition Ab4*.  Then the canonical functors

C(!) → K(!) and K(!) → D(!) preserve direct products.  In particular, both K(!) and

D(!) have arbitrary direct products which are direct products of complexes.

 

     Proof.  By Propositions 1.11(2), 3.4(2) and 9.14.

      

     Proposition 10.23 (Dual of Proposition 10.22).  Assume ! satisfies the condition Ab4.

Then the canonical functors C(!) → K(!) and K(!) → D(!) preserve direct sums.  In

particular, both K(!) and D(!) have arbitrary direct sums which are direct sums of complexes.
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§11.  Hyper Ext

     Throughout this section, ! is an abelian category, ( (resp. 3) is the collection of injective

(resp. projective) objects of ! and 8 is the épaisse subcategory of K(!) consisting of acyclic

complexes.

 

     Definition 11.1.  For X• , Y •  ∈  Ob(D(!)) and n ∈  Z, we set

 

Extn( X• , Y • ) = D(!)( X• , T Yn • ),

which is called the nth hyper Ext.

      

     Proposition 11.1.  Let 0 → X•  →
u

 Y •  →
v

 Z•  → 0 be an exact sequence in C(!) and put ε
= [1  0] : C(u) → T X• , û  = t[u   0] : X•  → T – 1C(v) and v̂  = [0   v] : C(u) → Z• .  Then the

following hold.

     (1) Q( û ) : X•  →̃ T – 1C(v) and  Q( v̂) : C(u) →̃ Z•  are isomorphisms in D(!).

     (2) ( X• , Y • , Z• , u, v, w) is a triangle in D(!), where w = Q(ε) o Q( v̂)– 1.

     (3) For any W •  ∈  Ob(C(!)) we have long exact sequences

 

L → Extn( W • , X•) → Extn( W • , Y • ) → Extn( W • , Z•) → Extn + 1( W • , X•) → L  ,

L → Extn( Z• , W •) → Extn( Y • , W •) → Extn( X• , W •) → Extn + 1( Z• , W •) → L  .

     Proof.  (1) By Proposition 4.3.

     (2) By the part (1) and Proposition 2.5.

     (3) By the part (2) and Proposition 6.5.

     Definition 11.2.  For each n ∈  Z, we define truncation functors ′≥σ n , ′<σ n  : C(!) → C(!)

as follows:

 

′≥σ n ( X•)i = 

X i n

Z X i n

i n

i

n

( )

( ) ( )

( )

>
′ =

<









•

0

,    ′<σ n ( X•)i = 

0 ( )

( ) ( )

( )

i n

B X i n

X i n

n

i

>
=
<






•

for X•  ∈  C(!).  We set ′>σ n  = ′≥ +σ n 1  and ′≤σ n  = ′< +σ n 1 .

     Lemma 11.2 (cf. Lemma 10.5).  For any n ∈  Z and X•  ∈  Ob(C(!)) the following hold.

     (1) There exists a natural exact sequence 0 → ′<σ n ( X•) → X•  → ′≥σ n ( X•) → 0.

1



     (2)                                      Hi ( ′≥σ n ( X•)) = 
H X i n

i n

i ( ) ( )

( )

• ≥
<



 0

.

     (3)                                      Hi ( ′<σ n ( X•)) = 
0 ( )

( ) ( )

i n

H X i ni

≥
<





• .

     Lemma 11.3 (cf. Lemma 10.6).  For any n ∈  Z and X•  ∈ Ob(C(!)) the following are

equivalent.

     (1) The canonical epimorphism X•  → ′≥σ n ( X•) is a quasi-isomorphism.

     (2) ′<σ n ( X•) is acyclic.

     (3) Hi ( X•) = 0 for i < n.

 

     Lemma 11.4 (cf. Lemma 10.7).  For any n ∈  Z and X•  ∈  Ob(C(!)) the following are

equivalent.

     (1) The canonical monomorphism ′<σ n ( X•) → X•  is a quasi-isomorphism.

     (2) ′≥σ n ( X•) is acyclic.

     (3) Hi ( X•) = 0 for i ≥ n.

     Lemma 11.5 (cf. Lemma 10.8).  For any n ∈  Z we have truncation functors

 

 ′≥σ n  : D(!) → D+(!),     ′<σ n  : D(!) → D–(!).

 

     Lemma 11.6.  For X•  ∈  Ob(D(!)) the following hold.

     (1) Let n ∈  Z and assume Hi( X•) = 0 for i  n.  Then there exist sequences of

quasi-isomorphisms

 

X•  ← σ  n( X•) → σ≥ n(σ  n( X•)) → T– n(Hn( X•)),

X•  → ′≥σ n ( X•) ← ′≤σ n ( ′≥σ n ( X•)) ← T– n(Hn( X•)).

 

     (2) Let n, m ∈  Z with n > m and assume Hi( X•) = 0 for i > n and i < m.  Then there exist

sequences of quasi-isomorphisms

 

X•  ← σ  n( X•) → ′≥σ m (σ  n( X•)),

X•  → ′≥σ m ( X•) ← σ  n( ′≥σ m ( X•)).

     Proof.  (1) By Lemmas 10.5, 10.6 and 10.7 we get the first sequence.  Also, by Lemmas

11.2, 11.3 and 11.4 we get the last sequence.

     (2) By Lemmas 10.5, 10.7 and 11.4 we get the first sequence.  Also, by Lemmas 11.2,

2

11.3 and 10.7 we get the last sequence.



 

     Proposition 11.7.  The canonical functor ! → D(!) induces an equivalence between !

and the full subcategory of D(!) consisting of X•  with Hi( X•) = 0 for i  0.

 

     Proof.  Let X, Y ∈  Ob(!).  Let J : ! → D(!) denote the canonical functor.  Then H 0 o J =

1! and H 0 : D(!)(X, Y) → !(X, Y) is epic.  Let u ∈  D(!)(X, Y) with H 0(u) = 0.  We claim u

= 0.  Let u = Q(s)– 1Q(f) with s : Y → Y •  a quasi-isomorphism.  By Lemma 11.3(1) the

canonical epimorphism t : Y •  → ′≥σ 0 ( Y • ) is a quasi-isomorphism.  Also, since Q(f) = Q(s)u,

H 0(f) = H 0(s) o H 0(u) = 0.  Thus f : X → Y 0 factors through B 0( Y • ) and tf = 0.  It follows that

u = Q(s)– 1Q(f) = Q(ts)– 1Q(tf) = 0.  Hence H 0 : D(!)(X, Y) → !(X, Y) is an isomorphism, so

is J : !(X, Y) → D(!)(X, Y).  The last assertion follows by Lemma 11.6(1).

     Definition 11.3.  Let X, Y ∈  Ob(!) and n ≥ 1.  An n-extension of X by Y is an exact

sequence in ! of the form

 

E :  0 → Y → E – n + 1 → L → E  0 → X → 0.

For two n-extensions E and E’, we define a homomorphism f : E → E’ as a family of

morphisms fi : Ei → E’i (– n + 1 ≤ i ≤ 0) in ! which make the following diagram commute

 E :  0 → Y → E – n + 1 → L → E 0 → X → 0

|| ↓ f  – n + 1 ↓ f  0 ||

 E’ :  0 → Y → E’ – n + 1 → L → E’ 0 → X → 0

and denote by Hom(E, E’) the set of homomorphisms from E to E’.  An equivalence relation

, on the collection of n-extensions is defined as follws: E , E’ if and only if there exists a

sequence of n-extensions E0 = E, L, Ek = E’ such that Hom(Ei, Ei + 1) ∪  Hom(Ei + 1, Ei)  Ø for

all 0 ≤ i ≤ k – 1.  We denote by [E] the equivalence class of an n-extension E and by   Ext
!
n (X,

Y) the collection of equivalence classes.

     Definition 11.4.  Let X, Y ∈  Ob(!) and n ≥ 1.  For each n-extension

 

E :  0 → Y →
µ

 E  – n + 1 → L → E 0 →
ε

 X → 0,

we denote by E• the complex

 

 L → 0 → E – n + 1 → L → E 0 → 0 → L .
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Then we have homomorphisms of complexes µ : Tn – 1Y → E•, ε : E• → X.  The mapping

cone C(µ) is of the form

 

 L → 0 → Y →
µ

  E  – n + 1 → L → E 0 → 0 → L

and we have a quasi-isomorphism ε̂  = [0  ε] : C(µ) → X.  Thus we get a commutative

diagram in D(!)

 

Tn – 1Y →
µ

E• →
α

C(µ) →
β

TnY

|| || ↓ ε ||

Tn – 1Y →
µ

E• →
ε

X →
u E( )

TnY

with the top row a triangle, where α = t[0   1] and β = [1   0].  Hence the bottom row is also a

triangle.

    

     Definition 11.5.  Let X, Y ∈  Ob(!) and n ≥ 1.  Embed each u ∈  D(!)(X, TnY) in a triangle

(Tn – 1Y, E•, X, ⋅, ⋅, u).  In case n = 1, the long exact sequence

 

L → H – 1(X) → H 0(Y) → H 0( E•) → H 0(Y) → H 1(X) → L

yields a 1-extension

E(u) :  0 → Y → H 0( E•) → X → 0,

and in case n ≥ 2, since

Hi( E•) = 

X

Y

i

i n

0

0

1

( )

( – )

=
= +





 otherwise

,

we get an n-extension

E(u) :  0 → Y → Z’ – n + 1 ( E•) → E – n + 2  → L → E – 1 → Z 0( E•) → X → 0.

     Proposition 11.8.  For any n ≥ 1 and X, Y ∈  Ob(!) we have a natural isomorphism

 

φ :   Ext
!
n (X, Y) →̃ D(!)(X, TnY), [E] a u(E),

4



whose inverse is given by

 

ψ : D(!)(X, TnY) →̃   Ext
!
n (X, Y), u a [E(u)].

     Proof.  We divide the proof into several steps.

     Claim 1: φ is well defined.

 

     Proof.  Let

 E :  0 → Y →
µ

E – n + 1 → L → E 0 →
ε

X → 0

|| ↓ f  – n + 1 ↓ f  0 ||

 E’ :  0 → Y →
′µ

E’ – n + 1 → L → E’ 0 →
′ε

X → 0

be a homomorphism of n-extensions.  Denote by f̂  : C(µ) → C(µ’) the homomorphism of

complexes

 L → 0 → Y →
µ

E – n + 1 → L → E 0 → 0 → L

↓ || ↓ f  – n + 1 ↓ f  0 ↓

 L → 0 → Y →
′µ

E’ – n + 1 → L → E’ 0 → 0 → L .

Then we have a commutative diagram

 

X ←
ε

E• → Tn Y

|| ↓ f̂ ||

X ←
′ε

′•E → Tn Y .

It follows that u(E) = u(E’).

 

     Claim 2: ψ is well defined.

 

     Proof.  Let u ∈  D(!)(X, TnY).  Embed u in triangles

 

(Tn – 1Y, E•, X, ⋅, ⋅, u)   and   (Tn – 1Y, ′•E , X, ⋅, ⋅, u).

Then we have an isomorphism of triangles
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Tn – 1Y → E• → X →
u

TnY

|| ↓ f || ||

Tn – 1Y → ′•E → X →
u

TnY .

In case n = 1, we get an isomorphism of 1-extensions

0 → Y → H 0( E•) → X → 0

|| ↓ H 0(f) ||

0 → Y → H 0( ′•E ) → X → 0 ,

and in case n ≥ 2, we get an isomorphism of n-extensions

0 → Y → Z’ – n + 1 ( E•) → E – n + 2 → L → E – 1 → Z 0( E•) → X → 0

|| ↓ Z’ – n + 1 (f) ↓ f  – n + 2 ↓ f  – 1 ↓ Z 0(f) ||

0 → Y → Z’ – n + 1 ( ′•E ) → E’ – n + 2 → L → E’ – 1 → Z 0( ′•E ) → X → 0 .

     Claim 3: ψ o φ = id.

 

     Proof.  Let

 

E :  0 →
µ

 Y → E  – n + 1 → L → E 0 →
ε

 X → 0

be an n-extension.  Let (Tn – 1Y, E•, X, µ, ε, u(E)) be a triangle associated with E.  Then, since

′>σ – n(σ  n( E•)) = E•, it follows that E(u(E)) = E.

     Claim 4: φ o ψ = id.

 

     Proof.  Let u ∈  D(!)(X, TnY) and embed it in a triangle (Tn – 1Y, E•, X, ⋅, ⋅, u).  Consider

first the case n = 1.  Then the corresponding 1-extension is of the form

 

E(u) :  0 → Y →
µ

 H 0( E•) →
ε

 X → 0

and by Lemma 11.6 we have a sequence of quasi-isomorphisms

E• ← σ  0 ( X•) → σ≥ 0(σ  0 ( X•)) → H 0( E•).
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Also, we have a commutative diagram

 

Y → E• → X →
u

TY

|| ↑ || ||

Y → σ  0 ( X•) → X →
u

TY

|| ↓ || ||

Y → σ≥ 0(σ  0 ( X•)) → X →
u

TY

|| ↓ || ||

Y →
µ

H 0( E•) →
ε

X →
u

TY .

Thus the bottom row is a triangle and u = u(E(u)).  Next, let n ≥ 2.  Then the corresponding

n-extension is of the form

E(u) :  0 → Y →
µ

 Z’ – n + 1 ( E•) → E – n + 2  → L → E – 1 → Z 0( E•) →
ε

 X → 0.

Note that E u( )•  = ′>σ – n(σ  0 ( X•)).  Thus by Lemma 11.6 we have a sequence of quasi-

isomorphisms E• ← σ  0 ( X•) → E u( )• .  Since we have a commutative diagram

 

Tn – 1Y → E• → X →
u

TnY

|| ↑ || ||

Tn – 1Y → σ  0 ( X•) → X →
u

TnY

|| ↓ || ||

Tn – 1Y →
µ

E u( )• →
ε

X →
u

TnY ,

the bottom row is a triangle and u = u(E(u)).

     Claim 5: φ is natural.

 

     Proof.  Let

   

E :  0 → Y →
µ

 E  – n + 1 → L → E 0 →
ε

 X → 0,

be an n-extension and f ∈  !(X’, X), g ∈  !(Y, Y’).  Take a pull-back and a push-out

successively
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E :  0 → Y →
µ

E – n + 1 → E – n + 2 → L → E – 1 → E 0 →
ε

X → 0

|| || || || f0 ↑ PB ↑ f

E’ :  0 → Y →
µ

E – n + 1 → E – n + 2 → L → E – 1 → E’ 0 →
′ε

X’ → 0

g ↓ PO ↓ g– n + 1 || || || ||

E” :  0 → Y’ →
′µ

E’ – n + 1 → E – n + 2 → L → E – 1 → E’ 0 →
′ε

X’ → 0 .

Denote by f̂  : E• → ′•E  and ĝ  : ′•E  → ′′•E  the homomorphisms of complexes

L → 0 → E – n + 1 → E – n + 2 → L → E – 1 → E 0 → 0 → L

↑ || || || ↑ f  0 ↑

L → 0 → E – n + 1 → E – n + 2 → L → E – 1 → E’ 0 → 0 → L ,

L → 0 → E – n + 1 → E – n + 2 → L → E – 1 → E’ 0 → 0 → L

↓ ↓ g– n + 1 || || || ↓

L → 0 → E’ – n + 1 → E – n + 2 → L → E – 1 → E’ 0 → 0 → L ,

respectively.  Then we have homomorphisms of triangles

 

Tn – 1Y →
µ

E• →
ε

X →
u E( )

TnY

|| ↑ f̂ ↑ f ||

Tn – 1Y →
µ

′•E →
′ε

X’ →
′u E( )

TnY

Tn – 1(g) ↓ ↓ ĝ || ↓ Tn(g)

Tn – 1Y’ →
′µ

′′•E →
′ε

X’ →
′′u E( )

TnY’ .

Hence φ(  Ext
!
n (f, g)([E])) = D(!)(f, Tn(g))(φ([E])).

 

     Proposition 11.9.  Forany X, Y ∈  Ob(!) the following hold.

     (1) If Y has an injective resolution Y → IY
• , then Exti(X, Y) > Hi(!(X, IY

• )) for all i ∈  Z.

     (2) If X has a projective resolution PX
•  → X, then Exti(X, Y) > Hi(!( PX

• , Y)) for all i ∈  Z.

 

     Proof.  (1) For any i ∈  Z, by Propositions 10.12 and 3.8 we have

 

Exti(X, Y) > D(!)(X, Ti(Y))

8

> D(!)(X, Ti( IY
• ))



> K(!)(X, Ti( IY
• ))

> Hi(!(X, IY
• )).

 

     (2) Dual of (1).

     Definition 11.6.  A complex X•  ∈  Ob(K(!)) is said to have finite injective dimension if

Exti(–, X•) vanishes on ! for i ›› 0.  For * = +, –, b or nothing, we denote by K*(!)fid the full

subcategory of K*(!) consisting of X•  ∈  Ob(K(!)) which have finite injective dimension.

 

     Lemma 11.10.  For * = +, –, b or nothing, the following hold.

     (1) K*(!)fid is a full triangulated subcategory of K*(!).

     (2) 8 ∩ K*(!)fid is an épaisse subcategory of K*(!)fid.

 

     Proof.  (1) For any X•  ∈  Ob(K*(!)fid) and j ∈  Z, since Exti(–, Tj( X•)) > Exti + j(–, X•)

vanishes on ! for i ›› 0, Tj( X•) ∈  Ob(K*(!)fid).  Also, for any u ∈  K(!)( X• , Y • ) with X• ,

Y •  ∈  Ob(K*(!)fid), since by Proposition 6.5 we have a long exact sequence

 

L → Exti(–, Y • ) → Exti(–, C(u)) → Exti + 1(–, X•) → L  ,

Exti(–, C(u)) vanishes on ! for i ›› 0 and C(u) ∈  Ob(K*(!)fid).

     (2) By Proposition 7.7.

 

     Definition 11.7.  For * = +, –, b or nothing, according to Lemma 11.10, we have a derived

category

 

D*(!)fid = K*(!)fid /8 ∩ K*(!)fid.

     Lemma 11.11.  For * = +, –, b or nothing, the canonical functor D*(!)fid → D*(!) is fully

faithful.

 

     Proof.  It is obvious that K*(!)fid is closed under quasi-isomorphism classes in K*(!).

Thus by Proposition 8.17 the canonical functor D*(!)fid → D*(!) is fully faithful.

 

     Proposition 11.12.  Assume ! has enough injectives.  Then for X•  ∈  Ob(K+(!)) the

following are equivalent.

     (1) X•  ∈  Ob(K+(!)fid).

     (2) There exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(Kb(()).
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     Proof.  (1) ⇒  (2).  Let n ∈  Z and assume Exti(–, X•) vanishes on ! for i > n.  By



Proposition 4.7 there exists a quasi-isomorphism s : X•  → I•  with I•  ∈  Ob(K+(()).  Let i >

n.  Let j : Zi( I• ) → Ii denote the inclusion.  Since by Proposition 10.12 we have

 

K(!)(T– i(Zi( I• )), I• ) > K(!)(Zi( I• ), Ti( I• ))

> D(!)(Zi( I• ), Ti( I• ))

> Exti(Zi( I• ), I• )

 0,

there exists h : Zi( I• ) → Ii –  1 such that j = dI
i – 1  o h.  Thus Bi( I• ) = Zi( I• ) and the canonical

epimorphism Ii –  1 → Bi( I• ) splits.  Consequently, Hi( I• ) = 0 and Zi – 1( I• ) ∈  ( for all i > n.

Thus σ  n( I• ) ∈  Ob(Kb(()) and by Lemma 10.7 the canonical monomorphism ĵ  : σ  n( I• ) →
I•  is a quasi-isomorphism.  Then by Corollary 4.6 ĵ  : σ  n( I• ) → I•  is an isomorphism in

K(!) and we get a quasi-isomorphism ĵ – 1 o s : X•  → σ  n( I• ).

     (2) ⇒  (1).  Let i ∈  Z with Ii = 0.  Then for any Y ∈  Ob(!) by Propositions 10.12 and 3.8

we have

 

Exti(Y, X•) > Exti(Y, I• )

> D(!)(Y, Ti( I• ))

> K(!)(Y, Ti( I• ))

> Hi(!(Y, I• ))

 0.

     Proposition 11.13.  Assume ! has enough injectives.  Then the following hold.

     (1) Kb(() , K+(!)fid , K+, b(!).

     (2) Kb(() is a full triangulated subcategory of K+(!)fid.

     (3) The canonical functor K+(!)fid → D+(!)fid induces an equivalence Kb(() →̃ D+(!)fid.

 

     Proof.  (1) By Proposition 11.12.

     (2) By Proposition 6.1(2).

     (3) The canonical functor Kb(() → D+(!)fid is fully faithful by Corollary 4.6 and dense by

Proposition 11.12.

 

     Definition 11.8.  A complex X•  ∈  Ob(K(!)) is said to have finite projective dimension if

Exti( X• , –) vanishes on ! for i ›› 0.  For * = +, –, b or nothing, we denote by K*(!)fpd the full

subcategory of K*(!) consisting of X•  ∈  Ob(K(!)) which have finite projective dimension.

 

     Lemma 11.14 (Dual of Lemma 11.10).  For * = +, –, b or nothing, the following hold.

     (1) K*(!)fpd is a full triangulated subcategory of K*(!).
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     (2) 8 ∩ K*(!)fpd is an épaisse subcategory of K*(!)fpd.



 

     Definition 11.9.  For * = +, –, b or nothing, according to Lemma 11.14, we have a derived

category

 

D*(!)fpd = K*(!)fpd /8 ∩ K*(!)fpd.

     Lemma 11.15 (Dual of Lemma 11.11).  For * = +, –, b or nothing, the canonical functor

D*(!)fpd → D*(!) is fully faithful.

 

     Proposition 11.16 (Dual of Proposition 11.12).  Assume ! has enough projectives.  Then

for X•  ∈  Ob(K–(!)) the following are equivalent.

     (1) X•  ∈  Ob(K–(!)fpd).

     (2) There exists a quasi-isomorphism P•  → X•  with P•  ∈  Ob(Kb(3)).

     Proposition 11.17 (Dual of Proposition 11.13).  Assume ! has enough injectives.  Then

the following hold.

     (1) Kb(3) , K–(!)fpd , K–, b(!).

     (2) Kb(3) is a full triangulated subcategory of K–(!)fpd.

     (3) The canonical functor K–(!)fpd → D–(!)fpd induces an equivalence Kb(3) →̃ D–(!)fpd.

 

     Proposition 11.18.  Assume ! has enough injectives and satisfies the condition Ab4*.

Then the canonical functors D+(!) → D(!), D+(!)fid → D+(!) preserve direct products.

 

     Proof.  Let { Xλ
•}λ ∈ Λ  be a family of objects of D+(!) which has a direct product X•  in

D+(!).  Note that by Proposition 10.11 the direct product ∏ Xλ
•  exists in D(!).  We claim

∏ Xλ
•  ∈  Ob(D+(!)).  By Proposition 4.7 we may assume the Xλ

•  and X•  are objects of K+(().

Take b ∈  Z such that Xi = 0 for i < b.  Let λ ∈ Λ  and put m = min{i ∈  Z | Hi( Xλ
•)  0}.  Then

by Lemma 11.3 we have a quasi-isomorphism s : Xλ
•  → ′≥σ m ( Xλ

•).  Also, there exists u : T–

m(Hm( Xλ
•)) → ′≥σ m ( Xλ

•) such that Hm(u) = id
H Xm ( )λ

• .  Thus we get a nonzero morphism Q(s)– 1

o Q(u) ∈  D(!)(T– m(Hm( Xλ
•)), Xλ

•) and by Proposition 10.12 we get

 

K(!)(T– m(Hm( Xλ
•)), X•) > D(!)(T– m(Hm( Xλ

•)), X•)

Ð 0.

Hence m ≥ b and Hi( Xλ
•) = 0 for i < b.  Since we have an exact sequence

L → Xb
λ

– 1 → Xb
λ  → Z’b( Xλ

•) → 0,
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Xλ
•  ∈  Ob(K+(()) implies Z’b( Xλ

•) ∈  ( and ′≥σ b ( Xλ
•) ∈  Ob(K+(()).  Thus we may assume Xi

λ



= 0 for all i < b and λ ∈ Λ .  Then ∏ Xλ
•  ∈  Ob(K+(()) and ∏ Xλ

•  > X• .

     Next, let { Xλ
•}λ ∈ Λ  be a family of objects of D+(!)fid which has a direct product X•  in

D+(!)fid.  We claim ∏ Xλ
•  ∈  Ob(D+(!)fid).  By Proposition 11.12 we may assume the Xλ

•  and

X•  are objects of Kb(().  Take a, b ∈  Z such that Xi = 0 for i > a and i < b.  As above, we

may assume Xi
λ  = 0 for all i < b and λ ∈ Λ .  Let λ ∈ Λ  and put n = max{i ∈  Z | Hi( Xλ

•)  0}.

By Lemma 10.6 we have a quasi-isomorphism t : σ  n( Xλ
•) → Xλ

• .  Also, there exists a

morphism v : T– n(Zn( Xλ
•)) → σ  n( Xλ

•) such that Hn(v) : Zn( Xλ
•) → Hn( Xλ

•) is the canonical

epimorphism.  Thus we have a nonzero morphism Q(tv) ∈  D(!)(T– n(Zn( Xλ
•)), Xλ

•).  Also,

since Zn( Xλ
•) admits an injective resolution

0 → Zn( Xλ
•) → Xn

λ  → Xn
λ

+ 1 → L ,

Xλ
•  ∈  Ob(Kb(()) implies T– n(Zn( Xλ

•)) ∈  Ob(D+(!)fid).  Thus D(!)(T– n(Zn( Xλ
•)), X•)  0 and n

≤ a.  Next, since D(!)(T– (a + 1)(B’a( Xλ
•)), X•) = 0, by Proposition 10.12 we have

K(!)(T– (a + 1)(B’a( Xλ
•)), Xλ

•)  > D(!)(T– (a + 1)(B’a( Xλ
•)), Xλ

•)

 0

and the canonical exact sequence 0 → Za( Xλ
•) → Xa

λ  → B’a( Xλ
•) → 0 splits.  Thus we have a

quasi-isomorphism σ  a( Xλ
•) → Xλ

•  with σ  a( Xλ
•) ∈  Ob(Kb(()).  Consequently, we may

assume Xi
λ  = 0 for all i > a and λ ∈ Λ .  Then ∏ Xλ

•  ∈  Ob(Kb(()) and ∏ Xλ
•  > X• .

 

     Proposition 11.19 (Dual of Proposition 11.18).  Assume ! has enough projectives and

satisfies the condition Ab4.  Then the canonical functors D–(!) → D(!), D–(!)fpd → D–(!)

preserve direct sums.

      

     Proposition 11.20.  Let 0 → X•  →
u

 Y •  →
v

 Z•  → 0 be an exact sequence in C(!).

Assume Y •  = 0 in K(!), this is the case if Y •  is either injective or projective in C(!).  Then

the following hold.

     (1) There exists h : u . 0 and vh : T X•  → Z•  is a quasi-isomorphism for all h : u . 0.

     (2) There exists h : v . 0 and T– 1(h)u : X•  → T– 1 Z•  is a quasi-isomorphism for all h : v .
0.

 

     Proof.  It follows by Propositions 3.5 and 3.6 that Y •  = 0 in K(!) if Y •  is either injective

or projective in C(!).

     (1) Since u = 0 in K(!), there exists h : u . 0.  Next, take an arbitrary h : u . 0 and put ĥ

= t[1  – h] : T X•  → C(u).  Then, since u = h o dX + T– 1(dY o h), dC(u) o ĥ  = T ĥ  o dZ and ĥ  is a

morphism in C(!).  Put v̂  = [0  v] : C(u) → Z• .  Then by Proposition 11.1(1) Q( v̂) is an

12

isomorphism in D(!).  Let ε = [1  0] : C(u) → T X•  and w = Q(ε) o Q( v̂)– 1.  Then, since by



Proposition 11.1(2) ( X• , Y • , Z• , u, v, w) is a triangle in D(!), and since Y •  = 0 in D(!), by

Lemma 6.9 w is an isomorphism in D(!).  Thus Q(ε) is an isomorphism, so is Q(ĥ ) because

ε o ĥ  = idTX.  Hence Q( v̂ ĥ ) is an isomorphism and by Proposition 10 3 vh = – v̂ ĥ  is a

quasi-isomorphism.

     (2) Dual of (1).
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§12.  Localization in triangulated categories

     Throughout this section, _ and * are triangulated categories.  Also, ! is an abelian

category, 8 is the épaisse subcategory of K(!) consisting of acyclic complexes and ( (resp.

3) is the collection of injective (resp. projective) objects of !.  Unless otherwise stated,

functors are covariant functors.

     Proposition 12.1.  Let F = (F, θ) : _ → * be a ∂-functor.  Assume F has a right adjoint G

: * → _.  Let ε : 1_ → GF, δ : FG → 1* be the unit and the counit, respectively, and put η =

GTδ o GθG o εTG : TG → GT.  Then the following hold.

     (1) η is an isomorphism and G = (G, η – 1) is a ∂-functor.

     (2) Both ε and δ are homomorphisms of ∂-functors.

 

     Proof.  We divide the proof into several steps.  Note first that G is additive.

     Claim 1: η is an isomorphism.

 

     Proof.  Let M ∈  Ob(*) and X ∈  Ob(_).  For any h ∈  *(FT– 1X, M), since we have a

commutative diagram

 

X
T

T X
ε – 1

 → TGFT– 1X
TGh

 → TGM

εX ↓ ↓ ε
TGFT X– 1 ↓ εTGM

GFX
GFT

T X
ε – 1

 → GFTGFT– 1X
GFTGh

 → GFTGM

G
T X

θ – 1 ↓ ↓ G
GFT X

θ – 1 ↓ GθGM

GTFT– 1X
GTF

T X
ε – 1

 → GTFGFT– 1X
GTFGh

 → GTFGM

↓ GT
FT X

δ – 1 ↓ GTδM

GTFT– 1X
GTh

 → GTM ,

we have

                   G(T(h o T
T X

–
–

1
1θ )) o εX  = GTh o G

T X
θ – 1  o εX

= GTh o id
GTFT X– 1  o G

T X
θ – 1  o εX

= GTh o ( GT
FT X

δ – 1  o GTF
T X

ε – 1 ) o G
T X

θ – 1  o εX

= GTδM o GθGM o εTGM o TGh o T
T X

ε – 1

= ηM o TGh o T
T X

ε – 1

1

= ηM o T(Gh o ε
T X– 1 ).



Thus the following diagram commutes

 

*(FT– 1X, M) →̃ _(T– 1X, GM) →̃ _(X, TGM)

*( T
T X

–

–

1

1θ , idM) ↓ ↓ _(idX, ηM)

*(T– 1FX, M) →̃ _(FX, TM) →̃ _(X, GTM) .

Since *( T
T X

–
–

1
1θ , idM) is an isomorphism, so is _(idX, ηM).  It follows by Yoneda lemma that

ηM is an isomorphism.

     Claim 2: G = (G, η– 1) : * → _ is a ∂-functor.

 

     Proof.  Let (L, M, N, a, b, c) be a triangle in *.  Since by (TR1) we have a triangle in _ of

the form (GL, GM, Z, Ga, v, w), we have a triangle in *

 

(FGL, FGM, FZ, FGa, Fv, θGL o Fw).

Thus by (TR3) there exists h ∈  *(FZ, N) which makes the following diagram commute

 

FGL  →
FGa

FGM  →
Fv

FZ    →
θGL Fwo

TFGL

δL ↓ ↓ δM ↓ h ↓ TδL

L  →
a

M  →
b

N
c

 → TL .

Then we have

Gh o εZ o v = Gh o GFv o εGM

= G(h o Fv) o εGM

= G(b o δM) o εGM

= Gb o GδM o εGM

= Gb o (Gδ o εG)M

= Gb o (idG)M

= Gb,

                                                Gc o Gh o εZ  = G(c o h) o εZ

= G(TδL o θGL o Fw) o εZ

= GTδL o GθGL o GFw o εZ

2

= GTδL o GθGL o εTGL o w



= ηL o w.

Thus the following diagram commutes

 

GL  →
Ga

GM  →
v

Z  →
w

TGL

|| || ↓ Gh o εZ ||

GH  →
Ga

GM  →
Gb

GN    →
ηL Gc– 1 o

TGL .

We claim that Gh o εZ is an isomorphism.  Let X ∈  Ob(_).  We have the following commutative

diagram with the top and the bottom rows exact

 

_(X, GL) → _(X, GM) → _(X, GN) → _(X, TGL) → _(X, TGM)

|| || ↓ _(X, Gh o εZ) || ||

_(X, GL) → _(X, GM) → _(X, GN) → _(X, TGL) → _(X, TGM)

|| || || ↓ _(X, ηL) ↓ _(X, ηM)

_(X, GL) → _(X, GM) → _(X, GN) → _(X, GTL) → _(X, GTM)

φX, L ↓ ↓ φX, M ↓ φX, N ↓ φX, TL ↓ φX, TM

*(FX, L) → *(FX, M) → *(FX, N) → *(FX, TL) → *(FX, TM),

where φ : _(–, G–) →̃ *(F–, –) is an isomorphism of bifunctors.  Since _(X, ηL), _(X, ηM)

are isomorphisms, the second row is exact.  Thus by five-lemma _(X, Gh o εZ) is an isomorphism,

so is Gh o εZ by Yoneda lemma.

     Claim 3: ε : (1_, id) → (GF, η F
– 1 o Gθ)is a homomorphism of ∂-functors.

 

     Proof.  By Proposition 7.10(4), GF = (GF, ηF
– 1 o Gθ) is a ∂-functor.  We have

 

ηF o Tε = GTδF o GθGF o εTGF o Tε
= GTδF o GθGF o GFTε o εT

= G(TδF o θGF o FTε) o εT

= G(TδF o TFε o θ) o εT

= GT(δF o Fε) o Gθ o εT

= GT(idF) o Gθ o εT

= Gθ o εT .
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Thus Tε = (ηF
– 1 o Gθ) o εT.



     Claim 4: δ : (FG, θG o Fη – 1) → (1*, id)  is a homomorphism of ∂-functors.

 

     Proof.  By Proposition 7.10(4), FG = (FG, θG o Fη– 1) is a ∂-functor.  We have

      

δT o Fη = δT o FGTδ o FGθG o FεTG

= Tδ o δTFG o FGθG o FεTG

= Tδ o (δTF o FGθ)G o FεTG

= Tδ o (θ o δFT)G o FεTG

= Tδ o θG o (δF o Fε)TG

= Tδ o θG o (idF)TG

= Tδ o θG .

Thus δT = Tδ o (θG o Fη – 1).

 

     Proposition 12.2 (Dual of Proposition 12.1).  Let F = (F, θ) : _ → * be a ∂-functor.

Assume F has a right adjoint G : * → _.  Let ε : 1* → FG, δ : GF → 1_ be the unit and the

counit, respectively, and put η = δTG o GθG o GTε : TG → GT.  Then the following hold.

     (1) η is an isomorphism and G = (G, η – 1) is a ∂-functor.

     (2) Both ε and δ are homomorphisms of ∂-functors.

 

     Proposition 12.3.  Let F : _ → * be a ∂-functor with a fully faithful right adjoint G : *

→ _ and let ε : 1_ → GF, δ : FG → 1* be the unit and the counit, respectively.  Then the

following hold.

     (1) δ : FG → 1* is an isomorphism.

     (2) Ker F is an épaisse subcategory of _.

     (3) εX ∈  Φ(Ker F) for all X ∈  Ob(_).

     (4) The induced functor F : _/Ker F → * is an equivalence of triangulated categories.

 

     Proof.  (1) Well-known.

     (2) By Proposition 7.12(1).

     (3) Since δF o Fε = idF, by the part (1) Fε is an isomorphism.  Thus, for any  X ∈  Ob(_),

FεX is an isomorphism and by Proposition 7.12(2) we have εX ∈  Φ(Ker F).

     (4) Let Q : _ → _/Ker F be the canonical functor.  Then by Proposition 9.10 there exists

a unique ∂-functor F : _/Ker F → * such that F =  FQ.  We claim that QG : * → _/Ker F is

a quasi-inverse of F.  By the part (3) and Corollary 8.9 Qε : Q → QGF = QGFQ is an

isomorphism.  Thus by Proposition 8.11 there exists an isomorphism τ  : 1_/Ker F → QGF such

that Qε = τQ.
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     Definition 12.1.  A ∂-functor F = (F, θ) : _ → * is called a localization if it has a fully

faithful right adjoint, i.e., F has a right adjoint G : * → _ such that the counit δ : FG → 1* is

an isomorphism.  If this is the case, GF : _ → _ is called a localization functor.

 

     Proposition 12.4.  Assume ! has enough injectives.  Then the following hold.

     (1) The canonical functor Q : K+(!) → D+(!) is a localization.

     (2) The canonical functor Q : K+, b(!) → D+, b(!) is a localization.

     (3) The canonical functor Q : K+(!)fid → D+(!)fid is a localization.

 

     Proof.  (1) Let J : K+(() → K+(!) be the inclusion.  Then by Proposition 10.13 QJ : K+(()

→ D+(!) is an equivalence.  Let P : D+(!) → K+(() be a quasi-inverse of QJ.  It follows by

Proposition 10.12 that JP is a right adjoint of Q.  Since P is fully faithful, so is JP.

     (2) Replace K+(() with K+, b(() in the proof of (1).

     (3) Let J : Kb(() → K+(!)fid be the inclusion.  Then by Proposition 11.13 QJ : Kb(() →
D+(!)fid is an equivalence.  Let P : D+(!)fid → Kb(() be a quasi-inverse of QJ.  Then, as in

the part (1), JP is a fully faithful right adjoint of Q.

 

     Proposition 12.5.  Let !’ be a thick subcategory of ! with enough !-injectives.  Then

the canonical functor Q :   K ′
+

!
(!) →   D ′

+
!

(!) is a localization.

 

     Proof.  Let J : K+(!’ ∩ () →   K ′
+

!
(!) be the inclusion.  Then by Proposition 10.19 QJ :

K+(!’ ∩ () →   D ′
+

!
(!) is an equivalence.  Let P :   D ′

+
!

(!) → K+(!’ ∩  () be a quasi-inverse

of QJ.  Then, as in Proposition 12.4, JP is a fully faithful right adjoint of Q.

 

     Proposition 12.6 (Dual of Proposition 12.3).  Let F : _ → * be a ∂-functor with a fully

faithful left adjoint G : * → _ and let ε : 1* → FG, δ : GF → 1_ be the unit and the counit,

respectively.  Then the following hold.

     (1) ε : 1* → FGis an isomorphism.

     (2) Ker F is an épaisse subcategory of _.

     (3) δX ∈  Φ(Ker F) for all X ∈  Ob(_).

     (4) The induced functor F : _/Ker F → * is an equivalence of triangulated categories.

 

     Definition 12.2.  A ∂-functor F = (F, θ) : _ → * is called a colocalization if it has a fully

faithful left adjoint, i.e., F has a left adjoint G : * → _ such that the unit ε : 1* → FG is an

isomorphism.  If this is the case, GF : _ → _ is called a colocalization functor.

 

     Proposition 12.7 (Dual of Proposition 12.4).  Assume ! has enough projectives.  Then the

following hold.

5

     (1) The canonical functor Q : K–(!) → D–(!) is a colocalization.



     (2) The canonical functor Q : K–, b(!) → D–, b(!) is a colocalization.

     (3) The canonical functor Q : K–(!)fid → D–(!)fpd is a colocalization.

 

     Proposition 12.8 (Dual of Proposition 12.5).  Let !’ be a thick subcategory of  ! with

enough !-projectives.  Then the canonical functor Q :   K ′!
– (!) →   D ′!

– (!) is a colocalization.

 

     Proposition 12.9.  Let @ be another abelian category and F : ! → @ an additive functor.

Assume F has a fully faithful right (resp. left) adjoint.  Then the extended ∂-functor F : K(!)

→ K(@) is a localization (resp. colocalization).

 

     Proof.  By Proposition 3.10.

 

     Corollary 12.10.  Let ϕ  : A → B be a ring epimorphism.  Then the following hold.

     (1) B ⊗ A – : K(Mod A) → K(Mod B) is a localization.

     (2) HomA(ABB, –) : K(Mod A) → K(Mod B) is a colocalization.

 

     Proof.  Let U : Mod B → Mod A be the canonical functor induced by ϕ : A → B.  Then U

is a right adjoint of B ⊗ A – and a left adjoint of HomA(ABB, –).  Also, by assumption, U is fully

faithful.

 

     Corollary 12.11.  Let A be a ring and e ∈  A an idempotent.  Then

 

eA ⊗ A – > HomA(Ae, –) : K(Mod A) → K(Mod eAe)

is a bilocalization, i.e., both a localization and a colocalization, simultaneously.

 

     Proof.  It is obvious that eA ⊗ A – > HomA(Ae, –).  Also, eA ⊗ A – has a fully faithful right

adjoint HomeAe(eAeeAA, –) and HomA(Ae, –) has a fully faithful left adjoint Ae ⊗ eAe –.

     Definition 12.3.  Let # be a category and Λ  a small (connected) category.  We denote by

#Λ the category of functors from Λ to #: an object F ∈  Ob(#Λ) is a pair ({Fλ}, {Fα}) of a

family of objects {Fλ}λ ∈  Ob(Λ) in # and a family of morphisms {Fα}α  ∈  Mor(Λ) in #, where Fα  ∈
#(Fλ, Fµ) for α  ∈  Λ(λ , µ); and a morphism h : ({Fα}, {Fλ}) → ({Gα}, {Gλ}) is a family of

morphisms {hλ}λ ∈  Ob(Λ) in # such that Gα  o hλ = hµ o Fα for all morphisms α  ∈  Λ(λ, µ).  The

constant functor

 

P : # → #Λ
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associates with each X ∈  Ob(#) a pair ({Fλ}, {Fα}) such that Fλ = X for all λ  ∈  Ob(Λ) and Fα



= idX for all α  ∈  Mor(Λ).

     Definition 12.4.  Let # be a category and Λ a small (connected) category.  A limit of F ∈
Ob(#Λ), denoted by lim

←
 F, is defined as a terminal object in the following category: an object

is a morphism in #Λ of the form f : PX → F with X ∈  Ob(#), i.e., a pair (X, {fλ}) of X ∈
Ob(#) and a family of morphisms fλ ∈  #(X, Fλ) with fµ = Fα o fλ for all morphisms α  ∈  Λ(λ ,

µ); a morphism h : (X, {fλ}) → (Y, {gλ}) is a morphism h ∈  #(X, Y) with fλ = gλ o h for all λ ∈
Ob(Λ).

 

     Remark 12.1.  Assume every F ∈  Ob(#Λ) has a limit lim
←

 F = ( lim
←

 F, {pλ}).  Then lim
←

 :

#Λ → # is a functor and is a right adjoint of the constant functor P : # → #Λ.  Furthermore,

the morphisms pF = {pλ} : P( lim
←

 F) → F give rise to the counit P o lim
←

 →   1# Λ .  In

particular, if # is abelian, then lim
←

 is left exact.  Conversely, assume the constant functor P :

# → #Λ has a right adjoint lim
←

 : #Λ → # and let p : P o lim
←

 →   1# Λ  be the counit.  Then

every F ∈  Ob(#Λ) has a limit lim
←

 F = ( lim
←

 F,  pF).

 

     Definition 12.5.  We denote by N the totally ordered set of non-negative integers.  In this

case, a functor Nop → # is given by a sequence of objects and morphisms in #

 

L → Xn + 1 →
+fn 1

 Xn → L → X0

and its limit is denoted by lim
←

 Xn.  In case # has countable direct products, there exists a

unique morphism in #

shift : ∏ Xn → ∏ Xn

such that pm o (shift) = fm + 1 o pm + 1 for all m ∈  N, where the pm : ∏ Xn → Xm are projections.

     Lemma 12.12.  Each complex X•  ∈  Ob(C(!)) defines a sequence of truncated complexes

and canonical homomorphisms

 

L → ′≥ +σ – ( )n 1 ( X•) → ′≥σ – n( X•) → L → ′≥σ 0 ( X•)

such that X•  →̃ lim
←

′≥σ – n( X•) canonically.

     Proof.  Straightforward.
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     Lemma 12.13.  Assume  ! satisfies the condition Ab3*.  Then for any sequence



 

L → Xn + 1 → Xn → L → X0

of objects and morphisms in ! we have an exact sequence in !

0  →  lim
←

 Xn  →  ∏ Xn  →
1 – shift

 ∏ Xn.

     Proof.  Straightforward.

 

     Definition 12.6.  Let  _ be a triangulated category with countable direct products.  Then

for a sequence of objects and morphisms

 

L → Xn + 1 → Xn → L → X0,

its homotopy limit, denoted by h lim
←

 Xn, is defined by a triangle

T– 1(∏ Xn)  →  h lim
←

 Xn  →  ∏ Xn  →
1 – shift

 ∏ Xn.

 

     Definition 12.7.  For * = – or nothing, we denote by K*(()L the full subcategory of K*(!)

consisting of 8-local complexes I•  ∈  Ob(K*(()).

 

     Remark 12.2. It follows by Lemma 4.4 that Kb(() , K+(() , K(()L.

 

     Lemma 12.14.  K(()L is a full triangulated subcategory of K(!) closed under direct

products and 8 ∩ K(()L = {0}.

 

     Proof.  The first assertion is obvious.  For any I•  ∈  Ob(8 ∩ K(()L), since K(!)( I• , I• ) =

0, by Proposition 3.5 I•  = 0 in K(!).

     Proposition 12.15.  Assume ! has enough injectives and satisfies the condition Ab4*.

Then the following hold.

     (1) For any X•  ∈  Ob(K(!)) there exists a quasi-isomorphism X•  → I•  with I•  ∈
Ob(K(()L).

     (2) For any X•  ∈  Ob(K(!)fid) there exists a quasi-isomorphism X•  → I•  with I•  ∈
Ob(K–(()L).

 

     Proof.  (1) Let X•  ∈  Ob(C(!)) and put Xm
•  = ′≥σ – m ( X•) for m ∈  N.
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     Claim 1: There exists a quasi-isomorphism φ : X•  → h lim
←

 Xm
• .

     Proof.  By Lemmas 12.12 and 12.13 we have an exact sequence in C(!)

 

0  →  X•   →  ∏ Xm
•   →

1 – shift

 ∏ Xm
• .

Thus by Proposition 6.5(1) we have a commutative diagram in K(!)

X•  → ∏ Xm
•  →

1 – shift

∏ Xm
•

φ ↓ || ||

h lim
←

 Xm
•  → ∏ Xm

•  →
1 – shift

∏ Xm
• .

We claim that φ is a quasi-isomorphism.  It suffices to show that Hn(φ) is an isomorphis for

all n ∈  Z.  Let n ∈  Z.  We have a sequence of objects and morphisms in !

 

L → Hn( Xm +
•

1) → Hn( Xm
• ) → L → Hn( X0

•)

such that Hn( X•) = Hn( Xm
• ) for – m ≤ n and Hn( Xm

• ) = 0 for – m > n.  Thus we have an exact

sequence

 

0  →  Hn( X•)  →  ∏ Hn( Xm
• )  →

1 – shift

 ∏ Hn( Xm
• )  →  0.

Note that Hn(∏ Xm
• ) > ∏ Hn( Xm

• ).  Thus, Hn(1 – shift) is epic and we get a commutative

diagram with exact rows

0  → Hn( X•)  → Hn(∏ Xm
• )  → Hn(∏ Xm

• )  → 0

Hn(φ) ↓ || ||

0 → Hn( h lim
←

 Xm
• ) → Hn(∏ Xm

• )  → Hn(∏ Xm
• )  → 0 .

     Claim 2: For each m ∈  N there exists a quasi-isomorphism ψm : Xm
•  → Im

•  with ∈
Ob(K+(()).

 

     Proof.  By Proposition 4.7.

 

     Claim 3: For each m ∈  N there exists a morphism Im +
•

1  → Im
•  in K(!) which makes the

following diagram commute
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Xm +
•

1 → Xm
•

↓ ↓

Im +
•

1 → Im
• .

     Proof.  By Lemma 6.15(1).

 

     Claim 4: h lim
←

 ψm : h lim
←

 Xm
•  → h lim

←
 Im

•  is a quasi-isomorphism.

     Proof.  By Claim 3 we have a homomorphism of triangles in K(!)

 

T– 1(∏ Xm
• )  → h lim

←
 Xm

•  → ∏ Xm
•   →

1 – shift

∏ Xm
•

↓ ↓ ↓ ↓

T– 1(∏ Im
• )  → h lim

←
 Im

•  → ∏ Im
•   →

1 – shift

∏ Im
• .

Since Hn(∏ ψm) > ∏ Hn(ψm) is an isomorphism for all n ∈  Z, ∏ ψm is a quasi-isomorphism,

so is h lim
←

 ψm : h lim
←

 Xm
•  → h lim

←
 Im

• .

 

     Claim 5: h lim
←

 Im
•  is 8-local.

     Proof.  By Lemma 4.4 every Im
•  is 8-local.  Thus by Proposition 9.12 ∏ Im

•  is 8-local, so

is h lim
←

 Im
• .

 

     (2) Let n ∈  Z and assume Exti(–, X•) vanishes on ! for i > n.  By the part (1) there exists

a quasi-isomorphism s : X•  → I•  with I•  ∈  Ob(K(()L).  Let i > n and j : Zi( I• ) → Ii the

inclusion.  Since by Proposition 9.13(2) we have

 

K(!)(T– i(Zi( I• )), I• ) > K(!)(Zi( I• ), Ti( I• ))

> D(!)(Zi( I• ), Ti( I• ))

> Exti(Zi( I• ), I• )

 0,

there exists f : Zi( I• ) → Ii – 1 such that j = dI
i – 1  o f.  Thus Bi( I• ) = Zi( I• ) and the canonical

epimorphism Ii – 1 → Bi( I• ) splits.  Consequently, Hi( I• ) = 0 and Zi – 1( I• ) ∈  ( for all i > n.

Thus σ  n( I• ) ∈  Ob(K–(()) and by Lemma 10.7 the canonical monomorphism σ  n( I• ) → I•

is a quasi-isomorphism.
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     Claim 6: σ  n( I• ) ∈  Ob(K–(()L) and we have a quasi-isomorphism X•  → σ  n( I• ).



 

     Proof.  Let Z•  ∈  Ob(8) and u ∈  K(!)( Z• , σ  n( I• )).  We claim that u = 0 in K(!).  Let j :

Zn( I• ) → In be the inclusion and ĵ  : σ  n( I• ) → I•  the canonical monomorphism.  Then,

since Zn( I• ) ∈  (, there exists g : In → Zn( I• ) such that gj = id
Z In ( )• .  Also, since I•  ∈

Ob(K(()L), there exists h : ĵ u . 0.  Define h’ ∈  !Z(T(σ  n( I• )), Z•) as follows:

h’i = 

  

0 ( )

( )

( )

i n

g h i n

h i n

n

i

>
=
<






o .

Then it is easy to see that h’ : u . 0.  Thus σ  n( I• ) ∈  Ob(K–(()L) and by Proposition 9.13(1)

ĵ  : σ  n( I• ) → I•  is an isomorphism in K(!).  Hence we get a quasi-isomorphism ĵ – 1 o s :

X•  → σ  n( I• ).

 

     Proposition 12.16.  Assume ! has enough injectives and satisfies the condition Ab4*.

Then the following hold.

     (1) The canonical functor K(!) → D(!) induces equivalences K(()L →̃ D(!) and

K–(()L →̃ D(!)fid.

     (2) The canonical functors K(!) → D(!) and K(!)fid → D(!)fid are localizations.

     (3) The canonical functor D(!)fid → D(!) preserves direct products.

 

     Proof.  (1) By Propositions 9.13(2) and 12.15.

     (2) Let Q : K(!) → D(!) be the canonical functor and J : K(()L → K(!) the inclusion.

Then by the part (1) QJ : K(()L → D(!) is an equivalence.  Let P : D(!) → K(()L be a

quasi-inverse of QJ.  Then by Proposition 9.13(2) JP is a right adjoint of Q.  Since P is fully

faithful, so is JP.  Similarly, K(!)fid → D(!)fid is a localization.

     (3) Let { Xλ
•}λ ∈ Λ  be a family of objects of D(!)fid which has a direct product X•  in D(!)fid.

We claim ∏ Xλ
•  ∈  Ob(D(!)fid).  By Proposition 12.15(2) we may assume the Xλ

•  and X•  are

objects of K–(()L.  Take a ∈  Z such that Xi = 0 for i > a.  Let λ ∈ Λ  and put n = max{i ∈  Z |

Hi( Xλ
•)  0}.  By Lemma 10.6 we have a quasi-isomorphism t : σ  n( Xλ

•) → Xλ
• .  Also, there

exists v : T– n(Zn( Xλ
•)) → σ  n( Xλ

•) such that Hn(v) : Zn( Xλ
•) → Hn( Xλ

•) is the canonical

epimorphism.  Thus 0  Q(tv) ∈  D(!)(T– n(Zn( Xλ
•)), Xλ

•).  Since Zn( Xλ
•) admits an injective

resolution

0 → Zn( Xλ
•) → Xn

λ  → Xn
λ

+ 1 → L ,

Xλ
•  ∈  Ob(K–(()L) implies T– n(Zn( Xλ

•)) ∈  Ob(D(!)fid).  Hence D(!)(T– n(Zn( Xλ
•)), X•)  0 and

n ≤ a.  Also, since D(!)(T– (a + 1)(B’a( Xλ
•)), X•) = 0, by Proposition 9.13(2) we have
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K(!)(T– (a + 1)(B’a( Xλ
•)), Xλ

•)  > D(!)(T– (a + 1)(B’a( Xλ
•)), Xλ

•)

 0

and the canonical exact sequence 0 → Za( Xλ
•) → Xa

λ  → B’a( Xλ
•) → 0 splits.  Thus σ  a( Xλ

•) ∈
Ob(K–(()) and σ> a( Xλ

•) ∈  Ob(Kb(()).  Then, since by Lemma 4.4  Kb(() , K–(()L, and since

by Proposition 11.1(3) we have a triangle of the form

(σ  a( Xλ
•), Xλ

• , σ> a( Xλ
•), ⋅, ⋅, ⋅),

it follows that σ  a( Xλ
•) ∈  Ob(K–(()L).  Thus we have a quasi-isomorphism σ  a( Xλ

•) → Xλ
•

with σ  a( Xλ
•) ∈  Ob(K–(()L).  Consequently, we may assume Xi

λ  = 0 for all i > a and λ ∈ Λ .

Then ∏ Xλ
•  ∈  Ob(K–(()L) and ∏ Xλ

•  > X• .

 

     Definition 12.8.  Let # be a category and Λ a small (connected) category.    A colimit of F

∈  Ob(#Λ), denoted by lim
→

 F, is defined as an initial object in the following category: an

object is a morphism in #Λ of the form f : F → PX with X ∈  Ob(#), i.e., a pair ({fλ}, X) of X

∈  Ob(#) and a family of morphisms fλ ∈  #(X, Fλ) with fµ o Fα = fλ for all α  ∈  Λ(λ , µ); a

morphism h : ({fλ}, X) → ({gλ}, Y) is a morphism h ∈  #(X, Y) with gλ = h o gλ for all λ ∈
Ob(Λ).

 

     Remark 12.3.  Assume every F ∈  Ob(#Λ) has a colimit lim
→

 F = ({iλ}, lim
→

 F).  Then lim
→

 :

#Λ → # is a functor and is a left adjoint of the constant functor P : # → #Λ.  Furthermore,

the morphisms iF = {iλ} : P( lim
→

 F) → F gives rise to the unit   1# Λ  → P o lim
→

.  In particular,

if # is abelian, then is lim
→

 right exact.  Conversely, assume the constant functor P : # → #Λ

has a left adjoint lim
→

 : #Λ → # and let i :   1# Λ  → P o lim
→

 be the unit.  Then every F ∈
Ob(#Λ) has a colimit lim

→
 F = (iF, lim

→
 F).

 

     Definition 12.9.  A functor N → # is given by a sequence of objects and morphisms in #

 

X0 → L → Xn  →
fn

 Xn+ 1 → L

and its colimit is denoted by lim
→

 Xn.  In case # has countable direct sums, there exists a

unique morphism in #

shift : ⊕  Xn → ⊕  Xn

such that (shift) o im = im + 1 o fm  for all m ∈  N, where the im : Xm → ⊕  Xn are injections.
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     Lemma 12.17 (Dual of Lemma 12.12).  Each complex X•  ∈  Ob(C(!)) defines a

sequence of truncated complexes and canonical homomorphisms

 

σ  0 ( X•) → L → σ  n( X•) → σ  n + 1( X•) → L

such that lim
→

σ  n( X•) →̃ X•  canonically.

     Lemma 12.18 (Dual of Lemma 12.13).  Assume ! satisfies the condition Ab3.  Then for

any sequence

 

X0 → L → Xn  → Xn+ 1 → L

of objects and morphisms in ! we have an exact sequence in !

⊕  Xn  →
1 – shift

 ⊕  Xn  →  lim
→

 Xn  →  0.

     Definition 12.10.  Let  _ be a triangulated category with countable direct sums.  Then for

a sequence of objects and morphisms

 

X0 → L → Xn  → Xn+ 1 → L ,

its homotopy colimit, denoted by h lim
→

 Xn, is defined by a triangle

⊕  Xn  →
1 – shift

 ⊕  Xn  →  h lim
→

 Xn  →  T(⊕  Xn).

 

     Definition 12.11.  For * = + or nothing, we denote by K*(3)L the full subcategory of K*(!)

consisting of 8-colocal complexes P•  ∈  Ob(K*(3)).

 

     Remark 12.4. It follows by Lemma 4.8 that Kb(3) , K–(3) , K(3)L.

 

     Lemma 12.19 (Dual of Lemma 12.14).  K(3)L is a full triangulated subcategory of K(!)

closed under direct sums and 8 ∩ K(3)L = {0}.

     Proposition 12.20 (Dual of Proposition 12.15).  Assume ! has enough projectives and

satisfies the condition Ab4.  Then the following hold.

     (1) For any X•  ∈  Ob(K(!)) there exists a quasi-isomorphism P•  → X•  with P•  ∈
Ob(K(3)L).
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     (2) For any X•  ∈  Ob(K(!)fpd) there exists a quasi-isomorphism P•  → X•  with P•  ∈



Ob(K+(3)L).

 

     Proposition 12.21 (Dual of Proposition 12.16).  Assume ! has enough projectives and

satisfies the condition Ab4.  Then the following hold.

     (1) The canonical functor K(!) → D(!) induces equivalences K(3)L →̃ D(!) and

K+(3)L →̃ D(!)fpd.

     (2) The canonical functors K(!) → D(!) and K(!)fpd → D(!)fpd are colocalizations.
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     (3) The canonical functor D(!)fpd → D(!) preserves direct sums.



§13.  Right derived functors

     Throughout this section, !, @ and # are abelian categories and 8 is the épaisse

subcategory of K(!) consisting of acyclic complexes.  Unless otherwise stated, functors are

covariant functors.

 

     Definition 13.1.  A full triangulated subcategory K*(!) of K(!) is called a localizing

subcategory if the canonical functor

 

K*(!)/8 ∩ K*(!) → D(!)

is fully faithful.  If K*(!) is a localizing subcategory of K(!), we denote by D*(!) the

quotient category K*(!)/8 ∩ K*(!) and by Q : K*(!) → D*(!) the canonical functor.

     Remark 13.1.  (1) K–(!), K+(!), K–, b(!), K+, b(!) and Kb(!) are localizing subcategories

of K(!).

     (2) If !’ is a thick subcategory of !, then   K ′!
( )! ,   K ′!

– ( )! ,   K ′
+

!
( )!  and   K ′!

b ( )!  are

localizing subcategories of K(!).

     (3) If ! has enough injectives, then K+(!)fid is a localizing subcategory of K(!).

     (4) If ! has enough projectives, then K–(!)fpd is a localizing subcategory of K(!).

     (5) If K*(!) is a localizing subcategory of K(!), then K*(!)op is a localizing subcategory

of K(!)op.

     (6) We have K–(!)op = K+(!op), K+(!)op = K–(!op), Kb(!)op = Kb(!op), etc..

 

     Definition 13.2.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@) a

∂-functor.  A right derived functor of F is an initial object of the following category: an

object is a pair (ζ, G) of a ∂-functor G : D*(!) → D(@) and ζ ∈  Hom (QF, GQ); and a

morphism η : (ζ1, G1) → (ζ2, G2) is a morphism η ∈  Hom (G1, G2) with ζ2 = ηQ o ζ1.  The

right derived functor of F is denoted by  ( ⋅, R*F) or simply by R*F.  In case K*(!) = K–(!),

K+(!), Kb(!),   K ′!
( )! , etc., R*F is written R–F, R+F, RbF,   R ′!

F , etc., respectively.  If no

confusion can result, then R*F is simply written RF.  Similarly, a right derived functor of a

∂-functor F : K*(!) → D(@) is defined.

     In case F : K*(!) → K(@) is a contravariant ∂-functor, we define a right derived functor

of F as a right derived functor of a covariant ∂-functor F : K*(!)op → K(@).

 

     Remark 13.2.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@) a

∂-functor which has a right derived functor (ξ, R*F).  Then for any n ∈  Z the following hold,

     (1) FTn : K*(!) → K(@) has a right derived functor ( ξ
T n , R*F o Tn).
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     (2) TnF : K*(!) → K(@) has a right derived functor (Tnξ, Tn o R*F).



 

     Proposition 13.1.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@)

a ∂-functor.  Then the following hold.

     (1) QF : K*(!) → D(@) vanishes on the acyclic complexes if and only if there exists a

∂-functor F’ : D*(!) → D(@) such that QF →̃ F’Q.

     (2) If there exist a ∂-functor F’ : D*(!) → D(@) and an isomorphism ξ : QF →̃ F’Q, then

(ξ, F’) is a right derived functor of F.

 

     Proof.  (1) The “if” part is obvious.  The “only if” part follows by Proposition 9.10.

     (2) Let G : D*(!) → D(@) be a ∂-functor.  Since we have an isomorphism

Hom (QF, GQ) →̃ Hom (F’Q, GQ), ζ a ζ’o ξ – 1,

it follows by Proposition 9.11 that for any ζ ∈  Hom (QF, GQ) there exists a unique η ∈
Hom (F’, G) such that ζ = ηQ o ξ.

     Remark 13.3.  Let K*(!) be a localizing subcategory of K(!).  Then T : D*(!) → D*(!)

is a right derived functor of T : K*(!) → K*(!).

 

     Proposition 13.2.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@)

a ∂-functor.  For a pair (ξ, R*F) of a ∂-functor R*F : D*(!) → D(@) and a homomorphism of

∂-functors ξ : QF → R*F o Q, the following are equivalent.

     (1) (ξ, R*F) is a right derived functor of F.

     (2) For any ∂-functor G : D*(!) → D(@), the correspondence

 

Hom (R*F, G) → Hom (QF, GQ), η a ηQ o ξ

is an isomorphism.

     Proof.  Obvious.

 

     Corollary 13.3.  (1) Let K*(!) be a localizing subcategory of K(!) and F = (F, θ) : K*(!)

→ K(@) a ∂-functor.  Assume F has a right derived functor (ξ, R*F) and let R*F = (R*F, η).

Then Tξ o Qθ = ηQ o ξT and, for a homomorphism of ∂-functors φ : R*F o T → T o R*F, the

condition Tξ o Qθ = φQ o ξT implies φ = η.

     (2) Let K*(!) be a localizing subcategory of K(!) and F, G : K*(!) → K(@) ∂-functors.

Assume both F and G have right derived functors (ξ, R*F) and (ζ, R*G), respectively.  Then

we have a correspondence
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Hom (F, G) → Hom (R*F, R*G),  φ a R*φ

such that ζ o Qφ = (R*φ)Q o ξ.

     (3) Let K**(!) , K*(!) be localizing subcategories of K(!) and F : K*(!) → K(@) a

∂-functor.  Assume both F and F |
  K ∗∗ ( )!

 have right derived functors (ξ, R*F)

and (ζ, R**(F |
  K ∗∗ ( )!

)), respectively.  Then there exists a unique homomorphism of ∂-functors

 

ϕ : R**(F |
  K ∗∗ ( )!

) → R*F |
  D∗∗ ( )!

such that ξ |
  K ∗∗ ( )!

 = ϕQ o ζ.

     (4) Let K*(!) , K(!), K†(@) , K(@) be localizing subcategories and let F : K*(!) →
K(@), G : K†(@) → K(#) be ∂-functors.  Assume that F has a right derived functor (ξ, R*F)

and R*F(D*(!)) , D†(@), that G has a right derived functor (ζ, R†G), and that F(K*(!)) ,

K†(@) and GF has a right derived functor (ψ, R*(GF)).  Then there exists a unique homomorphism

of ∂-functors

 

ϕ : R*(GF) → R†G o R*F

such that R†G(ξ) o ζF = ϕ Q o ψ.

     (5) Let !’ be a thick subcategory of ! and J : D+(!’) → D+(!) the canonical functor.

Let F : K+(!) → K(@) be a ∂-functor.  Assume both F and F |
  K + ′( )!

 have right derived

functors (ξ, R+F) and (ζ, R+(F |
  K + ′( )!

)), respectively.  Then there exists a unique homomorphism

of ∂-functors

 

ϕ : R+(F |
  K + ′( )!

) → R+F o J

such that ξ |
  K + ′( )!

 = ϕQ o ζ.

     Proof.  (1) Since ξ ∈  Hom (QF, R*F o Q), it follows by definition that Tξ o Qθ = ηQ o ξT.

Next, let φ ∈  Hom (R*F o T, T o R*F) with Tξ o Qθ = φQ  o ξT.  Then, since (ξT, R
*F o T) is a

right derived functor of F o T, φQ o ξT =ηQ o ξT implies φ = η.

     (2) ζ o Qφ ∈  Hom (QF, GQ) for all φ ∈  Hom (F, G).

     (3) ξ |
  K ∗∗ ( )!

 ∈  Hom (Q o (F |
  K ∗∗ ( )!

), R*F |
  D∗∗ ( )!

 o Q).

     (4) R†G(ξ) o ζF ∈  Hom (QGF, R†G o R*F o Q).

     (5) ξ |
  K + ′( )!

 ∈  Hom (Q o (F |
  K + ′( )!

), R+F o J o Q).

     Definition 13.3.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@) a

∂-functor.  In case F has a right derived functor R*F : D*(!) → D(@), we set RiF = Hi o R*F :

3

D*(!) → @ for i ∈  Z.



 

     Proposition 13.4.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@)

a ∂-functor.  Assume F has a right derived functor R*F : D*(!) → D(@).  Then for any exact

sequence 0 → X• → Y •  → Z• → 0 in C(!) with X•, Y • , Z•  ∈  Ob(K*(!)) we have a long

exact sequence

 

L → RiF( X•) → RiF( Y • ) → RiF( Z•) → Ri + 1F( X•) → L.

     Proof.  By Proposition 11.1(2).

 

     Lemma 13.5.  Let K*(!) be a localizing subcategory of K(!).  Assume K*(!) has a full

triangulated subcategory + such that for any X•  ∈  Ob(K*(!)) there exists a quasi-isomorphism

X• → I•  with I•  ∈  Ob(+).  Then for any u ∈  K*(!)( X• , Y • ) and a quasi-isomorphism s :

X• → IX
•  with IX

•  ∈  Ob(+) we have a commutative square

 

X• →
u

Y •

s ↓ ↓ t

IX
• →

û

IY
•

in K*(!) such that t is a quasi-isomorphism with IY
•  ∈  Ob(+).  Furthermore, if u is a

quasi-isomorphism, so is û .

     Proof.  Let s : X• → IX
•  be a quasi-isomorphism with IX

•  ∈  Ob(+).  Form a ∂-square

 

X• →
u

Y •

s ↓ ↓ t’

IX
• →

′u

′•Y

and take a quasi-isomorphism t” : ′•Y  → IY
•  with IY

•  ∈  Ob(+).  Since by Lemma 7.4 t’ is a

quasi-isomorphism, so is t = t”t’ : Y •  → IY
• .  In case u is a quasi-isomorphism, since û s = tu

is a quasi-isomorphism, so is û  by Proposition 4.2.

     Proposition 13.6 (Existence theorem).  Let K*(!) be a localizing subcategory of K(!)

and F : K*(!) → K(@) a ∂-functor.  Assume K*(!) has a full triangulated subcategory +

such that

     (1) for any X•  ∈  Ob(K*(!)) there exists a quasi-isomorphism X• → I•  with I•  ∈  Ob(+),
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and



     (2) 
  
QF |

+
 : + → D(@) vanishes on the acyclic complexes.

     Then F has a right derived functor (ξ, R*F) such that ξI : Q(F( I• )) → R*F(Q( I• )) is an

isomorphism for all I•  ∈  Ob(+).  In particular, for any X•  ∈  Ob(K*(!)), if we take a

quasi-isomorphism X• → I•  with I•  ∈  Ob(+), then RiF(Q( X•)) > Hi(F( I• )) for all i ∈  Z.

     Proof.  Let J : + → K*(!) be the inclusion.  By hypothesis (1) and Proposition 8.17(1) the

canonical functor J’ : +/8 ∩  + → D*(!) is an equivalence.  Let P : D*(!) → +/8 ∩ + be a

quasi-inverse of J’ and ε : 1+/8 ∩ + →̃ PJ’ an isomorphism.  Also, by hypothesis (2) and

Proposition 9.10 we have a ∂-functor F’ : +/8 ∩ + → D(@) such that QFJ = F’Q.  Put R*F

= F’P.  Let G : D*(!) → D(@) be a ∂-functor.  By Proposition 9.11 we have an isomorphism

 

Hom (R*F, G) →̃ Hom (QFJ, GQJ), η  a (η J’ o F’ε)Q  = η QJ o F’εQ.

We need the following.

 

     Claim: For any ∂-functor G : D*(!) → D(@) we have an isomorphism

 

Hom (QF, GQ) →̃ Hom (QFJ, GQJ), η a ηJ .

     Proof.  Let η ∈  Hom (QF, GQ) with ηJ = 0.  Then, for any X•  ∈  Ob(K*(!)), by taking a

quasi-isomorphism s : X• → I•  with I•  ∈  Ob(+), we get ηX = G(Q(s))– 1 o ηI o Q(F(s)) = 0.

Thus η = 0.  Conversely, let θ ∈  Hom (QFJ, GQJ).  For X•  ∈  Ob(K*(!)), take a quasi-

isomorphism s : X• → I•  with I•  ∈  Ob(+) and set ηX = G(Q(s))– 1 o θI o Q(F(s)), which

does not depend on the choice of s.  To see this, take another quasi-isomorphism s’ : X• →
′•I  with ′•I  ∈  Ob(+).  Then by Lemma 13.5 we have a commutative square

 

X• →
′s

′•I

s ↓ ↓ t

I• →
′t

′′•I

in K*(!) with t, t’ quasi-isomorphisms and ′′•I  ∈  Ob(+).  Then we have

G(Q(s))– 1 o θI o Q(F(s)) = G(Q(s))– 1 o G(Q(t’))– 1 o θ ′′I  o Q(F(t’)) o Q(F(s))

= G(Q(t’s))– 1 o θ ′′I  o Q(F(t’s))

= G(Q(s’))– 1 o G(Q(t))– 1 o θ ′′I  o Q(F(t)) o Q(F(s’))

= G(Q(s’))– 1 o θ ′I  o Q(F(s’)).
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Note that θI = ηJI for all I•  ∈  Ob(+).  Thus it only remains to check that η ∈  Hom (QF, GQ).



Let u ∈  K*(!)( X• , Y • ).  By Lemma 13.5 we have a commutative square

 

X• →
u

Y •

s ↓ ↓ t

IX
• →

û

IY
•

in K*(!) with s, t quasi-isomorphisms and IX
• , IY

•  ∈  Ob(+).  Since we have a commutative

diagram

QF X•  →
QFs

QF IX
•  →

θ IX

GQ IX
•  →

GQs – 1

GQ X•

QFu ↓ ↓ QFû ↓ GQû ↓ GQu

QF Y •  →
QFt

QF IY
•  →

θ IY

GQ IY
•  →

GQt – 1

GQY • ,

it follows that η ∈  Hom(QF, GQ).  Next, let F = (F, α) and G = (G, β).  Then, since QT =

TQ, by Proposition 7.10(4) QF = (QF, Qα) and GQ = (GQ, βQ).  Also, since JT = TJ, we

have QFJ = (QFJ, Qα J) and GQJ =(GQJ, βQJ).  Let X•  ∈  Ob(K*(!)) and take a quasi-

isomorphism s : X• → I•  with I•  ∈  Ob(+).  Since we have a commutative diagram

QFT X•  →
QFTs

QFJT I•  →
θTI

GQJT I•  →
GQTs – 1

GQT X•

QαX ↓ ↓ QαJI ↓ QβJI ↓ βQX

TQF X•  →
TQFs

TQFJ I•  →
T Iθ

TGQJ I•  →
TGQs – 1

TGQ X• ,

it follows that η ∈  Hom (QF, GQ).

 

     By Claim there exists ξ ∈  Hom (QF, R*F o Q) with F’εQ = ξJ.  Then

 

(ηJ’ o F’ε)Q = ηJ’Q o F’εQ

= ηQJ o ξJ

= (ηQ o ξ)J

for all η ∈  Hom (R*F, G), so that again by Claim we get an isomorphism

 

Hom (R*F, G) →̃ Hom (QF, GQ), η a ηQ o ξ.

Since ε is an isomorphism, so is ξI  = F’εQI for all I•  ∈  Ob(+).  Finally, let X•  ∈  Ob(K*(!))
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and take a quasi-isomorphism X• → I•  with I•  ∈  Ob(+).  Then



RiF(Q( X•)) > Hi(R*F(Q( X•)))

> Hi(R*F(Q( I• )))

> Hi(Q(F( I• )))

> Hi(F( I• ))

for all i ∈  Z.

     Corollary 13.7.  Let F : ! → @ be an additive functor.  Assume there exists a

subcollection ( of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (, then Y ∈  ( if and only

if Z ∈  (, and

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  (, then the induced

sequence 0 → FX → FY → FZ → 0 in @ is exact.

     Then the extended ∂-functor F : K+(!) → K(@) has a right derived functor (ξ, R+F) such

that ξI : Q(F( I• )) → R+F(Q( I• )) is an isomorphism for all I•  ∈  Ob(K+(()).  In particular,

for any X•  ∈  Ob(D+(!)) there exists a quasi-isomorphism X• → I•  in K+(!) with I•  ∈
Ob(K+(()) and RiF( X•) > Hi(F( I• )) for all i ∈  Z.

     Proof.  Note that by Proposition 6.1(2) K+(() is a full triangulated subcategory of K+(!).

The following enables us to apply Proposition 13.6 for + = K+(().

 

     Claim: (1) For any X•  ∈  Ob(K+(!)) there exists a quasi-isomorphism X• → I•  with I•  ∈
Ob(K+(()).

     (2) QF : K+(() → D(@) vanishes on the acyclic complexes.

 

     Proof.  (1) By hypothesis (1) and Proposition 4.7.

     (2) Let I•  ∈  Ob(8 ∩ K+(()).  By hypothesis (2) Zi( I• ) ∈  ( for all i ∈  Z.  Thus by

hypothesis (3) F( I• ) is acyclic.

 

     Remark 13.4.  In Corollary 13.7, the following hold.

     (1) RiF(X) = 0 for all X ∈  Ob(!) and i < 0.

     (2) RiF(I) = 0 for all I ∈  ( and i  0.

     (3) R 0F : ! → @ is left exact.

     (4) We have a homomorphism ϕ : F → R 0F such that ϕI is an isomorphism for all I ∈  (

and F : ! → @ is left exact if and only if ϕ  is an isomorphism.
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     Proposition 13.8.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@)



a ∂-functor.  Assume the canonical functor Q : K*(!) → D*(!) has a right adjoint P : D*(!)

→ K*(!) and let ε : 
  
1

K ∗ ( )!  → PQ be the unit.  Then the following hold.

     (1) F has a right derived functor (ξ, R*F) with R*F = QFP and ξ = QFε.

     (2) Assume P is fully faithful.  Then for any X•  ∈  Ob(D*(!)), ξPX  is an isomorphism and

RiF( X•) > Hi(FP X•) for all i ∈  Z.

 

     Proof.  (1) Let δ : QP → 
  
1

D∗ ( )!
 be the counit.  Let G : D*(!) → D(@) be a ∂-functor and

define correspondences

 

αG : Hom(QFP, G) → Hom(QF, GQ), η a ηQ o QFε,

βG : Hom(QF, GQ) → Hom(QFP, G), ζ a Gδ o ζP .

     Claim: (a) αG is an isomorphism withαG
– 1 = βG.

     (b) αG(η) ∈  Hom (QF, GQ) for all η ∈  Hom (QFP, G).

     (c) βG(ζ) ∈  Hom (QFP, G) for all ζ ∈  Hom (QF, GQ).

 

     Proof.  (a) By the fact that Pδ o εP = idP and δQ o Qε = idQ.

     (b) By Proposition 12.1 ε ∈  Hom (
  
1

K ∗ ( )!
, PQ).  Thus QFε ∈  Hom (QF, QFPQ), so that

ηQ o QFε ∈  Hom (QF, GQ) for all η ∈  Hom (QFP, G).

     (c) By Proposition 12.1 δ ∈  Hom (QP, 
  
1

D∗ ( )!
).  Thus Gδ ∈  Hom (GQP, G), so that Gδ o

ζP ∈  Hom (QFP, G) for all ζ ∈  Hom (QF, GQ.

 

     Consequently, we get an isomorphism

 

Hom (QFP, G) → Hom (QF, GQ), η a ηQ o QFε

and Proposition 13.2 applies.

     (2) Assume P is fully faithful.  Then δ is an isomorphism.  Thus, since Pδ o εP = idP, εP is

an isomorphism, so is ξP.   Finally, for any X•  ∈  Ob(D*(!)) and i ∈  Z, we have RiF( X•) =

Hi(R*F( X•)) = Hi(Q(F(P( X•))) = Hi(F(P( X•))).

     Corollary 13.9.  Let F : K+(!) → K(@) be a ∂-functor.  Assume ! has enough injectives

and let ( be the collection of injective objects of !.  Then the following hold.

     (1) F has a right derived functor (ξ, R+F) such that ξI : Q(F( I• )) → R+F(Q( I• )) is an

isomorphism for all I•  ∈  Ob(K+(()).

     (2) For any X•  ∈  Ob(D+(!)), there exists a quasi-isomorphism X• → I•  in K+(!) with

I•  ∈  Ob(K+(()) and RiF( X•) > Hi(F( I• )) for all i ∈  Z.
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     (3) If F is given by an additive functor F : ! → @, then the functor 
  
RiF |

!
 : ! → @



coincides with the usual ith right derived functor of F : ! → @ for all i ≥ 0.

     Proof.  (1) and (2) By Propositions 12.4 and 13.8.

     (3) Let X ∈  Ob(!) and X → I•  an injective resolution of X.  Then X > I•  in D+(!) and

thus RiF(X) > RiF( I• ) for all i ∈  Z.

 

     Corollary 13.10.  Let !’ be a thick subcategory of ! and F :   K ′
+

!
( )!  → K(@) a

∂-functor.  Assume !’ has enough  !-injectives and let ( be the collection of injective objects

of !.  Then the following hold.

     (1) F has a right derived functor (ξ,   R ′
+

!
F ) such that ξI : Q(F( I• )) →   R ′

+
!

F (Q( I• )) is an

isomorphism for all I•  ∈  K+(( ∩ !’).

     (2) For any X•  ∈    Ob( ( ))D ′
+

!
! , there exists a quasi-isomorphism X• → I•  in   K ′

+
!

( )!

with I•  ∈  Ob(K+(( ∩  !’)) and RiF( X•) > Hi(F( I• )) for all i ∈  Z.

     Proof.  By Propositions 12.5 and 13.8.

 

     Proposition 13.11.  Let K**(!) , K*(!) be localizing subcategories of K(!) and F :

K*(!) → K(@) a ∂-functor.  Assume K*(!) has a full triangulated subcategory + such that

     (1) for any X•  ∈  Ob(K*(!)), there exists a quasi-isomorphism X• → I•  with I•  ∈
Ob(+),

     (2) for any X•  ∈  Ob(K**(!)), there exists a quasi-isomorphism X• → I•  with I•  ∈   Ob(+

∩ K**(!)), and

     (3) 
  
QF |

+
 : + → D(@) vanishes on the acyclic complexes.

     Then both F and F |
  K ∗∗ ( )!

 have right derived functors (ξ, R*F) and (ζ, R**(F |
  K ∗∗ ( )!

)),

respectively, and the canonical homomorphism

 

ϕ : R**(F |
  K ∗∗ ( )!

) → R*F |
  D∗∗ ( )!

is an isomorphism.

     Proof.  By Proposition 13.6 both F and F |
  K ∗∗ ( )!

  have right derived functors (ξ, R*F) and

(ζ, R**(F |
  K ∗∗ ( )!

)), respectively, and by Corollary 13.3(3) we have a unique homomorphism of

∂-functors

 

ϕ : R**(F |
  K ∗∗ ( )!

) →̃ R*F |
  D∗∗ ( )!

such that ξ |
  K ∗∗ ( )!

 = ϕ Q o ζ.  For any I•  ∈   Ob(+ ∩  K**(!)), by Proposition 13.6 both ξI and

ζ I are isomorphisms, so that ϕQI is an isomorphism.  Thus, since by hypothesis (2) the
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canonical functor Q : + ∩ K**(!) → D**(!) is dense, ϕ is an isomorphism.



     Proposition 13.12.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) →
K(@) a ∂-functor.  Let K†(@) be a localizing subcategory of K(@) and G : K†(@) → K(#) a

∂-functor.  Assume

     (1) K*(!) has a full triangulated subcategory + for which the hypotheses (1), (2) of

Proposition 13.6 are satisfied,

     (2) K†(@) has a full triangulated subcategory } for which the hypotheses (1), (2) of

Proposition 13.6 are satisfied, and

     (3) F(K*(!)) , K†(@) and F(+) , }.

     Then F, G and GF have right derived functors (ξ, R*F), (ζ, R†G) and (ψ, R*(GF)),

respectively,  R*F(D*(!)) , D†(@),  and the canonical homomorphism

 

ϕ : R*(GF) → R†G o R*F

is an isomorphism.

     Proof.  By Proposition 13.6 F and G have right derived functors (ξ, R*F) and (ζ, R†G),

respectively.  Let X•  ∈  Ob(+) be acyclic.  Then, since Q(F( X•)) = 0, by Proposition 9.3(3)

F( X•) is acyclic and Q(G(F( X•))) = 0.  Thus, again by Proposition 13.6 GF has a right

derived functor (ψ, R*(GF)).  Also, for any X•  ∈  Ob(D*(!)), since we have a quasi-isomorphism

X• → I•  with I•  ∈  Ob(+), R*F( X•) > R*F(Q( I• )) > Q(F( I• )) ∈  Ob(D†(@)).  Thus by

Corollary 13.3(4) we have a unique homomorphism of ∂-functors

 

ϕ : R*(GF) →̃ R†G o R*F

such that R†G(ξ) o ζF = ϕQ o ψ.  Let I•  ∈  Ob(+).  Then by Proposition 13.6 ξI, ζFI and ψI are

isomorphisms, so that ϕQI is an isomorphism.  Thus, since Q : + → D*(!) is dense, ϕ is an

isomorphism.

 

     Proposition 13.13.  Let !’ be a thick subcategory of ! and J : D+(!’) → D+(!) the

canonical functor.  Let F : K+(!) → K(@) be a ∂-functor.  Assume ! has enough injectives

and !’ has enough !-injectives.  Then both F and F |
  K + ′( )!

 have right derived

functors (ξ, R+F) and (ζ, R+(F |
  K + ′( )!

)), respectively, and the canonical homomorphism

 

ϕ : R+(F |
  K + ′( )!

) → R+F o J

is an isomorphism.
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     Proof.  By Corollary 13.9(1) both F and F |
  K + ′( )!

 have right derived functors (ξ, R+F) and



(ζ, R+(F |
  K + ′( )!

)), respectively.  Thus by Corollary 13.3(5) we have a unique homomorphism

of ∂-functors

 

ϕ : R+(F |
  K + ′( )!

) →̃ R+F o J

such that ξ |
  K + ′( )!

 = ϕQ o ζ.  Let ( be the collection of injective objects of !.

Let I•  ∈   Ob(( ∩ !’).  Then by Corollary 13.9(1) both ξI and ζ I are isomorphisms, so that

ϕQI is an isomorphism.  Thus, since by Corollary 13.9(2)  Q : K+(( ∩  !’) → D+(!’) is dense,

ϕ is an isomorphism.

     Proposition 13.14.  Assume ! has enough injectives.  Let F : ! → @ be a functor which

has an exact left adjoint U : @ → !.  Then the following hold.

     (1) The extended ∂-functor F : K+(!) → K(@) has a right derived functor (ξ, R+F) which

satisfies R+F(D+(!)) , D+(@).

     (2) For the extended ∂-functor U : K+(@) → K(!), there exists a ∂-functor U : D+(@) →
D(!) such that QU = UQ.

     (3) U : D+(@) → D+(!) is a left adjoint of R+F : D+(!) → D+(@).

     (4) If F is fully faithful, so is R+F.

     Proof.  (1) By Corollary 13.7.

     (2) It is obvious that QU : K+(@) → D(!) vanishes on the acyclic complexes.

     (3) By Proposition 3.10 U : K+(@) → K+(!) is a left adjoint of F : K+(!) → K+(@).  Let ε
: 
  
1

K + ( )@
 → FU, δ : UF → 

  
1

K + ( )!
 be the unit and the counit, respectively.

 

     Claim 1: There exists θ ∈  Hom (U o R+F, 
  
1

D+ ( )!
) such that Qδ = θQ o Uξ.

 

     Proof.  Let ( be the collection of injective objects of !.  For any X•  ∈  Ob(K+(!)) there

exists a quasi-isomorphism X• → I•  with I•  ∈  Ob(K+(()).  Also, ξI is an isomorphism for

all I•  ∈  Ob(K+(()).  For X•  ∈  Ob(K+(!)), take a quasi-isomorphism s : X• → I•  with I•  ∈
Ob(K+(()) and set θX = Q(s)– 1 o QδI o UξI

– 1 o U(R+F(Q(s))), which does not depend on the

choice of s.  Then θ ∈  Hom (U o R+F o Q, Q) and Qδ = θ o Uξ.  Thus by Proposition 9.11

there exists θ ∈  Hom (U o R+F, 
  
1

D+ ( )!
) such that θ = θQ.

 

     Claim 2: There exists η ∈  Hom (
  
1

D+ ( )@
, R+F o U) such that ξU o Qε = ηQ.

 

     Proof.  By Proposition 9.11.

     Claim 3: R+Fθ o η
R+ F

 = id
R+ F

.
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     Proof.  We have

 

(R+Fθ o η
R+ F

)Q o ξ = R+FθQ o η
R+ FQ

 o ξ
= R+FθQ o R+FUξ o ηQF

= R+F(θQ o Uξ) o ηQF

= R+F(Qδ) o ξUF o QεF

= ξ o QFδ o QεF

= ξ.

Thus by Proposition 13.2 R+Fθ o η
R+ F

 = id
R+ F

.

 

     Claim 4: θU o Uη  = idU.

 

     Proof.  We have

 

(θU o Uη)Q = θUQ o UηQ

= θQU o UξU o UQε
= (θQ o Uξ)U o QUε
= QδU o QUε
= idQU.

Thus by Proposition 9.11 θU o Uη = idU.

     (4) Assume δ is an isomorphism.  For any I•  ∈  Ob(K+(()), since Qδ = θQ  o Uξ, and since

ξI is an isomorphism, θQI is an isomorphism.  Since K+(() →̃ D+(!), it follows that θ is an

isomorphism.
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§14.  Left derived functors

     Throughout this section, !, @ and # are abelian categories, 8 is the épaisse subcategory

of K(!) consisting of acyclic complexes.  Unless otherwise stated, functors are covariant

functors.

     Definition 14.1.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@) a

∂-functor.  A left derived functor of F is a terminal object of the following category: an object

is a pair (G, ζ) of a ∂-functor G : D*(!) → D(@) and ζ ∈  Hom (GQ, QF); and a morphism η
: (G1, ζ1) → (G2, ζ2) is a morphism η ∈  Hom (G1, G2) with ζ1 = ζ2 o ηQ.  The left derived

functor of F is denoted by (L*F, ⋅) or simply by L*F.  In case K*(!) = K–(!), K+(!), Kb(!),

  K ′!
( )! , etc., L*F is written L–F, L+F, LbF,   L ′!

F , etc., respectively.  If no confusion can

result, then L*F is simply written LF.  Similarly, a left derived functor of a ∂-functor F :

K*(!) → D(@) is defined.

     In case F : K*(!) → K(@) is a contravariant ∂-functor, by replacing K*(!) with the

opposite category K*(!)op, we define a left derived functor of F as a left derived functor of a

covariant ∂-functor F : K*(!)op → K(@).

 

     Remark 14.1.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@) a

∂-functor which has a left derived functor (L*F, ξ).  Then for any n ∈  Z the folowing hold.

     (1) FTn : K*(!) → K(@) has a left derived functor (L*F o Tn, ξ
T n ).

     (2) TnF : K*(!) → K(@) has a left derived functor (Tn o L*F, Tnξ).

 

     Proposition 14.1 (Dual of Proposition 13.1).  Let K*(!) be a localizing subcategory of

K(!) and F : K*(!) → K(@) a ∂-functor.  Then the following hold.

     (1) QF : K*(!) → D(@) vanishes on the acyclic complexes if and only if there exists a

∂-functor F’ : D*(!) → D(@) such that F’Q →̃ QF.

     (2) If there exist a ∂-functor F’ : D*(!) → D(@) and an isomorphism ξ : F’Q →̃ QF, then

(F’, ξ) is a left derived functor of F.

     Remark 14.2.  Let K*(!) be a localizing subcategory of K(!).  Then T : D*(!) → D*(!)

is a left derived functor of T : K*(!) → K*(!).

 

     Proposition 14.2 (Dual of Proposition 13.2).  Let K*(!) be a localizing subcategory of

K(!) and F : K*(!) → K(@) a ∂-functor.  For a pair (L*F, ξ) of a ∂-functor L*F : D*(!) →
D(@) and a homomorphism of ∂-functors ξ : L*F o Q → QF, the following are equivalent.

     (1) (L*F, ξ) is a left derived functor of F.

     (2) For any ∂-functor G : D*(!) → D(@), the correspondence

1

 



Hom (G, L*F) → Hom (GQ, QF), η a ξ o ηQ

is an isomorphism.

 

     Corollary 14.3 (Dual of Corollary 13.3).  (1) Let K*(!) be a localizing subcategory of

K(!) and F = (F, θ) : K*(!) → K(@) a ∂-functor.  Assume F has a left derived functor (L*F,

ξ).  Then Qθ o ξT = Tξ o ηQ and, for a homomorphism of ∂-functors φ : L*F o T → T o L*F, the

condition Qθ o ξT = Tξ o φQ implies φ = η.

     (2) Let K*(!) be a localizing subcategory of K(!) and F, G : K*(!) → K(@) ∂-functors.

Assume both F and G have left derived functors (L*F, ξ) and (L*G, ζ), respectively.  Then we

have a correspondence

  

Hom (F, G) → Hom (L*F, L*G),  φ a L*φ

such that Qφ o ξ = ζ o (L*φ)Q.

     (3) Let K**(!) , K*(!) be localizing subcategories of K(!) and F : K*(!) → K(@) a

-functor .  Assume both F and F |
  K ∗∗ ( )!

 have left derived functors (L*F, ξ) and

(L**(F |
  K ∗∗ ( )!

), ζ), respectively.  Then there exists a unique homomorphism of ∂-functors

 

ϕ : L*F |
  D∗∗ ( )!

 → L**(F |
  K ∗∗ ( )!

)

such that ξ |
  K ∗∗ ( )!

 = ζ o ϕ Q.

     (4) Let K*(!) , K(!), K†(@) , K(@) be localizing subcategories and let F : K*(!) →
K(@), G : K†(@) → K(#) be ∂-functors.  Assume that F has a left derived functor (L*F, ξ)

and L*F(D*(!)) , D†(@), that G has a left derived functor (L†F, ζ), and that F(K*(!)) ,

K†(@) and GF has a left derived functor (L*(GF), ψ).  Then there exists a unique homomorphism

of ∂-functors

 

ϕ : L†G o L*F → L*(GF)

such that ζF o L†G(ξ) = ψ o ϕQ.

     (5) Let !’ be a thick subcategory of ! and J : D–(!’) → D–(!) the canonical functor.

Let F : K–(!) → K(@) be a ∂-functor.  Assume both F and F |
  K – ( )′!

 have left derived functors

(L–F, ξ) and (ζ, L–(F |
  K – ( )′!

)), respectively.  Then there exists a unique homomorphism of

∂-functors

 

ϕ : L–F o J → L–(F |
  K – ( )′!

)

2

such that ξ |
  K – ( )′!

 = ζ o ϕ Q.



      

     Definition 14.2.  Let K*(!) be a localizing subcategory of K(!) and F : K*(!) → K(@) a

∂-functor.  If F has a left derived functor L*F : D*(!) → D(@), we set L iF = H– i o L*F :

D*(!) → @ for i ∈  Z.

 

     Proposition 14.4 (Dual of Proposition 13.4).  Let K*(!) be a localizing subcategory of

K(!) and F : K*(!) → K(@) a ∂-functor.  Assume F has a left derived functor L*F : D*(!)

→ D(@).  Then for an exact sequence 0 → X• → Y •  → Z• → 0 in C(!) with X•, Y • , Z•  ∈
Ob(K*(!)), we have a long exact sequence

 

L → LiF( X•) → L iF( Y • ) → LiF( Z•) → Li – 1F( X•) → L.

     Lemma 14.5 (Dual of Lemma 13.5).  Let K*(!) be a localizing subcategory of K(!).

Assume K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K*(!)) there

exists a quasi-isomorphism P• → X•  with P•  ∈  Ob(+).  Then for any u ∈  K*(!)( X• , Y • )

and a quasi-isomorphism s : PX
• → X•  with PX

•  ∈  Ob(+) we have a commutative square

 

PX
• →

û

PY
•

s ↓ ↓ t

X• →
u

Y •

in K*(!) such that t is a quasi-isomorphism with PY
•  ∈  Ob(+).  Furthermore, if u is a

quasi-isomorphism, so is û .

     Proposition 14.6 (Dual of Proposition 13.6).  Let K*(!) be a localizing subcategory of

K(!) and F : K*(!) → K(@) a ∂-functor.  Assume K*(!) has a full triangulated subcategory

+ such that

     (1) for any X•  ∈  Ob(K*(!)), there exists a quasi-isomorphism P• → X•  with P•  ∈
Ob(+), and

     (2) 
  
QF |

+
 : + → D(@) vanishes on the acyclic complexes.

     Then F has a left derived functor (L*F, ξ) such that ξP : L
*F(Q( P•)) → Q(F( P•)) is an

isomorphism for all P•  ∈  Ob(+).  In particular, for any X•  ∈  Ob(D*(!)), if we take a

quasi-isomorphism P• → X•  in K*(!) with P•  ∈  Ob(+), then RiF( X•) > Hi(F( I• )) for all i

∈  Z.

     Corollary 14.7 (Dual of Corollary 13.7).  Let F : ! → @ be an additive functor.  Assume

there exists a subcollection 3 of Ob(!) such that

3

     (1) for any X ∈  Ob(!) there exists an epimorphism P → X in ! with P ∈  3,



     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only

if X ∈  3, and

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → FX → FY → FZ → 0 is exact.

     Then the induced ∂-functor F : K–(!) → K(@) has a left derived functor (L–F, ξ) such that

ξP : L
–F(Q( P•)) → Q(F( P•)) is an isomorphism for every P•  ∈  Ob(K–(()).  In particular, for

any X•  ∈  Ob(D–(!)), there exists a quasi-isomorphism P• → X•  in K–(!) with P•  ∈
Ob(K–(()) and Li F( X•) > H – i(F( P•)) for all i ∈  Z.

 

     Remark 14.3.  In Corollary 14.6, the following hold.

     (1) Li F(X) = 0 for all X ∈  Ob(!) and i < 0.

     (2) Li F(P) = 0 for all P ∈  3 for all i ∈  Z.

     (3) L0F : ! → @ is right exact.

     (4) We have a homomorphism ϕ : L0F → F such that ϕP is an isomorphism for all P ∈  3

and F : ! → @ is right exact if and only if ϕ is an isomorphism.

      

     Proposition 14.8 (Dual of Proposition 13.8).  Let K*(!) be a localizing subcategory of

K(!) and F : K*(!) → K(@) a ∂-functor.  Assume the canonical functor Q : K*(!) → D*(!)

has a left adjoint P : D*(!) → K*(!) and let δ : PQ → 
  
1

K ∗ ( )!
 be the counit.  Then the

following hold.

     (1) F  has a left derived functor (L*F, ξ) such that L*F = QFP and ξ = QFδ.

     (2) Assume P is fully faithful.  Then for any X•  ∈  Ob(D*(!)), ξPX is an isomorphism and

LiF( X•) > H– i(F(P( X•))) for all i ∈  Z.

     Corollary 14.9 (Dual of Corollary 13.9).  Let F : K–(!) → K(@) be a ∂-functor.  Assume

! has enough projectives and let 3 be the collection of projective objects of !.  Then the

following hold.

     (1) F has a left derived functor (L–F, ξ) such that ξP : L–F(Q( P•)) → Q(F( P•)) is an

isomorphism for all P•  ∈  Ob(K–(3)).

     (2)  For any X•  ∈  Ob(D*(!)), there exists a quasi-isomorphism P• → X•  in K–(!) with

P•  ∈  Ob(K–(3)) and LiF( X•) > H– i(F( P•)) for all i ∈  Z.

     (3) If F is given by an additive functor F : ! → @, then the functor L i F |! : ! → @
coincides with the usual ith left derived functor of F : ! → @ for all i ≥ 0.

 

     Corollary 14.10 (Dual of Corollary 13.10).  Let !’ be a thick subcategory of ! and let F

:   K ′!
– ( )!  → K(@) a ∂-functor.  Assume !’ has enough !-projectives and let 3 be the

collection of projective objects of !.  Then

     (1) F  has a left derived functor (  L ′!
– F , ξ) such that ξP :   L ′!

– F (Q( P•)) → Q(F( P•)) is an

4

isomorphism for all P•  ∈  K +(3 ∩ !’).



     (2) For any X•  ∈    Ob( ( ))–D ′!
! , we have a quasi-isomorphism P• → X•  in   K ′!

– ( )!  with

P•  ∈  K +(3 ∩  !’) and LiF( X•) > H– i(F( P•)) for all i ∈  Z.

 

     Proposition 14.11 (Dual of Proposition 13.11).  Let K**(!) , K*(!) be localizing

subcategories of K(!) and F : K*(!) → K(@) a ∂-functor.  Assume K*(!) has a full

triangulated subcategory + such that

     (1) for any X•  ∈  Ob(K*(!)), there exists a quasi-isomorphism P• → X•  with P•  ∈
Ob(+),

     (2) for any X•  ∈  Ob(K**(!)), there exists a quasi-isomorphism P• → X•  with P•  ∈
Ob(+ ∩ K**(!)), and

     (3) 
  
QF |

+
 : + → D(@) vanishes on the acyclic complexes.

     Then both F and F |
  K ∗∗ ( )!

 have left derived functors (L*F, ξ) and (L**(F |
  K ∗∗ ( )!

), ζ),

respectively, and the canonical homomorphism

 

ϕ : L*F |
  D∗∗ ( )!

 → L**(F |
  K ∗∗ ( )!

)

is an isomorphism.

     Proposition 14.12 (Dual of Proposition 13.12).  Let K*(!) be a localizing subcategory of

K(!) and F : K*(!) → K(@) a ∂-functor.  Let K†(@) be a localizing subcategory of K(@) and

G : K†(@) → K(#) a ∂-functor.  Assume

     (1) K*(!) has a full triangulated subcategory + for which the hypotheses (1), (2) of

Proposition 14.5 are satisfied,

     (2) K†(@) has a full triangulated subcategory } for which the hypotheses (1), (2) of

Proposition 14.5 are satisfied, and

     (3) F(K*(!)) , K†(@) and F(+) , }.

     Then F, G and GF have left derived functors (L*F, ξ), (L†F, ζ) and (L*(GF), ψ),

respectively,  L*F(D*(!)) , D†(@), and the canonical homomorphism

 

ϕ : L†G o L*F → L*(GF)

is an isomorphism.

     Proposition 14.13 (Dual of Proposition 13.13).  Let !’ be a thick subcategory of ! and J

: D–(!’) → D–(!) the canonical functor.  Let F : K–(!) → K(@) be a ∂-functor.  Assume !

has enough injectives and !’ has enough !-injectives.  Then both F and F |
  K – ( )′!

 have left

derived functors (L–F, ξ) and (ζ, L–(F |
  K – ( )′!

)), respectively, and the canonical homomorphism
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ϕ : L–F o J → L–(F |
  K – ( )′!

)

is an isomorphism.

     Proposition 14.14 (Dual of Proposition 13.14).  Assume ! has enough projectives.  Let F

: ! → @ be a functor which has an exact right adjoint U : @ → !.  Then the following hold.

     (1) The extended ∂-functor F : K–(!) → K(@) has a left derived functor (L–F, ξ) which

satisfies L–F(D–(!)) , D–(@).

     (2) For the extended ∂-functor U : K–(@) → K(!), there exists U : D –(@) → D(!) such

that QU = UQ.

     (3) U : D–(@) → D–(!) is a right adjoint of L–F : D–(!) → D–(@).

     (4) If F is fully faithful, so is L–F.
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§15.  Double complexes

     Throughout this section, ! is an abelian category.  Unless otherwise stated, functors are

covariant functors.

 

     Definition 15.1.  We denote by     !Z2

 the category of Z2-graded objects in !, i.e., an object

of     !Z2

 is a family C = {Cp, q}p, q ∈  Z  of Cp, q ∈  Ob(!) and a morphism u : {Cp, q} → {Dp, q} is

a family u = {up, q}p, q ∈  Z of up, q ∈  !(Cp, q, Dp, q).  We have two kinds of shift functors T1, T2 :

    !
Z2

 →     !Z2

 such that

 

T1(C)p, q = Cp + 1, q   and   T1(u)p, q = up + 1, q,

T2(C)p, q = Cp, q + 1   and   T2(u)p, q = up, q + 1

for C ∈ Ob(    !Z2

) and u ∈     !
Z2

(C, D), respectively.  A differential (d1, d2) of C ∈ Ob(    !Z2

)

is a pair of d1 ∈     !
Z2

(C, T1(C)) and d2 ∈     !
Z2

(C, T2(C)) such that

T1(d1) o d1 = 0,   T2(d2) o d2 = 0   and   T1(d2) o d1 + T2(d1) o d2 = 0.

A double complex C• •  = (C, d1, d2) in ! is a Z2-graded object C ∈ Ob(    !Z2

) together with a

differential (d1, d2).  We denote by C2(!) the category of double complexes in !: a morphism

u ∈ C2(!)( C• • , D• • ) is a morphism u ∈     !
Z2

(C, D) such that

T1(u) o d1 = d1 o u   and   T2(u) o d2 = d2 o u.

Then the shift functors Ti :     !
Z2

 →     !
Z2

 give rise to autofunctors of C2(!), called the

translations, such that

Ti( C• •) = (Ti(C), – Ti(d1), – Ti(d2))  (i = 1, 2)

for C• •  = (C, d1, d2).

     Remark 15.1.  (1) T1 o T2 = T2 o T1.

     (2) di ∈  C2(!)( C• • , Ti( C• •)) (i = 1, 2) for all C• •  = (C, d1, d2) ∈ Ob(C2(!)).

     Lemma 15.1.  For a triple (C, d1, d2) of C ∈ Ob(    !Z2

), d1 ∈     !
Z2

(C, T1(C)) and d2 ∈
    !

Z2

(C, T2(C)) the following are equivalent.

     (1) C• •  ∈ Ob(C2(!)).

1

     (2) (a) C p, •  = ({Cp, q}, {(– 1)p d2
p, q}) ∈ Ob(C(!)) for all p ∈  Z,



           (b) d p
1

, •  ∈  C(!)( C p, • , C p + •1, ) for all p ∈  Z, and

           (c) d p
1

1+ •,  o d p
1

, •  = 0 for all p ∈  Z.

     (3) (a) C q•,  = ({Cp, q}, {(– 1)q d1
p, q}) ∈ Ob(C(!)) for all q ∈  Z,

           (b) d q
2
•,  ∈  C(!)( C q•, , C q• +, 1) for all q ∈  Z, and

           (c) d q
2

1• +,  o d q
2
•,  = 0 for all q ∈  Z.

 

     Proof.  Straightforward.

     Definition 15.2.  Let C• •  ∈ Ob(C2(!)).  Then for each p ∈  Z the complex

 

C p, •  = ({Cp, q}, {(– 1)p d2
p, q})

is called the pth row of C• • , and for each q ∈  Z the complex

 

C q•,  = ({Cp, q}, {(– 1)q d1
p, q})

is called the qth column of C• • .

 

     Lemma 15.2.  Let C• • , D• •  ∈ Ob(C2(!)).  Then for u ∈     !
Z2

(C, D) the following are

equivalent.

     (1) u ∈ C2(!)( C• • , D• • ).

     (2) (a) up, •  = {up, q} ∈  C(!)( C p, • , Dp, •) for all p ∈  Z, and

           (b) { up, • } ∈  C(C(!))({ C p, •}, { Dp, •}).

     (3) (a) u q•,  = {up, q} ∈  C(!)( C q•, , D q•, ) for all q ∈  Z, and

           (b) { u q•, } ∈  C(C(!))({ C q•, }, { D q•, }).

 

     Proof.  Straightforward.

     Proposition 15.3.  We have isomorphisms of categories

 

C2(!) →̃ C(C(!)), C• •  a ({ C p, •}, { d p
1

, • }),

C2(!) →̃ C(C(!)), C• •  a ({ C q•, }, { d q
2
•, }).

 

     Proof.  By Lemmas 15.1 and 15.2.

 

     Definition 15.3.  Let u, v ∈  C2(!)( C• • , D• • ).  A homotopy (h1, h2) : u . v is a pair of

morphisms h1 ∈     !
Z2

(T1(C), D) and h2 ∈     !
Z2

(T2(C), D) such that

2



h1 o T2
– 1(T1(d2)) + T2

– 1(d2 o h1) = 0,

h2 o T1
– 1(T2(d1)) + T1

– 1(d1 o h2) = 0,

h1 o d1 + T1
– 1(d1 o h1) + h2 o d2 + T2

– 1(d2 o h2) = u – v.

If there exists a homotopy (h1, h2) : u . v, we say that u is homotopic to v.

     Remark 15.3.   Let C• • , D• •  ∈ Ob(C2(!)).  Then the following hold.

     (1) For h1 ∈     !
Z2

(T1(C), D) the following are equivalent.

           (a) h1 o T2
– 1(T1(d2)) + T2

– 1(d2 o h1) = 0.

           (b) hp
1

, •  = {h1
p, q} ∈  C(!)( C p + •1, , Dp, •) for all p ∈  Z.

     (2) For h2 ∈     !
Z2

(T2(C), D) the following are equivalent.

           (a) h2 o T1
– 1(T2(d1)) + T1

– 1(d1 o h2) = 0.

           (b) h q
2
•,  = {h2

p, q} ∈   C(!)( C q• +, 1, D q•, ) for all q ∈  Z.

 

     Definition 15.4.  In case ! satisfies the condition Ab3*, we define a left exact functor t :

    !
Z2

 → !Z such that

 

t(C)n = ∏
+ =p q n

 Cp, q

for all C ∈  Ob(    !Z2

) and n ∈  Z, and in case ! satisfies the condition Ab3, we define a right

exact functor t’ :     !Z2

 → !Z such that

 

t’(C)n = ⊕
+ =p q n

 Cp, q

for all C ∈  Ob(    !Z2

) and n ∈  Z.  Furthermore, in case ! satisfies the conditions Ab3 and

Ab3*, we define a functor t” :     !Z2

 → !Z by the canonical exact sequence

 

t’ → t → t” → 0.

     Throughout the rest of this section, ! is assumed to satisfy the condition Ab3*.  In the

following statements, t can be replaced by t’ (in that case, ! is of course assumed to satisfy

the condition Ab3 instead of Ab3*).

     Lemma 15.4.  The following hold.

     (1) t o Ti = T o t for i = 1, 2.

     (2) d = t(d1) + t(d2) is a differential of t(C) for any C• •  ∈ Ob(C2(!)), so that we have a left

exact functor
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t : C2(!) → C(!), C• •  a (t(C), t(d1) + t(d2)).

      

     Proof.  (1) Obvious.

     (2) By the part (1) we have

 

               T(d) o d = T(t(d1) + t(d2)) o (t(d1) + t(d2))

= T(t(d1)) o t(d1) + {T(t(d1)) o t(d2) + T(t(d2)) o t(d1)} + T(t(d2)) o t(d2)

= t(T1(d1) o d1) + t(T2(d1) o d2 + T1(d2) o d1) + t(T2(d2) o d2)

= 0.

     Lemma 15.5.  Let u , v ∈  C2(!)( C• • , D• • ) with (h1, h2) : u . v and put h = t(h1) + t(h2).

Then h : t(u) . t(v).

 

     Proof.  We have

         t(u) – t(v) = t(u – v)

= t(h1 o d1 + T1
– 1(d1 o h1) + h2 o d2 + T2

– 1(d2 o h2))

   + t(h1 o T2
– 1(T1(d2)) + T2

– 1(d2 o h1)) + t(h2 o T1
– 1(T2(d1)) + T1

– 1(d1 o h2))

= {t(h1) o t(d1) + T– 1(t(d1) o t(h1)) + t(h2) o t(d2) + T– 1(t(d2) o t(h2))}

   + {t(h1) o t(d2) + T– 1(t(d2) o t(h1))} + {t(h2) o t(d1) + T– 1(t(d1) o t(h2))}

= (t(h1) + t(h2)) o (t(d1) + t(d2)) + T– 1(t(d1) + t(d2)) o T– 1(t(h1) + t(h2))

= h o d + T– 1(d) o T– 1(h).

     Definition 15.5.  Each complex X•  ∈  Ob(C(!)) is considered as a double complex

concentrated in the 0th column, i.e., a double complex such that

 

( X•)p, q = 
X q

q

p ( )

( )

=
≠





0

0 0

and we get a full embedding C(!) → C2(!).

     Remark 15.4.  The embedding C(!) → C2(!) preserves homotopy classes, i.e., if u, v ∈
C(!)( X• , Y • ) with h : u . v, then (h, 0) : u . v for u, v ∈  C2(!)( X• , Y • ).

     Definition 15.6.  A right resolution of a complex X•  ∈  Ob(C(!)) is a morphism µ : X•  →
C• •  in C2(!) such that ({ C q•, }, {d q

2
•, }) is a right resolution of X•  in C(C(!)), i.e., C q•,  = 0

for q < 0 and

4



0 → X•  →
µ

 C•, 0 → C•, 1 → L

is an exact sequence in C(!).  A right resolution µ : X•  → C• •  of X•  is called an injective

resolution if every C q•,  is an injective object of C(!), and is called a right Cartan-Eilenberg

resolution if for each p ∈  Z

 

0 → Hp( X•) → H p
I

, 0( C• •) → H p
I

, 1( C• •) → L ,

0 → Bp( X•) → Bp
I

, 0(C• •) → Bp
I

, 1( C• •) → L

are injective resolutions of Hp( X•) and Bp( X•), respectively.

 

     Definition 15.7.  For each p ∈  Z we define additive functors Z p
I

, • , Bp
I

, • , ′ •Z p
I

, , ′ •B p
I

,  and

H p
I

, •  : C2(!) → C(!) as follows

 

Z p
I

, • ( C• •) = Ker d p
1

, • ,

Bp
I

, • ( C• •) = Im d p
1

1– , •,

′ •Z p
I

, ( C• •) = Cok d p
1

1– , •,

′ •B p
I

, ( C• •) = Coim d p
1

, •  = Im d p
1

, •  = Bp
I

,+ •1 ( C• •),

H p
I

, • ( C• •) = Z p
I

, • ( C• •)/ Bp
I

, • ( C• •).

Also, for each q ∈  Z we define additive functors Z q
II

,• , B q
II

,• , ′•Z q
II

, , ′•B q
II

,  and H q
II

,•  : C2(!) →
C(!) as follows

 

Z q
II

,• ( C• •) = Ker d q
2
•, ,

B q
II

,• ( C• •) = Im d q
2

1•, – ,

′•Z q
II

, ( C• •) = Cok d q
2

1•, – ,

′•B q
II

, ( C• •) = Coim d q
2
•,  = Im d q

2
•,  = B q

II
,• + 1( C• •),

H q
II

,• ( C• •) = Z q
II

,• ( C• •)/ B q
II

,• ( C• •).

     Lemma 15.6.  Let X•  → C• •  be a right Cartan-Eilenberg resolution of X•  ∈  Ob(C(!)).

Then for each p ∈  Z we have injective resolutions

 

0 → Zp( X•) → Z p
I

, 0( C• •) → Z p
I

, 1( C• •) → L ,

0 → ′Z p ( X•) → ′Z p
I

, 0 ( C• •) → ′Z p
I

, 1( C• •) → L ,

5

0 → Xp → C p, 0  → C p, 1  → L



of Zp( X•), ′Z p ( X•) and Xp, respectively.

     Proof.  Let n ∈  Z.  Since we have exact sequences

 

0 → Bp
I

, • ( C• •) → Z p
I

, • ( C• •) → H p
I

, • ( C• •) → 0,

0 → H p
I

, • ( C• •) → ′ •Z p
I

, ( C• •) → Bp
I

,+ •1 ( C• •) → 0,

0 → Z p
I

, • ( C• •) → C p, •  → Bp
I

,+ •1 ( C• •) → 0

in C(!), by Proposition 1.3 the assertion follows.

 

     Lemma 15.7.  Assume ! has enough injectives.  Then every X•  ∈  Ob(C(!)) has a right

Cartan-Eilenberg resolution X•  → C• • .

 

     Proof.  Take injective resolutions Hp( X•) → H p, • , Bp( X•) → Bp, •  of Hp( X•) and Bp( X•),

respectively, for all p ∈  Z.  Then, for each p ∈  Z, by Proposition 2.7 we get an injective

resolution Zp( X•) → Z p, •  of Zp( X•) and a commutative diagram in C(!) with exact rows and

columns

 

0 → Bp( X•) → Zp( X•) → Hp( X•) → 0

↓ ↓ ↓

0 → Bp, • → Z p, • → H p, • → 0 ,

thus again by Proposition 2.7 we get an injective resolution Xp → Zp( X•) of Xp and a

commutative diagram in C(!) with exact rows and columns

 

0 → Zp( X•) → Xp → Bp + 1( X•) → 0

↓ ↓ ↓

0 → Z p, • → C p, • → Bp + •1, → 0 .

Consequently, we get a right Cartan-Eilenberg resolution X•  → C• • .

     Definition 15.8.  Let u ∈  C(!)( X• , Y • ) and X•  → C• • , Y •  → D• •  right resolutions of X•

and Y • , respectively.  Then a morphism û  ∈  C2(!)( C• • , D• • ) is said to be lying over u if

HII
,• 0( û ) = u.
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     Remark 15.6.  If X•  → C• •  is a right resolution of X• , then d1 is lying over dX.



 

     Lemma 15.8.  Let u ∈  C(!)( X• , Y • ) and X•  → C• • ,  Y •  → D• •  right Cartan-Eilenberg

resolutions of X•  and Y • , respectively.  Then there exists û  ∈  C2(!)( C• • , D• • ) lying over u.

 

     Proof.  For each p ∈  Z, by Lemma 1.8 there exist ˆ ,z p • ∈  C(!)( Z p
I

, • ( C• •), Z p
I

, • ( D• • ))

lying over Zp(u) and ˆ ,b p + •1  ∈  C(!)( Bp
I

,+ •1 ( C• •), Bp
I

,+ •1 ( D• • )) lying over Bp + 1(u) and then by

Proposition 3.14 there exists ˆ ,up •  ∈  C(!)( C p, • , Dp, •) lying over un which makes the following

diagram in C(!) commute

 

0 → Z p
I

, • ( C• •) → C p, • → Bp
I

,+ •1 ( C• •) → 0

ˆ ,
z

p • ↓ ↓ ˆ ,
u

p • ↓ ˆ ,
b

p + •1

0 → Z p
I

, • ( D• • ) → Dp, • → Bp
I

,+ •1 ( D• • ) → 0 .

It follows by Lemma 15.2 that û  = {up, q} ∈  C2(!)( C• • , D• • ).  Also, H p
II

, 0( û ) = H 0( ˆ ,up • ) =

up for all p ∈  Z.

 

     Lemma 15.9.  Let u, v ∈  C(!)( X• , Y • ) with u . v.  Let µ : X•  → C• • , ν : Y •  → D• •  be

right Cartan-Eilenberg resolutions of X•  and Y • , respectively, and û , v̂  ∈  C2(!)( C• • , D• • )

lying over u and v, respectively.  Then û  . v̂  .

 

     Proof.  Let h : u . v.

 

     Claim 1: There exists h1 ∈     !
Z2

(T1( C• •), D• • ) such that ν o h = h1 o T1(µ) and d2 o h1 +

T2(h1) o T1(d2) = 0.

 

     Proof. For each p ∈  Z, by Lemma 1.8 there exists hp
1

, •  ∈  C(!)( C p + •1, , Dp, •) lying over hp

∈  !(Xp + 1 , Yp).  Since ν p o hp = h1
p, 0 o µp + 1 for all p ∈  Z, we have ν o h = h1 o T1(µ).  Also, for

any p, q ∈  Z, since

 

(– 1)p d p q
2

,  o hp q
1

,  = hp q
1

1, +  o (– 1)p + 1 d p q
2

1+ , ,

we have d p q
2

,  o hp q
1

,  + hp q
1

1, +  o  d p q
2

1+ ,  = 0.  Thus d2 o h1 + T2(h1) o T1(d2) = 0.

     Claim 2: h1 o d1 + T1
– 1(d1 o h1) ∈  C2(!)( C• • , D• • ) and is lying over u – v.

 

     Proof.  We have
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            d1 o (h1 o d1 + T1
– 1(d1 o h1)) = d1 o h1 o d1



= T1(h1 o d1 + T1
– 1(d1 o h1)) o d1,

            d2 o (h1 o d1 + T1
– 1(d1 o h1)) = d2 o h1 o d1 + d2 o T1

– 1(d1) o T1
– 1(h1)

= – T2(h1) o T1(d2) o d1 + d2 o T1
– 1(d1) o T1

– 1(h1)

= T2(h1 o d1) o d2 – T1
– 1(T2(d1)) o T1

– 1(d2) o T1
– 1(h1)

= T2(h1 o d1) o d2 + T1
– 1(T2(d1)) o T1

– 1(T2(h1)) o d2

= T2(h1 o d1) o d2 + T1
– 1(T2(d1 o h1)) o d2

= T2(h1 o d1) o d2 + T2(T1
– 1(d1 o h1)) o d2

= T2(h1 o d1 + T1
– 1(d1 o h1)) o d2,

ν o (u – v) = ν o (h o dX + T– 1(dY o h))

= ν o h o dX + ν o T– 1(dY) o T– 1(h)

= h1 o T1(µ) o dX + T1
– 1(d1) o T– 1(ν) o T– 1(h)

= h1 o d1 o µ + T1
– 1(d1) o T– 1(ν o h)

= h1 o d1 o µ + T1
– 1(d1) o T1

– 1(h1 o T1(µ))

= h1 o d1 o µ + T1
– 1(d1) o T1

– 1(h1) o µ

= (h1 o d1 + T1
– 1(d1 o h1)) o µ.

     Claim 3: φ = v̂  + (h1 o d1 + T1
– 1(d1 o h1)) is lying over u.

 

     Proof.  Since v̂  is lying over v, and since h1 o d1 + T1
– 1(d1 o h1) is lying over u – v, it

follows that v̂  + (h1 o d1 + T1
– 1(d1 o h1)) is lying over v + (u – v) = u.

 

     Claim 4: Put ψ = û  – φ.  Then there exists h2 ∈     !
Z2

(T2( C• •), D• • ) such that ψ = h2 o d2 +

T2
– 1(d2 o h2) and d1 o h2 + T1(h2) o T2(d1) = 0.

 

     Proof.  Note that ψ is lying over u – u = 0.  Thus, for each p ∈  Z, by Lemma 3.12 there

exist bp, •  : Bp
I

, • (ψ) . 0 and hp, •  : H p
I

, • (ψ) . 0.  Then, for each p ∈  Z, by Proposition 3.14

there exist z p, •  : Z p
I

, • (ψ) . 0 and hp
2

, •  : ψ p, •  . 0 such that the following diagrams commute

 

0 → T2( Bp
I

, • ( C• •)) → T2( Z p
I

, • ( C• •)) → T2( H p
I

, • ( C• •)) → 0

b
p, • ↓ ↓ z

p, • ↓ h
p, •

0 → Bp
I

, • ( D• • ) → Z p
I

, • ( D• • ) → H p
I

, • ( D• • ) → 0,
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0 → T2( Z p
I

, • ( C• •)) → T2( C p, •) → T2( Bp
I

,+ •1 ( C• •)) → 0



z
p, • ↓ ↓ h

p

2

, • ↓ b
p + •1,

0 → Z p
I

, • ( D• • ) → Dp, • → Bp
I

,+ •1 ( D• • ) → 0.

It follows that h q
2
•,  ∈  C(!)( C q• +, 1, D q•, ) and ψ •, q  = h q

2
•,  o d q

2
•,  + d q

2
1•, –  o h q

2
1•, –  for all q ∈

Z.  Thus ψ = h2 o d2 + T2
– 1(d2 o h2).  Also, for any p, q ∈  Z, since

 

(– 1)q d p q
1

,  o hp q
2

,  = hp q
2

1+ ,  o (– 1)q + 1 d p q
1

1, + ,

d p q
1

,  o hp q
2

,  + hp q
2

1+ ,  o  d p q
1

1, +  = 0.  Thus d1 o h2 + T1(h2) o T2(d1) = 0.

 

     Claim 5: (h1, h2): û  . v̂ .

 

     Proof.  By Claims 1, 3 and 4.

     Definition 15.9.  For each n ∈  Z, we define truncation functors σ > n
II , σ ≤ n

II  : C2(!) →
C2(!) as follows:

 

σ >
• • •

n
qCII ( ) ,  = 

C q n

B C q n

q n

q

n

•

• + • •

>
=
<









, ( )

( ) ( )

( )
II

, 1

0

,  σ ≤
• • •

n
qCII ( ) ,  = 

0 ( )

( ) ( )

( )

,

,

q n

Z X q n

C q n

n

q

>
=
<






• •

•
II

for C• •  ∈  C2(!).  We set σ ≥ n
II  = σ > n – 1

II  and σ < n
II  = σ ≤ n – 1

II .

     Lemma 15.10.  The functors σ > n
II , σ ≤ n

II  : C2(!) → C2(!) preserve homotopy classes.

 

     Proof.  Straightforward.

     Lemma 15.11.  Let C• •  ∈ Ob(C2(!)) and n ∈  Z.  Assume H n
II

,• ( C• •) = 0 and put Z•  =

Z n
II

,• ( C• •).  Then we have exact sequences in C(!) of the form

 

0 → t Cn( ( ))σ <
• •II  → t Cn( ( ))σ ≤

• •II  → T – n(C(idZ)) → 0,

0 → T – n(C(idZ)) → t Cn( ( ))σ ≥
• •II  → t Cn( ( ))σ >

• •II  → 0.

     Proof.  Let φ : σ <
• •

n CII ( ) → σ ≤
• •

n CII ( ) be a canonical monomorphism and ψ : σ ≥
• •

n CII ( ) →
σ >

• •
n CII ( ) a canonical monomorphism.  Put D• •  = Cok φ > Ker ψ.  Then, since each double

complex has bounded rows, we have exact sequences.
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0 → t Cn( ( ))σ <
• •II  → t Cn( ( ))σ ≤

• •II  → t( D• • ) → 0,



0 → t( D• • ) → t Cn( ( ))σ ≥
• •II  → t Cn( ( ))σ >

• •II  → 0.

Next, since

 

D q•,  = 
Z q n n

q n n

• =
≠





( – , )

( – , )

1

0 1

and d n
2

1•, –  = idZ , we have t( D• • ) > T– n(C(idZ)).

     Proposition 15.12.  Let µ : X•  → C• •  be a right resolution of X•  ∈  Ob(C(!)).  Assume

there exists n0 ≥ 0 such that C q•,  = 0 for q > n0.  Then t(µ) : X•  → t( C• •) is a quasi-isomorphism.

 

     Proof.  If n0 = 0, then X•  > C• • .  Assume n0 ≥ 1.  Since X•  > σ <
• •

1
II ( )C  and σ ≤

• •
n C

0

II ( ) >
C• • , by Lemma 15.11 the assertion follows.

     Definition 15.10.  A left resolution of a complex X•  ∈  Ob(C(!)) is a morphism ε : C• •  →
X•  in C2(!) such that ({ C q•, }, {d q

2
•, }) is a left resolution of X•  in C(C(!)), i.e., C q•,  = 0 for

q > 0 and

L  → C•, – 1 → C•, 0 →
ε

 X• → 0

is an exact sequence in C(!).  A left resolution ε : C• •  → X•  of X•  is called a projective

resolution if every C q•,  is a projective object of C(!), and is called a left Cartan-Eilenberg

resolution if for each p ∈  Z

 

L  → H p
I

, – 1( C• •) → H p
I

, 0( C• •) → Hp( X•) →  0,

L  → Bp
I

, – 1( C• •) → Bp
I

, 0( C• •) → Bp( X•) → 0

are projective resolutions of Hp( X•) and Bp( X•), respectively.

     Lemma 15.13 (Dual of Lemma 15.6).  Let C• •  → X•  be a left Cartan-Eilenberg

resolution of X•  ∈  Ob(C(!)).  Then for each p ∈  Z we have projective resolutions

 

L → Z p
I

, – 1( C• •) → Z p
I

, 0( C• •) → Zp( X•) → 0,

L → ′Z p
I

, – 1( C• •) → ′Z p
I

, 0 ( C• •) → ′Z p ( X•) → 0,

L → C p, – 1 → C p, 0  → Xp → 0
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of Zp( X•), ′Z p ( X•) and Xp, respectively.



 

     Lemma 15.14 (Dual of Lemma 15.7).  Assume ! has enough projectives.  Then every X•

∈  Ob(C(!)) has a left Cartan-Eilenberg resolution C• •  → X• .

     Definition 15.11.  Let u ∈  C(!)( X• , Y • ) and C• •  → X• , D• •  → Y •  left resolutions of X•

and Y • , respectively.  Then a morphism û  ∈  C2(!)( C• • , D• • ) is said to be lying over u if

HII
,• 0( û ) = u.

     Remark 15.7.  If C• •  → X•  is a left resolution of X• , then d1 is lying over dX.

 

     Lemma 15.15 (Dual of Lemma 15.8).  Let u ∈  C(!)( X• , Y • ) and let C• •  → X• , D• •  →
Y •  be left Cartan-Eilenberg resolutions of X•  and Y • , respectively.  Then there exists û  ∈
C2(!)( C• • , D• • ) lying over u.

 

     Lemma 15.16 (Dual of Lemma 15.9).  Let u, v ∈  C(!)( X• , Y • ) with u . v.  Let C• •  →
X• , D• •  → Y •  be left Cartan-Eilenberg resolutions of X•  and Y • , respectively, and û , v̂  ∈
C2(!)( C• • , D• • ) lying over u and v, respectively.  Then û  . v̂  .

     Proposition 15.17 (Dual of Proposition 15.12).  Let ε : C• •  → X•  be a left resolution of

X•  ∈  Ob(C(!)).  Assume there exists n0 ≤ 0 such that C q•,  = 0 for all q < n0.  Then t(ε) :

t C( )• •  → X•  is a quasi-isomorphism.
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§16.  Left exact functors of finite cohomological dimension

     Throughout this section, ! and @ are abelian categories.  Unless otherwise stated,

functors are covariant functors.

 

     Proposition 16.1.  Let F : ! → @ be an exact functor.  Then  the following hold.

     (1) There exists a unique ∂-functor F’ : D(!) → D(@) such that QF = F’Q.

     (2) (idQF, F’) is a right derived functor of F : K(!) → K(@).

     (3) (F’, idQF) is a left derived functor of F : K(!) → K(@).

     (4) Ker F’ =   D ′!
!( ), where !’ = Ker F.

 

     Proof.  Since QF : K(!) → D(@) vanishes on the acyclic complexes, (1), (2) and (3)

follow by Propositions 13.1 and 14.1.

     (4) Let X•  ∈  Ob(K(!)).  Since Q(F( X•)) = 0 if and only if F( X•) is acyclic, it follows

that F’(Q( X•)) = 0 if and only if F(Hn( X•)) = 0 for all n ∈  Z.

     Lemma 16.2.  Let ( be a subcollection of Ob(!) closed under finite direct sums.  Assume

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (, and

     (2) there exists an integer n ≥ 1 such that if

 

X 0 → X 1 → L → Xn – 1 → Xn → 0

is an exact sequence in ! with X 0, X 1,  L , Xn – 1 ∈  ( then Xn  ∈  (.

     Then for any X•  ∈  Ob(K(!)) there exists a monomorphism X• → I•  in C(!) with I•  ∈
Ob(K(()) which is a quasi-isomorphism.

 

     Proof.  Let X•  ∈  Ob(K(!)).  By hypothesis (1) and Lemma 1.7 we have a right resolution

 

0 → X• →
µ

 I•, 0  → L → I n•, – 1 → I n•,  → 0

of X•with I•, 0 , L , I n•, – 1 ∈  Ob(K(()).  Then by hypothesis (2) I n•,  ∈  Ob(K(()) and t( I• •)

∈  Ob(K(()).  Also, by Proposition 15.12 t(µ) : X•  → t( I• •) is a quasi-isomorphism.

     Lemma 16.3.  Let F : ! → @ be a left exact functor.  Assume there exists a subcollection

( of Ob(!) such that

     (1) there exists an integer n ≥ 1 such that if

 

X 0 → X 1 → L → Xn – 1 → Xn → 0

1



is an exact sequence in ! with X 0, X 1,  L , Xn – 1 ∈  ( then Xn  ∈  (, and

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  (, then the induced

sequence 0 → FX → FY → FZ → 0 is exact.

     Then QF : K(() → D(@) vanishes on the acyclic complexes.

 

     Proof.  Let I•  ∈  Ob(K(()) be an acyclic complex.  Note that by hypothesis (1) Zi( I• ) ∈  (

for all i ∈  Z and that, since F is left exact, F(Zi( I• )) > Zi(F( I• )) for all i ∈  Z.  Let i ∈  Z.  For

an exact sequence

 

0 → Zi( I• ) → Ii → Zi + 1( I• ) → 0,

since Zi( I• ), Ii , Zi + 1( I• ) ∈  (, by hypothesis (2) the induced sequence

 

0 → F(Zi( I• )) → F(Ii) → F(Zi + 1( I• )) → 0

is exact.  Thus the canonical sequence

 

0 → Zi(F( I• )) → F( I• )i → Zi + 1(F( I• )) → 0

is exact.  It follows that F( I• ) is acyclic and Q(F( I• )) = 0.

     Proposition 16.4.  Let F : ! → @ be a left exact functor.  Assume there exists a

subcollection ( of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (, then Y ∈  ( if and only

if Z ∈  (,

     (3) there exists an integer n ≥ 1 such that if

 

X 0 → X 1 → L → Xn – 1 → Xn → 0

is an exact sequence in ! with X 0, X 1,  L , Xn – 1 ∈  ( then Xn  ∈  (, and

     (4) for any exact sequece 0 → X → Y → Z → 0 in ! with X, Y, Z ∈  (, the induced

sequence 0 → FX → FY → FZ → 0 is exact.

     Then both (ξ, RF) and (ζ, R+F) exist and the canonical homomorphism

 

ϕ : R+F → 
  
RF

D
|

( )+ !

is an isomorphism.  Furthermore, ξI is an isomorphism for all I•  ∈  Ob(K(()).

2

 



     Proof.  According to Proposition 13.11, it suffices to show the following.

     Claim : (1) K(() is a full triangulated subcategory of K(!).

     (2) For any X•  ∈  Ob(K(!)), there exists a quasi-isomorphism X• → I•  with I•  ∈
Ob(K(()).

     (3) For any X•  ∈  Ob(K+(!)), there exists a quasi-isomorphism X• → I•  with I•  ∈
Ob(K(() ∩ K+(!)).

     (4) QF : K(() → D(@) vanishes on the acyclic complexes.

 

     Proof.  (1) By hypothesis (2) and Proposition 6.1(2).

     (2) By hypotheses (1), (3) and Lemma 16.2.

     (3) By hypothesis (1) and Proposition 4.7.

     (4) By hypotheses (3), (4) and Lemma 16.3.

 

     Remark 16.1.  In Proposition 16.4, F has cohomological dimension ≤ n on !, i.e., RiF

vanishes on ! for i > n.

 

     Definition 16.1.  Let F : ! → @ be a left exact functor.   Assume the extended ∂-functor F

: K+(!) → K(@) has a right derived functor R+F : D+(!) → D(@).  Then an object X ∈
Ob(!) is called F-acyclic if RiF(X) = 0 for i > 0.

 

     Corollary 16.5.  Let F : ! → @ be a left exact functor.  Assume there exists a

subcollection ( of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (, then Y ∈  ( if and only

if Z ∈  (,

     (3) for any exact sequece 0 → X → Y → Z → 0 in ! with X, Y, Z ∈  (, the induced

sequence 0 → FX → FY → FZ → 0 is exact, and

     (4) F has finite cohomological dimension on !, i.e., there exists n ≥ 1 such that RiF

vanishes on ! for i > n (Note that by Corollary 13.7 R+F exists).

     Then (ξ, RF) exists and the canonical homomorphism

 

ϕ : R+F → RF |
  D+ ( )!

is an isomorphism.  Furthermore, ξI is an isomorphism for all I•  ∈  Ob(K(  ̂()), where   ̂( is

the collection of F-acyclic objects X ∈  Ob(!).

 

     Proof.  According to Proposition 16.4 it suffices to show the following.
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     Claim : (1) For any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈    ̂(.

     (2) If 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈    ̂(, then Y ∈    ̂( if and only

if Z ∈    ̂(.

     (3) If X 0 → X 1 → L → Xn – 1 → Xn → 0 is an exact sequence in ! with X 0, X 1,  L ,   Xn – 1

∈    ̂(, then Xn  ∈    ̂(.

     (4) If 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈    ̂(, then the induced

sequence 0 → FX → FY → FZ → 0 is exact.

     Proof.  (1) It suffices to show ( ,   ̂(.  For any X ∈  ( and i > 0, by Corollary 13.7 RiF(X)

= Hi(R+F(X)) > Hi(Q(F(X))) = 0.

     (2) Since we have a long exact sequence

   L → RiF(X) → RiF(Y) → RiF(Z) → Ri + 1F(X) → L,

RiF(Y) > RiF(Z) for all i > 0.

     (3) Put Zi = Ker(Xi → Xi + 1) for 0 ≤ i < n.  Then by Proposition 13.4

 

RjF(Xn) > Rj + 1F(Zn – 1) > L > Rj + nF(Z 0)

for all j > 0.  It follows by hypothesis (4) that Xn  ∈    ̂(.

     (4) Since F is left exact, F →̃ R 0F canonically.  Thus, since R 1F(X) = 0, by Proposition

13.4 the induced sequence 0 → FX → FY → FZ → 0 is exact.

     Lemma 16.6 (Dual of Lemma 16.2).  Let 3 be a subcollection of Ob(!) closed under

finite direct sums.  Assume

     (1) for any X ∈  Ob(!) there exists a epimorphism P → X in ! with P ∈  3, and

     (2) there exists an integer n ≥ 1 such that if

 

0→ X– n → X– n + 1 → L → X– 1 → X 0

is an exact sequence in ! with X 0, X– 1,  L ,  X– n + 1 ∈  3 then X– n ∈  3.

     Then for any X•  ∈  Ob(K(!)) there exists an epimorphism P• → X•  in C(!) with P•  ∈
Ob(K(3)) which is a quasi-isomorphism.

     Lemma 16.7 (Dual of Lemma 16.3).  Let G : ! → @ be a right exact functor.  Assume

there exists a subcollection 3 of Ob(!) such that

     (1) there exists an integer n ≥ 1 such that if
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0→ X– n → X– n + 1 → L → X– 1 → X 0



is an exact sequence in ! with X 0, X– 1,  L ,  X– n + 1 ∈  3 then X– n ∈  3, and

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact.

     Then QG : K(3) → D(@) vanishes on the acyclic complexes.

     Proposition 16.8 (Dual of Proposition 16.4).  Let G : ! → @ be a right exact functor.

Assume there exists a subcollection 3 of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism P → X in ! with P ∈  3,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only

if X ∈  3,

     (3) there exists an integer n ≥ 1 such that if

 

0→ X– n → X– n + 1 → L → X– 1 → X 0

is an exact sequence in ! with X 0, X– 1,  L ,  X– n + 1 ∈  3 then X– n ∈  3, and

     (4) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact.

     Then both (LG, ξ) and (L–G, ζ) exist and the canonical homomorphism

 

ϕ : LG |
  D– ( )!

 → L–G

is an isomorphism.  Furthermore, ξP is an isomorphism for all P•  ∈  Ob(K(3)).

 

     Remark 16.2.  In Proposition 16.8, G has homological dimension ≤ n on !, i.e., L iG

vanishes on ! for i > n.

 

     Definition 16.2.  Let G : ! → @ be a right exact functor.   Assume the extended ∂-functor

G : K–(!) → K(@) has a right derived functor L–G : D–(!) → D(@).  Then an object X ∈
Ob(!) is called G-acyclic if L iG(X) = 0 for i > 0.

     Corollary 16.9 (Dual of Corollary 16.5).  Let G : ! → @ be a right exact functor.

Assume there exists a subcollection 3 of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism P → X in ! with P ∈  3,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only

if X ∈  3,

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact, and
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     (4) G has finite homological dimension on !, i.e., there exists n ≥ 1 such that LiG



vanishes on ! for i > n (Note that by Corollary 14.7 L–G exists).

     Then (LG, ξ) exists and the canonical homomorphism

 

ϕ : LG |
  D– ( )!

 → L–G

is an isomorphism.  Furthermore, ξP is an isomorphism for all P•  ∈  Ob(K(  ̂3)), where   ̂3  is

the collection of G-acyclic objects X ∈  Ob(!).

 

     Proposition 16.10.  Assume ! has enough injectives and @ has enough projectives.  Let

F : ! → @ be a functor which has a left adjoint G : @ → !.  Assume F has finite

cohomological dimension on ! and G has finite homological dimension on @ (Note that by

Corollary 13.7 R+F exists and by Corollary 14.7 L–G exists).  Then the following hold.

     (1) The extended ∂-functor F : K(!) → K(@) has a right derived functor (ξ, RF).

     (2) The extended ∂-functor G : K(@) → K(!) has a left derived functor (LG, ζ).

     (3) LG is a left adjoint of RF.

     (4) Assume G (resp. F) is exact.  Then, if F (resp. G) is fully faithful, so is RF (resp. LG).

 

     Proof.  (1) By Corollaries 13.7 and 16.5.

     (2) By Corollaries 14.7 and 16.9.

     (3) By Proposition 3.10 G is a left adjoint of F.  Let ε : 1K(@) → FG, δ : GF → 1K(!) be the

unit and the counit, respectively.

 

     Claim 1: There exists θ ∈  Hom (LG o RF, 1D(!)) such that Qδ o ζF = θQ o LGξ.

 

     Proof.  Let ( be the collection of objects X ∈  Ob(!) such that RiF(X) = 0 for i > 0.  By

Corollary 16.5 and Lemma 16.2, for any X•  ∈  Ob(K(!)) there exists a quasi-isomorphism

X• → I•  with I•  ∈  Ob(K(()).  Also, ξI is an isomorphism for all I•  ∈  Ob(K(()).  For each

X•  ∈  Ob(K(!)), take a quasi-isomorphism s : X• → I•  with I•  ∈  Ob(K(()) and set

 

θX = Q(s)– 1 o QδI o ζFI o LG(ξI
– 1) o LG(RF(Q(s))) : LG(RF(Q( X•))) → Q( X•).

Then θ ∈  Hom (LG o RF o Q, Q) and Qδ o ζF = θ o LGξ.  By Proposition 9.11 there exists θ
∈  Hom (LG o RF, 1D(!)) such that θ = θQ.

 

     Claim 2: There exists η ∈  Hom (1D(@), RF o LG) such that ξG o Qε = RFζ o ηQ.

 

     Proof.  By the dual argument of Claim 1.
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     Claim 3: RFθ o ηRF = idRF.



 

     Proof.  We have commutative diagrams

 

Q o F  →
Q Fε

Q o F o G o F  →
QFδ

Q o F

ηQF ↓ ↓ ξGF ↓ ξ

RF o LG o Q o F  →
RF Fζ

RF o Q o G o F  →
RFQδ

RF o Q ,

 

Q o F  →
ηQF

RF o LG o Q o F  →
RF Fζ

RF o Q o G o F

ξ ↓ ↓ RFLGξ  ↓ RFQδ

RF o Q  →
ηRFQ

RF o LG o RF o Q  →
RF Qθ

RF o Q .

Thus (RFθ o η RF)Q o ξ = ξ o Q(Fδ o εF) = ξ and by Proposition 13.2 RFθ o ηRF = idRF.

 

     Claim 4: θLG o LGη = idLG.

 

     Proof.  By the dual argument of Claim 3.

 

     (4) Note that ζ is an isomorphism.  Assume δ is an isomorphism.  Then for any I•  ∈
Ob(K(()), since Qδ o ζF = θQ o LGξ, and since ξI is an isomorphism, θQI is an isomorphism.

It follows thatθ is an isomorphism.

     Proposition 16.11.  Assume ! has enough injectives and let F : ! → @ be a left exact

functor.  Assume F has cohomological dimension ≤ n on !, i.e., RiF vanishes on ! for i > n

(Note that by Corollary 13.7 R+F exists).  Put G = RnF : ! → @.  Let 3 be the collection of

X ∈  Ob(!) with RiF(X) = 0 for i  n and assume that for any X ∈  Ob(!) there exists an

epimorphism P → X in ! with P ∈  3.  Then both RF and LG exist and there exists an

isomorphism of ∂-functors η : RF →̃ LG o T– n.

 

     Proof.  Let ( be the collection of X ∈  Ob(!) with RiF(X) = 0 for i > 0.

 

     Claim 1: (1) ( contains every injective objects of !, so that for any X ∈  Ob(!) there

exists a monomorphism X → I in ! with I ∈  (.

     (2) If 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (, then Y ∈  ( if and only

if Z ∈  (.

     (3) If X 0 → X 1 → L → Xn – 1 → Xn → 0 is an exact sequence in ! with X 0, X 1,  L , Xn – 1

∈  (, then Xn  ∈  (.
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     (4) If 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (, then the induced



sequence 0 → FX → FY → FZ → 0 is exact.

 

     Proof.  (1) Let I ∈  Ob(!) be injective.  Then R+F(I) > F(I) and RiF(X) > Hi(F(I)) = 0 for

all i > 0.

     (2) RiF(Y) > RiF(Z) for all i > 0.

     (3) Put Zi = Ker(Xi → Xi + 1) for 0 ≤ i < n.  Then RiF(Xn) > Ri + 1F(Zn – 1) > L > Ri + nF(Z 0)

= 0 for all i > 0.

     (4) Since F is left exact, F →̃ R 0F canonically.  Also, since R 1F(X) = 0, the induced

sequence 0 → R 0F(X) → R 0F(Y) → R 0F(Z) → 0 is exact.

 

     Claim 2: (1) For any X•  ∈  Ob(K(!)) there exists a quasi-isomorphism X• → I•  with I•

∈  Ob(K(()).

     (2) QF : K(() → D(@) vanishes on the acyclic complexes.

 

     Proof.  (1) By Claim 1 and Lemma 16.2.

     (2) By Claim 1 and Lemma 16.3.

 

     Claim 3: R F exists.

 

     Proof.  By Claim 2 and Proposition 13.6.

 

     Claim 4: G = RnF : ! → @ is right exact.

 

     Proof.  Let 0 → X → Y → Z → 0 be an exact sequence in !.  Then, since Rn + 1F(X) = 0,

the induced sequence RnF(X) → RnF(Y) → RnF(Z) → 0 is exact.

 

     Claim 5: (1) For any X ∈  Ob(!) there exists an epimorphism P → X in ! with P ∈  3.

     (2) If 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only

if X ∈  3.

     (3) If 0→ X– n → X– n + 1 → L → X– 1 → X 0 is an exact sequence in ! with X 0, X– 1,  L ,  X–

n + 1 ∈  3, then X– n ∈  3.

     (4) If 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact.

 

     Proof.  (1) By hypothesis.

     (2) RiF(Y) > RiF(Z) for all i ≥ 0.

     (3) Put Z’i = Cok(Xi – 1 → Xi ) for – n ≤ i < 0.  Then, since R 0F is left exact, R 0F(Z’i)

embeds in R 0F(Xi + 1) = 0 for – n ≤ i < 0.  Thus RiF(X– n) > L > R 0F(Z’ – n + i) = 0 for 0 ≤ i <

8

n.



     (4) We have Rn + 1F(X) = Rn – 1F(Z) = 0.

 

     Claim 6: (1) For any X•  ∈  Ob(K(!)) there exists a quasi-isomorphism P• → X•  with P•

∈  Ob(K(3)).

     (2) QG : K(3) → D(@) vanishes on the acyclic complexes.

 

     Proof.  (1) By Claim 5 and Lemma 16.6.

     (2) By Claim 5 and Lemma 16.7.

 

     Claim 7: L G exists.

 

     Proof.  By Claim 6 and Proposition 14.6.

 

     Claim 8: There exists an isomorphism of ∂-functors η : RF →̃ LG o T– n.

 

     Proof.  Let X•  ∈  Ob(K(!)).  Let µ : X•  → C• •  be a right Cartan-Eilenberg resolution of

X•  and put I• •  = σ ≤
• •

n CII ( ).  Then by (1) of Claim 1 we have an exact sequence in C(!)

 

0 → X• →
µ

 I•, 0  →  L  → I n•, – 1 → I n•,  → 0

with I•, 0 , L , I n•, – 1 ∈  Ob(K(()).  Thus by (3) of Claim 1 I n•,  ∈  Ob(K(()), so that t( I• •) ∈
Ob(K(()).  Also, by Proposition 15.12 t(µ) : X•  → t( I• •) is a quasi-isomorphism.  Thus

RF(Q( X•)) > RF(Q(t( I• •)))

> Q(F(t( I• •)))

> Q(t(F( I• •))).

Applying F to a right resolution

 

0 → X• →
µ

 I•, 0  → L → I n•, – 1 → I n•,  → 0,

we get a complex in C(!)

 

L → 0 → F( I•, 0 ) → L → F( I n•, – 1) → F( I n•, ) →
ε

 G( X•) → 0 → L ,

namely, we get a morphism ε : F( I• •) → T2
– n(G( X•)) in C2(!).  Thus we get a morphism

t(ε) : t(F( I• •)) → t(T2
– n(G( X•))) = G(T – n( X•))
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in C(!).  Consequently, we get a morphism in D(@)

ζX : RF(Q( X•)) → Q(G(T – n( X•))).

It follows by Lemmas 15.5, 15.7, 15.8, 15.9 and 15.10 that ζX is natural in X• .  Thus we have

a homomorphism of ∂-functors ζ ∈  Hom (RF o Q, Q o G o T – n).  Note that LG o T – n is a left

derived functor of G o T – n.  Let ξ : LG o T – n o Q → Q o G o T – n be the canonical

homomorphism.  Since we have an isomorphism

Hom (RF, LG o T – n) →̃ Hom (RF o Q, Q o G o T – n), η a ξ o ηQ,

there exists a unique η ∈  Hom (RF, LG o T – n) with ζ = ξ o ηQ.  Consider now the case X•  ∈
Ob(K(3)).  Then ε : F( I• •) → T2

– n(G( X•)) is a left resolution and by Proposition 15.17 t(ε) is

a quasi-isomorphism.  Thus ζX is an isomorphism.  Then, since by Proposition 14.6 ξX is an

isomorphism, so is η QX.  Since the canonical functor Q : K(3) → D(!) is dense, it follows

that η is an isomorphism.

     Proposition 16.12 (Dual of Proposition 16.11).  Assume ! has enough projectives and let

G : ! → @ be a right exact functor.  Assume G has homological dimension ≤ n on !, i.e.,

LiG vanishes on ! for i > n (Note that by Corollary 14.7 L–G exists).  Put F = LnG : ! → @.

Let ( be the collection of X ∈  Ob(!) with L iG(X) = 0 for i  n and assume that for any X ∈
Ob(!) there exists a monomorphism X → I in ! with I ∈  (.  Then both LG and RF exist and

there exists an isomorphism of ∂-functors η : RF o Tn →̃ LG.
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§17.  Derived functors of bi-∂-functors

     Throughout this section, !, @, # and $ are abelian categories and K*(!), K†(@) are

localizing subcategories of K(!) and K(@), respectively.  Unless stated otherwise, bifunctors

are contravariant in the first variable and covariant in the second variable.

 

     Definition 17.1.  A bi-∂-functor F = (F, α , β) : K*(!)op × K†(@) → K(#) is a bifunctor F :

K*(!)op × K†(@) → K(#) together with isomorphisms of bifunctors

α  : F o (1 × T) →̃ T o F,     β : F o (T– 1 × 1) →̃ T o F

such that

 

F( X• , –) = (F( X• , –), α (X , –)) : K
†(@) → K(#),

F(–, M•) = (F(–, M•), β(–, M)) : K
*(!) → K(#)

are ∂-functors for all X•  ∈  Ob(K*(!)), M• ∈  Ob(K†(@)).

     The same definiton is also made for bifunctors of the form

 

K*(!)op × D†(@) → D(#),  D*(!)op × K†(@) → D(#)  and  D*(!)op × D†(@) → D(#).

     Remark 17.1.  For a bi-∂-functor F = (F, α , β) : K*(!)op × K†(@) → K(#), the following

are equivalent (cf. Proposition 7.8(5)).

     (1) Tα  o β(1 × T) + Tβ o α
( )–T 1 × 1

 = 0.  This is the case if F = Hom•  or ⊗  (see Lemmas 18.2

and 19.2, respectively).

     (2) For any M• ∈  Ob(K†(@)),

 

α (–, M) : F(–, T M•) →̃ T o F(–, M•)

is an isomorphism of ∂-functors.

     (3) For any X•  ∈  Ob(K*(!)),

 

β(X, –) : F(T– 1 X• , –) →̃ T o F( X• , –)

is an isomorphism of ∂-functors.

 

     Remark 17.2.  Let F = (F, α , β) : K*(!)op × K†(@) → K(#) be a bi-∂-functor.  Then by

1

Proposition 7.9(1)



 

α (X, –) : F( X• , –) o T →̃ T o F( X• , –),     β(–, M) : F(–, M•) o T– 1 →̃ T o F(–, M•)

are isomorphisms of ∂-functors for all X•  ∈  Ob(K*(!)), M• ∈  Ob(K†(@)).

     Remark 17.3.  Let F = (F, α , β) : K*(!)op × K†(@) → K(#) be a bi-∂-functor.  Then the

following hold.

     (1) If H = (H, θ) : K(#) → K($) is a ∂-functor, then

 

HF = (HF, θF o Hα, T– 1θTF o Hβ) : K*(!)op × K†(@) → K($)

is a bi-∂-functor.

     (2) If K# ($) is a localizing subcategory of K($) and H = (H, θ) : K# ($) → K†(@) is a

∂-functor, then

 

F o (1 × H) = (F o (1 × H), α (1 × H) o F(1 × θ), β(1 × H)) : K
*(!)op × K# ($) → K(#)

is a bi-∂-functor.

     (3) If K# ($) is a localizing subcategory of K($) and H = (H, θ) : K# ($) → K*(!) is a

∂-functor, then

 

F o (H × 1) = (F o (H × 1), α (H × 1), β(H × 1) o F(θ × 1)) : K# ($)op × K†(@) → K(#)

is a bi-∂-functor.

     Definition 17.2.  Let (F, α , β), (G, γ, δ) : K*(!)op × K†(@) → K(#) be bi-∂-functors.  A

homomorphism of bi-∂-functors ζ : (F, α , β) → (G, γ, δ) is a homomorphism of bifunctors ζ :

F → G such that Tζ o α  = γ o ζ (1 × T) and Tζ o β = δ o ζ
( )–T 1 × 1

.

 

     Remark 17.4.  Let (F, α , β) and (G, γ, δ) : K*(!)op × K†(@) → K(#) be bi-∂-functors and

ζ : (F, α, β) → (G, γ, δ) a homomorphism of bi-∂-functors.  Then the following hold.

     (1) For any X•  ∈  Ob(K*(!)), ζ (X, –) : F( X• , –) → G( X• , –) is a homomorphism of

∂-functors.

     (2) For any M• ∈  Ob(K†(@)), ζ (–, M) : F(–, M•) → G(–, M•) is a homomorphism of

∂-functors.

     (3) If H : K(#) → K($) is a ∂-functor, then Hζ : HF → HG is a homomorphism of

bi-∂-functors.

     (4) If K# ($) is a localizing subcategory of K($) and H : K# ($) → K†(@) is a ∂-functor,

2

then ζ (1 × H) : F o (1 × H) → G o (1 × H) is a homomorphism of bi-∂-functors.



     (5) If K# ($) is a localizing subcategory of K($) and H : K# ($) → K*(!) is a ∂-functor,

then ζ (H × 1) : F o (H × 1) → G o (H × 1) is a homomorphism of bi-∂-functors.

 

     Definition 17.3.  Let F : K*(!)op × K†(@) → K(#) be a bi-∂-functor.  A right derived

functor of F is an initial object of the following category: an object is a pair (ζ, G) of a

bi-∂-functor G : D*(!)op × D†(@) → D(#) and a homomorphism of bi-∂-functors ζ : Q o F →
G o (Q × Q); and a morphism η : (ζ1, G1) → (ζ2, G2) is a homomorphism of bi-∂-functors η :

G1 → G2 such that ζ2 = η (Q × Q) o ζ1.

  

     Throughout the rest of this section,

 

F = (F, α , β) : K*(!)op × K†(@) → K(#)

stands for a bi-∂-functor.

 

     Lemma 17.1.  Assume the following conditions:

     (a) F( X• , –) has a right derived functor ((ξ II)(X, –), RIIF( X• , –)) for all X•  ∈  Ob(K*(!));

and

     (b) K†(@) has a full triangulated subcategory } such that for any M• ∈  Ob(K†(@)) there

exists a quasi-isomorphism M• → I•  with I•  ∈  Ob(}) and (ξ II)(–, I) is an isomorphism for all

I•  ∈  Ob(}).

     Then the following hold.

     (1) RIIF : K*(!)op × D†(@) → D(#) is a bi-∂-functor.

     (2) ξ II : Q o F → RIIF o (1 × Q) is a homomorphism of bi-∂-functors.

     Proof.  We divide the proof into several steps.

 

     Claim 1: RIIF : K*(!)op × D†(@) → D(#) is a bifunctor and ξ  II :  Q o F → RIIF o (1 × Q) is

a homomorphism of bifunctors.

 

     Proof.  It follows by Corollary 13.3(2) that for any u ∈  K*(!)( X• , Y • ) there exists a

unique homomorphism of ∂-functors

 

RIIF(u, –) : RIIF( Y • , –) → RIIF( X• , –)

such that (ξ II)(X, –) o Q(F(u, –)) = RIIF(u, –)Q o (ξ II)(Y, –).  Then for any X•  ∈  Ob(K*(!)), since (ξ

II)(X, –) o Q(F(idX, –)) = (ξ II)(X , –), we have RIIF(idX, –) = id.  Also, for any two consecutive

morphisms u ∈  K*(!)( X• , Y • ) and v ∈  K*(!)( Y • , Z•), since
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(ξ II)(X, –) o Q(F(vu, –)) = (ξ II)(X, –) o Q(F(u, –) o F(v, –))

= (ξ II)(X, –) o Q(F(u, –)) o Q(F(v, –))

= RIIF(u, –)Q o (ξ II)(Y, –) o Q(F(v, –))

= RIIF(u, –)Q o RIIF(v, –)Q o (ξ II)(Z, –)

= (RIIF(u, –) o RIIF(v, –))Q o (ξ II)(Z, –),

we have RIIF(u, –) o RIIF(v, –) = RIIF(vu, –).  Thus RIIF is a bifunctor.  We have seen that

 

(ξ II)(X, –) o Q(F(u, –)) = RIIF(u, –)Q o (ξ  II)(Y, –)

for all u ∈  K*(!)( X• , Y • ).  Thus ξ II is a homomorphism of bifunctors.

     Claim 2: There exists a unique isomorphism of bifunctors φ : RIIF o (1 × T) →̃ T o RIIF

such that T(ξ II) o Q(α) = φ(1 × Q) o (ξ  II)(1 × T).  Furthermore, for any X•  ∈  Ob(K*(!)),

 

RIIF( X• , –) = (RIIF( X• , –), φ(X , –)) : D
†(@) → D(#)

is a ∂-functor.

 

     Proof.  Let X•  ∈  Ob(K*(!)).  Since we have an isomorphism of ∂-functors

 

Q(α(X, –)) : Q o F( X• , –) o T →̃ Q o T o F( X• , –) = T o Q o F( X• , –),

there exists a unique homomorphism of ∂-functors

φ(X, –) : RIIF( X• , –) o T → T o RIIF( X• , –)

such that T((ξ II)(X , –)) o Q(α (X , –)) = (φ(X , –))Q o ((ξ II)(X , –))T, so that by Corollary 13.3(1)

 

RIIF( X• , –) = (RIIF( X• , –), φ(X , –)) : D
†(@) → D(#)

is a ∂-functor.  Similarly, there exists a unique homomorphism of ∂-functors

ϕ(X, –) : T o RIIF( X• , –) → RIIF( X• , –) o T

such that ((ξ II)(X, –))T o Q(α(X, –))
– 1 = (ϕ(X , –))Q o T((ξ II)(X, –)).  Then
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(ϕ(X, –) o φ(X, –))Q o ((ξ II)(X, –))T = ϕ(X, –)Q o (φ(X, –))Q o ((ξ II)(X, –))T



= ϕ(X , –)Q o T((ξ II)(X, –)) o Q(α (X, –))

= ((ξ II)(X, –))T o Q(α (X , –))
– 1 o Q(α (X, –))

= ((ξ II)(X, –))T

and by Proposition 13.2 ϕ(X, –) o φ(X, –) = id.  Similarly, φ(X, –) o ϕ (X, –) = id.  Thus φ(X, –) is an

isomorphism.  Next, let u ∈  K*(!)( X• , Y • ).  Then

(T(RIIF(u, –)) o φ(Y, –))Q o ((ξ II)(X, –))T = T(RIIF(u, –))Q o (φ(Y, –))Q o ((ξ II)(X, –))T

= T(RIIF(u, –))Q o T((ξ II)(Y, –)) o Q(α (Y, –))

= T((ξ II)(X, –)) o T(QF(u, –)) o Q(α(Y, –))

= T((ξ II)(X, –)) o Q(α (X, –)) o Q(F(u, –))T

= (φ(X , –))Q o ((ξ II)(X, –))T o Q(F(u, –))T

= (φ(X , –))Q o RIIF(u, –)QT o  ((ξ II)(X , –))T

= (φ(X , –) o RIIF(u, –)T)Q o  ((ξ II)(X, –))T,

so that T(RIIF(u, –)) o φ(Y, –) = φ(X, –) o RIIF(u, –)T.  It follows that φ is an isomorphism of

bifunctors and T(ξ  II) o Q(α) = φ(1 × Q) o (ξ  II)(1 × T).

     Claim 3: There exists a unique isomorphism of bifunctors ψ : RIIF o (T– 1 × 1) →̃ T o RIIF

such that T(ξ II) o Q(β) = ψ(1 × Q) o (ξ  II) ( )–T 1 × 1
.  Furthermore, for any M• ∈  Ob(D†(@)),

 

RIIF(–, M•) = (RIIF(–, M•), ψ(–, M)) : K
*(!) → D(#)

is a ∂-functor.

 

     Proof.  Let M• ∈  Ob(K†(@)).  Take a quasi-isomorphism s : M• → I•  with I•  ∈  Ob(})

and define an isomorphism of functors

 

ψ(–, QM) : RIIF(–, Q M•) o T– 1 →̃ T o RIIF(–, Q M•)

as a composite

ψ(–, QM) =  T(RIIF(–, Qs)– 1 o (ξ II)(–, I)) o Q(β(–, I)) o ((ξ II)(–, I)
– 1 o RIIF(–, Qs))

T – 1 .

Then, as in the proof of Proposition 13.6, Lemma 13.5 enables us to see that ψ(–, QM) does not

depend on the choice of s and
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T(RIIF(–, Qu)) o ψ(–, QM) = ψ(–, QN) o RIIF(–, Qu)
T – 1

for all u ∈  K†(@)( M•, N • ).  Thus ψ is an isomorphism of bifunctors.  Next, since

ψ(–, QI) = T((ξ  II)(–, I)) o Q(β(–, I)) o ((ξ  II)(–, I)
– 1)

T – 1

for all I•  ∈  Ob(}), it follows that T(ξ II) o Q(β) = ψ(1 × Q) o (ξ  II) ( )–T 1 × 1
 and ψ is unique.

Finally, since

 

Q o F(–, I• ) = (Q o F(–, I• ), Q(β(–, I))) : K
*(!) → D(#)

is a ∂-functor, it follows by Proposition 7.8(3) that

 

RIIF(–, Q M•) = (RIIF(–, Q M•), ψ(–, QM)) : K
*(!) → D(#)

is a ∂-functor.

     Remark 17.5.  If Tα o β(1 × T) + Tβ o α
( )–T 1 × 1

 = 0, then Tφ o ψ(1 × T) + Tψ o φ
( )–T 1 × 1

 = 0.

     By symmetry, the following holds.

     Lemma 17.2.  Assume the following conditions:

     (a) F(–, M•) has a right derived functor ((ξ I)(–, M), RIF(–, M•)) for all M• ∈  Ob(K†(@));

and

     (b) K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K†(@)) there

exists a quasi-isomorphism P•  → X•  with P•  ∈  Ob(+) and (ξ I)(P, –) is an isomorphism for all

P•  ∈  Ob(+).

     Then the following hold.

     (1) RIF : D*(!)op × K†(@) → D(#) is a bi-∂-functor.

     (2) ξ I : Q o F → RIF o (Q × 1) is a homomorphism of bi-∂-functors.

     Proposition 17.3.  Assume the following conditions:

     (a) F( X• , –) has a right derived functor ((ξ II)(X, –), RIIF( X• , –)) for all X•  ∈  Ob(K*(!));

     (b) K†(@) has a full triangulated subcategory } such that for any M• ∈  Ob(K†(@)) there

exists a quasi-isomorphism M• → I•  with I•  ∈  Ob(}) and (ξ II)(–, I) is an isomorphism for all

I•  ∈  Ob(});

     (c) RIIF(–, M•) has a right derived functor ((ξ I)(–, M), RIRIIF(–, M•)) for all M• ∈
Ob(D†(@)); and
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     (d) K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K†(@)) there



exists a quasi-isomorphism P•  → X•  with P•  ∈  Ob(+) and (ξ I)(P, –) is an isomorphism for all

P•  ∈  Ob(+).

     Then the following hold.

     (1) RIRIIF : D*(!)op × D†(@) → D(#) is a bi-∂-functor.

     (2) ξ = (ξ  I)(1 × Q) o ξ II : Q o F → RIIRIF o (Q × Q) is a homomorphism of bi–∂-functors.

     (3) (ξ, RIRIIF) is a right derived functor of F.

 

     Proof.  We use the same notation as in the proof of Lemma 17.1.  By Lemma 17.1 RIIF =

(RIIF, φ, ψ) is a bi-∂-functor and

 

ξ II : Q o F → RIIF o (1 × Q)

is a homomorphism of bi-∂-functors.  Also, applying Lemma 17.2 to RIIF, we conclude that

RIRIIF is a bi-∂-functor and

ξ I : RIIF → RIIRIF o (Q × 1)

is a homomorphism of bi–∂-functors.  Then, since

(ξ I)(1 × Q) : RIIF o (1 × Q) → RIIRIF o (Q × Q)

is also a homomorphism of bi–∂-functors, so is the composite

ξ = (ξ I)(1 × Q ) o ξ II : Q o F → RIIRIF o (Q × Q).

     Next, let (ζ, G) be a pair of a bi-∂-functor G = (G, γ, δ): D*(!)op × D†(@) → D(#) and a

homomorphism of bi-∂-functors ζ : Q o F → G o (Q × Q).  We claim that there exists a

unique homomorphism of bi-∂-functors η : (ξ, RIRIIF) → (ζ, G) such that ζ = η(Q × Q) o ξ.  We

divide the proof into several steps.

     Claim 1: There exists a unique homomorphism of bifunctors κ : RIIF → G o (Q × 1) such

that ζ = κ(1 × Q) o ξ II.  Furthermore, for any X•  ∈  Ob(K*(!)),

 

κ (X, –) : RIIF( X• , –) → G( Q X• , –)

is a homomorphism of ∂-functors.

     Proof.  For any X•  ∈  Ob(K*(!)), since we have a homomorphism of ∂-functors
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ζ (X , –) : Q o F( X• , –) → G( Q X• , –) o Q,

there exists a unique homomorphism of ∂-functors

 

κ (X, –) : RIIF( X• , –) → G( Q X• , –)

such that ζ (X , –) = (κ(X, –))Q o (ξ II)(X, –).  Then for any u ∈  K*(!)( X• , Y • ), since

 

(κ (X, –) o RIIF(u, –))Q o (ξ II)(Y, –) = (κ(X, –))Q o RIIF(u, –)Q o (ξ II)(Y, –)

= (κ(X, –))Q o (ξ II)(X, –) o Q(F(u, –))

= ζ (X, –) o Q(F(u, –))

= G( Q(u), –)Q o ζ (Y, –)

= G( Q(u), –)Q o (κ(Y, –))Q o (ξ II)(Y, –)

= (G( Q(u), –) o κ(Y, –))Q o (ξ II)(Y, –),

by Proposition 13.2 κ (X, –) o RIIF(u, –) = G( Q(u), –) o κ (Y, –).  Thus κ is a homomorphism of

bifunctors.  It then follows that ζ = κ (1 × Q) o ξ II.  Also, since

κ (–, QI) = ζ (–, I) o (ξ  II)(–, I)
– 1

for all I•  ∈  Ob(}), it follows that κ is unique.

     Claim 2: κ : RIIF → G o (Q × 1) is a homomorphism of bi-∂-functors.

 

     Proof.  Let X•  ∈  Ob(K*(!)).  Since κ (X , –): RIIF( X• , –) → G(Q X• , –) is a homomorphism

of ∂-functors, we have T(κ(X, –)) o φ(X , –) = γ(QX, –) o (κ(X, –))T.  Thus Tκ o φ = γ(Q × 1) o κ (1 × T).  It

remains to see that Tκ  o ψ = δ(Q × 1) o κ ( )–T 1 × 1
.  We have isomorphisms of ∂-functors

 

Q(β(X, –)) : Q o F(T– 1 X• , –) →̃ T o Q o F( X• , –),

(ψ(X, –))Q : RIIF(T– 1 X• , –) o Q →̃ T o RIIF( X• , –) o Q,

(δ(QX , –))Q : G(T– 1Q X• , –) o Q →̃ T o G(Q X• , –) o Q.

Also, since ξ II and ζ are homomorphisms of bi-∂-functors, we have

T((ξ II)(X , –)) o Q(β(X , –)) = (ψ(X , –))Q o (ξ II) ( , –)–T X1 ,

T(ζ (X, –)) o Q(β(X, –)) = (δ(QX, –))Q o ζ
( , –)–T X1 .
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Thus

((Tκ o ψ)(X, –))Q o (ξ II) ( , –)–T X1  = T((κ(1 × Q))(X, –)) o (ψ(X, –))Q o (ξ II) ( , –)–T X1

= T((κ (1 × Q))(X , –)) o T((ξ II)(X, –)) o Q(β(X, –))

= T((κ (1 × Q) o ξ II)(X, –)) o Q(β(X, –))

= T(ζ (X, –)) o Q(β(X, –))

= (δ(QX, –))Q o ζ
( , –)–T X1

= (δ(QX, –))Q o (κ(1 × Q) o (ξ II)) ( , –)–T X1

= (δ(QX, –))Q o (κ(1 × Q)) ( , –)–T X1  o (ξ II) ( , –)–T X1

= ((δ(Q × 1) o κ
( )–T 1 × 1

)(X, –))Q  o (ξ II) ( , –)–T X1 .

It follows by Proposition 13.2 that (Tκ  o ψ)(X , –) = (δ(Q × 1) o κ ( )–T 1 × 1
)(X, –).

     Claim 3: There exists a unique homomorphism of bifunctors η : RIRIIF → G such that κ  =

η(Q × 1) o ξ I.  Furthermore, for any M• ∈  Ob(D†(@)),

 

η(–, M) : RIRIIF(–, M•) → G(–, M•)

is a homomorphism of ∂-functors for all and.

 

     Proof.  For any M• ∈  Ob(D†(@)), since by Claim 2

 

κ (–, M) : RIIF(–, M•) → G(–, M•) o Q

is a homomorphism of ∂-functors, there exists a unique homomorphism of ∂-functors

 

η(–, M) : RIRIIF(–, M•) → G(–, M•)

such that κ (–, M) = (η(–, M))Q o (ξ I)(–, M).  Then for any u ∈  D†(@)( M•, N • ) we have

 

(η(–, N) o RIRIIF(–, u))Q o (ξ I)(–, M) = (η(–, N))Q o RIRIIF(–, u)Q o (ξ I)(–, M)

= (η(–, N))Q o (ξ I)(–, N) o RIIF(–, u)

= κ(–, N) o RIIF(–, u)

= G(–, u)Q o κ (–, M)

= G(–, u)Q o (η(–, M))Q o (ξ I)(–, M)

= (G(–, u) o η(–, M))Q o (ξ I)(–, M).
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Thus by Proposition 13.2 η (–, N) o RIRIIF(–, u) = G(–, u) o η(–, M).  Hence η is a homomorphism

of bifunctors and satisfies κ = η(Q × 1) o ξ I.  Also, since

η(QP, –) = κ (P, –) o (ξ  I)(P, –)
– 1

for all P•  ∈  Ob(+), it follows that η is unique.

     Claim 4: η is a homomorphism of bi-∂-functors and satisfies ζ = η (Q × Q) o ξ.

 

     Proof.  Since κ  = η(Q × 1) o ξ I and both ξ I and κ are homomorphisms of bi-∂-functors, it

follows by the same argument as in the proof of Claim 2 that η(Q  × 1) is also a homomorphism

of bi-∂-functors.  It then follows that η  is a homomorphism of bi-∂-functors.  Also, by Claims

1 and 3 we have ζ = η(Q × Q) o ξ.

     Claim 5: η is unique.

 

     Proof.  Let ϕ : RIRIIF → G be a homomorphism of bi-∂-functors with ζ = ϕ (Q × Q) o ξ.  Then

 

(ϕ(Q × 1) o ξ I)(1 × Q) o ξ II = ϕ(Q × Q) o (ξ I)(1 × Q) o ξ II

= ϕ(Q × Q) o ξ
= ζ
= κ(1 × Q) o ξ II.

Thus, for any X•  ∈  Ob(K*(!)), we have

((ϕ(Q × 1) o ξ I)(X, –))Q o (ξ II)(X, –) = (κ (X, –))Q o (ξ II)(X, –),

and by Proposition 13.2 (ϕ(Q × 1) o ξ I)(X, –) = κ(X , –).  Hence ϕ(Q × 1) o ξ I = κ  and by Claim 3 ϕ = η.

     Changing the order of taking right derived functors, we get the following.

     Proposition 17.4.  Assume the following conditions:

     (a) F(–, M•) has a right derived functor ((ξ I)(–, M), RIF(–, M•)) for all M• ∈  Ob(K†(@));

     (b) K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K†(@)) there

exists a quasi-isomorphism P•  → X•  with P•  ∈  Ob(+) and (ξ I)(P, –) is an isomorphism for all

P•  ∈  Ob(+);

     (c) RIF( X• , –) has a right derived functor ((ξ II)(X, –), RIIRIF( X• , –)) for all X•  ∈
Ob(D*(!)); and
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     (d) K†(@) has a full triangulated subcategory } such that for any M• ∈  Ob(K†(@)) there



exists a quasi-isomorphism M• → I•  with I•  ∈  Ob(}) and (ξII)(–, I) is an isomorphism for all

I•  ∈  Ob(}).

     Then the following hold.

     (1) RIIRIF : D*(!)op × D†(@) → D(#) is a bi-∂-functor.

     (2) ξ = (ξ II)(Q × 1) o ξ I : Q o F → RIIRIF o (Q × Q) is a homomorphism of bi–∂-functors.

     (3) (ξ, RIIRIF) is a right derived functor of F.

 

     Definition 17.4.  Let K*(!), K†(@) be localizing subcategories of K(!) and K(@),

respectively, and F : K*(!)op × K†(@) → K(#) a bi-∂-functor.  A left derived functor of F is a

terminal object of the following category: an object is a pair (G, ζ) of a bi-∂-functor G :

D*(!)op × D†(@) → D(#) and a homomorphism of bi-∂-functors ζ : G o (Q × Q) → Q o F;

and a morphism η : (G1, ζ1) → (G2, ζ2) is a homomorphism of bi-∂-functors η : G1 → G2 such

that ζ1 = ζ2 o η (Q × Q).

     Lemma 17.5 (dual of Lemma 17.1).  Assume the following conditions:

     (a) F( X• , –) has a left derived functor (LIIF( X• , –), (ξII)(X , –)) for all X•  ∈  Ob(K*(!)); and

     (b) K†(@) has a full triangulated subcategory } such that for any M• ∈  Ob(K†(@)) there

exists a quasi-isomorphism P•  → M• with P•  ∈  Ob(}) and (ξII)(–, P) is an isomorphism for

all P•  ∈  Ob(}).

     Then the following hold.

     (1) LIIF : K*(!)op × D†(@) → D(#) is a bi-∂-functor.

     (2) ξ II : LIIF o (Q × 1) → Q o F is a homomorphism of bi–∂-functors.

     Lemma 17.6 (dual of Lemma 17.2).  Assume the following conditions:

     (a) F(–, M•) has a left derived functor (LIF(–, M•), (ξ I)(–, M)) for all M• ∈  Ob(D†(@)); and

     (b) K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K†(@)) there

exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(+) and (ξ I)(I , –) is an isomorphism for all

I•  ∈  Ob(+).

     Then the following hold.

     (1) LIF : D*(!)op × K†(@) → D(#) is a bi-∂-functor.

     (2) ξ I : LIF o (1 × Q) → Q o F is a homomorphism of bi–∂-functors.

     Proposition 17.7 (dual of Proposition 17.3).  Assume the following conditions:

     (a) F( X• , –) has a left derived functor (LIIF( X• , –), (ξII)(X , –)) for all X•  ∈  Ob(K*(!));

     (b) K†(@) has a full triangulated subcategory } such that for any M• ∈  Ob(K†(@)) there

exists a quasi-isomorphism P•  → M• with P•  ∈  Ob(}) and (ξII)(–, P) is an isomorphism for

all P•  ∈  Ob(});

     (c) LIIF(–, M•) has a left derived functor ((LILIIF(–, M•), (ξ I)(–, M)) for all M• ∈
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Ob(D†(@)); and



     (d) K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K†(@)) there

exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(+) and (ξ I)(I , –) is an isomorphism for all

I•  ∈  Ob(+).

     Then the following hold.

     (1) LILIIF : D*(!)op × D†(@) → D(#) is a bi-∂-functor.

     (2) ξ = (ξ II)(Q × 1) o ξ I : LILIIF o (Q × Q) → Q o F is a homomorphism of bi–∂-functors.

     (3) (LILIIF, ξ) is a left derived functor of F.

     Proposition 17.8 (dual of Proposition 17.4).  Assume the following conditions:

     (a) F(–, M•) has a left derived functor (LIF(–, M•), (ξ I)(–, M)) for all M• ∈  Ob(D†(@));

     (b) K*(!) has a full triangulated subcategory + such that for any X•  ∈  Ob(K†(@)) there

exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(+) and (ξ I)(I , –) is an isomorphism for all

I•  ∈  Ob(+);

     (c) LIF( X• , –) has a left derived functor ((LIILIF( X• , –), (ξII)(X , –)) for all X•  ∈  Ob(K*(!));

and

     (d) K†(@) has a full triangulated subcategory } such that for any M• ∈  Ob(K†(@)) there

exists a quasi-isomorphism P•  → M• with P•  ∈  Ob(}) and (ξII)(–, P) is an isomorphism for

all P•  ∈  Ob(}).

     Then the following hold.

     (1) LIILIF : D*(!)op × D†(@) → D(#) is a bi-∂-functor.

     (2) ξ = (ξ I)(1 × Q) o ξ II : LIILIF o (Q × Q) → Q o F is a homomorphism of bi–∂-functors.

     (3) (LIILIF, ξ) is a left derived functor of F.
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§18.  The right derived functor of Hom•

     Throught this section, ! is an abelian category, 8 is the épaisse subcategory of K(!)

consisting of acyclic complexes and ( (resp. 3) is the collection of injective (resp. projective)

objects of !.  We denote by K(()L (resp. K(3)L) the the full subcategory of K(() (resp.

K(3)) consisting of 8-local (resp. 8-colocal) complexes X•  ∈  Ob(K(()).

 

     Definition 18.1.  For X•  and Y •  ∈  Ob(C(!)), we define a double complex C• •  in Mod Z

as follows:

 

Cp, q = !(X– p, Yq),

d p q
1

,  = (– 1)p + q + 1 !( dX
p– ( )+ 1 , Yq),

d p q
2

,  = !(X– p, dY
q )

for p, q ∈  Z, and set Hom• ( X• , Y • ) = t(C• •).  Then we get a bifunctor

 

Hom•  : C(!)op × C(!) → C(Mod Z)

such that

 

Homn ( X• , Y • ) = 
p q n+ =
∏ !(X– p, Yq)

for X• , Y •  ∈  Ob(C(!)) and n ∈  Z, and

 d
X Y

n

Hom• • •( , )
(u) = (– 1)n + 1 u o dX

p– ( )+ 1  + dY
q  o u

 for n ∈  Z,  p, q ∈  Z with p + q = n and u ∈  !(X– p, Yq).

     Lemma 18.1.  For any X• , Y •  ∈  Ob(C(!)) the following hold.

     (1) We may identify Homn ( X• , Y • ) with !Z( X• , Tn( Y • )) for all n ∈  Z.  Then

d
X Y

n

Hom• • •( , )
(u) = (– 1)n + 1{T(u) o dX – d

T Yn  o u} ∈  !Z( X• , Tn + 1( Y • ))

 for n ∈  Z and u ∈  !Z( X• , Tn( Y • )).  In particular, Hom• ( X• , Y • ) ∈  Ob(C(Mod Aop)), where

A = EndC(!)( X•).

     (2) We may identify Homn ( X• , Y • ) with !Z(T– n( X•), Y • ) for all n ∈  Z.  Then

1

 



d
X Y

n

Hom• • •( , )
(u) = u o d

T Xn– ( )+ 1  + T– 1(dY o u) ∈  !Z(T– (n + 1)( X•), Y • )

 for n ∈  Z and u ∈  !Z(T– n( X•), Y • ).  In particular, Hom• ( X• , Y • ) ∈  Ob(C(Mod B)), where

B = EndC(!)( Y • ).

     Proof.  (1) The first assertion is immediate by definition.  Let A = EndC(!)( X•).  Then,

since A is a subring of 
    
End

!Z ( X•), every !Z( X• , Tn( Y • )) is a right A-module.  Also, it

follows by the first assertion that every d
X Y

n

Hom• • •( , )
 is an A-linear map.

     (2) Dual of (1).

 

     Definition 18.2.  For any abelian category ! we denote by ρ : 
    
1

!Z  →̃ 
    
1

!Z  an

automorphism of the identity functor 
    
1

!Z  : !Z → !Z such that ρX
n  = (– 1)n id

X n  for all X ∈
Ob(!Z) and n ∈  Z.

  

     Lemma 18.2.  (1)  For any X• , Y •  ∈  Ob(C(!)) we have

      

d
X TYHom• • •( , )

 = – T( d
X YHom• • •( , )

),     d
T X YHom• • •( , )– 1  = T( d

X YHom• • •( , )
).

     (2) There exist isomorphisms of bifunctors

  

α  : Hom•  o (1 × T) →̃ T o Hom• ,     β : Hom•  o (T– 1 × 1) →̃ T o Hom•

such that for any X•  and Y •  ∈  Ob(C(!))

α (X, Y) = id
Hom• • •( , )X TY

,     β(X, Y) = T( ρ
Hom• • •( , )X Y

).

In particular,  Tα  o β(1 × T) + Tβ o α
( )–T 1 × 1

 = 0.

     Proof.  (1) Straightforward.

     (2) Let X• , Y •  ∈  Ob(C(!)).  Since

 

Homn ( X• , T Y • ) = Homn + 1( X• , Y • ) = Homn (T– 1 X• , Y • )

for all n ∈  Z, we may consider that

Hom• ( X• , T Y • ) = T( Hom• ( X• , Y • )) = Hom• (T– 1 X• , Y • )

in (Mod Z)Z.  Thus by the part (1) we have natural isomorphisms in C(Mod Z)
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α (X, Y) = id
Hom• • •( , )X TY

 : Hom• ( X• , T Y • ) →̃ T( Hom• ( X• , Y • )),

β(X, Y) = T( ρ
Hom• • •( , )X Y

) : Hom• (T– 1 X• , Y • ) →̃ T( Hom• ( X• , Y • )).

It is obvious that  Tα  o β(1 × T) + Tβ o α
( )–T 1 × 1

 = 0.

     Lemma 18.3.  For any X• , Y •  ∈  Ob(C(!)) and n ∈  Z, we have

      

Hn ( Hom• ( X• , Y • )) > K(!)( X• , Tn( Y • )).

     Proof.  Let us identify Homn ( X• , –) with !Z( X• , –) o Tn for all n ∈  Z.  Then we have

 

Zn( Hom• ( X• , Y • )) = {u ∈  !Z( X• , Tn( Y • )) | T(u) o dX = d
T Yn  o u}

= C(!)( X• , Tn( Y • )).

Also, for any v ∈  !Z( X• , Tn – 1( Y • )), since

dn – 1(v) = (– 1)n {T(v) o dX – d
T Yn – 1  o v}

= (– 1)n {T(v) o dX + T– 1( d
T Yn ) o  T– 1(T(v))}

= (– 1)n {T(v) o dX + T– 1( d
T Yn  o T(v))}

with T(v) ∈  !Z(T X• , Tn( Y • )), we have dn – 1(v) ∈  Htp( X• , Tn( Y • )).  Conversely, for any u ∈
Htp( X• , Tn( Y • )), since there exists h ∈  !Z(T X• , Tn( Y • )) such that

u = h o dX + T– 1( d
T Yn  o h)

= (– 1)n dn – 1(T– 1(h)),

we have u ∈  Bn( Hom• ( X• , Y • )).

     Lemma 18.4.  For any u ∈  C(!)( X• , Y • ) and Z•  ∈  Ob(C(!)) the following hold.

     (1) Hom• ( Z• , C(u)) > C( Hom• ( Z• , u)).

     (2) Hom• (C(u), Z•) > Cρ(T
– 1( Hom• (u, Z•))) (see Proposition 2.10).

 

     Proof.  (1) Let us identify Homn ( Z• , –) with !Z( Z• , –) o Tn for all n ∈  Z.  Then for any  t[f

g] ∈  Homn ( Z• , C(u)) > !Z( Z• , Tn + 1( X•)) ⊕  !Z( Z• , Tn( Y • )) we have

 

           (– 1)n + 1 d
Z C u

n

Hom• •( , ( ))
(

f

g





) = T(

f

g





) o dZ – d

T C un ( )
 o 

f

g






3



= 
T f

T g

( )

( )





 dZ  –  

d

T u d
T X

n n

T Y

n

n

+

+










1 0

1 1(– ) ( )

f

g






= 
  

T f d d f

T u f T g d d g
Z T X

n n
Z T Y

n

n

( ) –

(– ) ( ) ( ) –

o o

o o o

+

+ + +










1

1 1 1

= 
(– )

(– ) ( , ) (– )
( , )

( , )

1 0

1 1

2 1

1 1 1

n

Z X

n

n n n

Z Y

n

d

Z u d

+ +

+ + • +
• • •

• • •













Hom

Hom
Hom

f

g





.

Thus we have

d
Z C u

n

Hom• •( , ( ))
 = 

–

( , )
( , )

( , )

d

Z u d
Z X

n

n

Z Y

n
Hom

Hom
Hom

• • •

• • •

+

+ •













1

1

0
.

     (2) Let us identify Homn (–, Z•) with !Z(–, Z•) o T– n for all n ∈  Z.  Then for any t[g   f] ∈
!Z(T– n( Y • ), Z•) ⊕  !Z(T– (n – 1)( X•), Z•) > Homn (T– nC(u), Z•), since t[g   f] corresponds to a

morphism [f   g] : T– (n – 1)( X•) ⊕  T– n( Y • ) → Z•  in !Z, we have

      

                       d
C u Z

n

Hom• •( ( ), )
(

g

f





)

= [f   g] o d
T C un– ( ) ( )+ 1  + T– 1(dZ o [f   g])

= [f   g] o 
d

T u d
T X

n n

T Y

n

n

–

– ( )(– ) ( )–

0

1 1
1

+
+









  + [T– 1(dZ o f)   T– 1(dZ o g)]

= [f o d
T Xn–  + T– 1(dZ o f) + (– 1)n + 1 g o T– n(u)     g o d

T Yn– ( )+ 1  + T– 1(dZ o g)]

= [d
X Z

n

Hom• • •( , )

– 1 (f) + (– 1)n + 1g o T– n (u)     d
Y Z

n

Hom• • •( , )
(g)]

= [dn – 1(f) + (– 1)n – 1 g o T– n (u)     dn (g)].

Thus the differential is given by

g

f





 a 

d

u Z d
Y Z

n

n n

X Z

n
Hom

Hom
(– ) Hom

• • •

• • •
•













( , )
–

( , )

–( , )

0

1 1 1

g

f






and we have

d
C u Z

n

Hom• •( ( ), )
 = 

d

u Z d
Y Z

n

n n

X Z

n
Hom

Hom
(– ) Hom

• • •

• • •
•













( , )
–

( , )

–( , )

0

1 1 1 .
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     Proposition 18.5.  The bifunctor Hom•  gives rise to a bi-∂-functor

 

Hom•  : K(!)op × K(!) → K(Mod Z).

     Proof.  For any u ∈  Htp( X• , Y • ) in C(!) and Z•  ∈  Ob(C(!)), by Lemma 18.4 and

Proposition 3.1 we have

 

Hom• ( Z• , u) ∈  Htp( Hom• ( Z• , X•), Hom• ( Z• , Y • )),

Hom• (u, Z•) ∈  Htp( Hom• ( Y • , Z•), Hom• ( X• , Z•)).

Thus the bifunctor Hom•  : C(!)op × C(!) → C(Mod Z) gives rise to a bifunctor

 

Hom•  : K(!)op × K(!) → K(Mod Z).

Next, by Lemmas 18.4 and 18.2

Hom• ( Z• , –) : K(!) → K(Mod Z)

is a ∂-functor for all Z•  ∈  Ob(C(!)).  Also, by Lemmas 18.4 and 18.2 and Proposition 2.10

Hom• (–, Z•) : K(!)op → K(Mod Z).

is a ∂-functor for all Z•  ∈  Ob(C(!)).  Finally, it follows by Lemma 18.2 that

Hom•  : K(!)op × K(!) → K(Mod Z)

is a bi-∂-functor.

     Remark 18.1.  (1) Let X•  ∈  Ob(K–(!)) and Y •  ∈  Ob(K+(!)).  Then Hom• ( X• , Y • ) ∈
Ob(K+(Mod Z)) and every Homn ( X• , Y • ) is a finite direct sum.

     (2) Let X•  ∈  Ob(K+(!)) and Y •  ∈  Ob(K–(!)).  Then Hom• ( X• , Y • ) ∈  Ob(K–(Mod Z))

and every Homn ( X• , Y • ) is a finite direct sum.

     (3) Hom• (X, Y • ) > !(X, Y • ) for all X ∈  Ob(!) and Y •  ∈  Ob(K(!)).

     (4) Hom• ( X• , Y) > !( X• , Y) for all X•  ∈  Ob(K(!)) and Y ∈  Ob(!).

     (5) Let @ be another abelian category and F : ! → @ an additive functor which has a left

adjoint G : @ → !.  Then we have a natural isomorphism

 

5

Hom• (G( X•), Y • ) →̃ Hom• ( X• , F( Y • ))



for X•  ∈  Ob(K(@)) and Y •  ∈  Ob(K(!)).

     Lemma 18.6.  The following hold.

     (1) If either X•  ∈  Ob(K(!)) or I•  ∈  Ob(K+(()) is acyclic, so is Hom• ( X• , I• ).

     (2) If eihter X•  ∈  Ob(K(!)) or I•  ∈  Ob(K(()L) is acyclic, so is Hom• ( X• , I• ).

     (3) If either P•  ∈  Ob(K–(3)) or Y •  ∈  Ob(K(!)) is acyclic, so is Hom• ( P• , Y • ).

     (4) If either P•  ∈  Ob(K(3)L) or Y •  ∈  Ob(K(!)) is acyclic, so is Hom• ( P• , Y • ).

 

     Proof.  (1) Note that Tn( I• ) ∈  Ob(K+(()) for all n ∈  Z.  In case X•  ∈  Ob(8), by Lemmas

18.3 and 4.4 Hom• ( X• , I• ) is acyclic.  Assume I•  ∈  Ob(8).  Then by Lemma 4.4 Tn( I• ) = 0

in K(!) for all n ∈  Z.  Thus by Lemma 18.3 Hom• ( X• , I• ) is acyclic.

     (2) Note that Tn( I• ) ∈  Ob(K(()L) for all n ∈  Z.  In case X•  ∈  Ob(8), then by Lemma

18.3 Hom• ( X• , I• ) is acyclic.  Assume I•  ∈  Ob(8).  Then by Lemma 12.15 Tn( I• ) = 0 in

K(!) for all n ∈  Z.  Thus by Lemma 18.3 Hom• ( X• , I• ) is acyclic.

     (3) Dual of (1).

     (4) Dual of (2).

 

     Proposition 18.7.  Assume ! has enough injectives.  Then the following hold.

     (1) Hom•  : K(!)op × K+(!) → K(Mod Z) has a right derived functor

      

R Hom•  = RIRII Hom•  : D(!)op × D+(!) → D(Mod Z)

such that R Hom• ( X• , I• ) > Hom• ( X• , I• ) provided I•  ∈  Ob(K+(()).

     (2) If ! satisfies the condition Ab4*, then Hom•  : K(!)op × K(!) → K(Mod Z) has a right

derived functor

      

R Hom•  = RIRII Hom•  : D(!)op × D(!) → D(Mod Z)

such that R Hom• ( X• , I• ) > Hom• ( X• , I• ) provided I•  ∈  Ob(K(()L).

     Proof.  (1) For any X•  ∈  Ob(K(!)), since by Proposition 4.7 and Lemma 18.6(1) K+(()

satisfies the hypotheses of Proposition 13.6 for Hom• ( X• , –) : K+(!) → D(Mod Z).  Thus by

Lemma 17.1 we have a bi-∂-functor

      

RII Hom•  : K(!)op × D+(!) → D(Mod Z).

Then, for any I•  ∈  Ob(K+(()), by Lemma 18.6(1)
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RII Hom• (–, I• ) > Q o Hom• (–, I• ) : K(!) → D(Mod Z)

vanishes on 8.  Thus, since by Proposition 10.13 K+(() →̃ D+(!), Proposition 17.3 applies.

     (2) For any X•  ∈  Ob(K(!)), since by Proposition 12.15 and Lemma 18.6(2) K(()L

satisfies the hypotheses of Proposition 13.6 for Hom• ( X• , –) : K(!) → D(Mod Z).  Thus by

Lemma 17.1 we have a bi-∂-functor

      

RII Hom•  : K(!)op × D(!) → D(Mod Z).

Then, for any I•  ∈  Ob(K(()L), by Lemma 18.6(2)

RII Hom• (–, I• ) > Q o Hom• (–, I• ) : K(!)op → D(Mod Z)

vanishes on 8.  Thus, since by Proposition 12.16(1) K(()L →̃ D(!), Proposition 17.3

applies.

 

     Proposition 18.8 (Dual of Proposition 18.7).  Assume ! has enough projectives.  Then the

following hold

     (1) Hom•  : K–(!)op × K(!) → K(Mod Z) has a right derived functor

      

R Hom•  = RIIRI Hom•  : D–(!)op × D(!) → D(Mod Z)

such that R Hom• ( P• , Y • ) > Hom• ( P• , Y • ) provided P•  ∈  Ob(K–(3)).

     (2) If ! satisfies the condition Ab4, then Hom•  : K(!)op × K(!) → K(Mod Z) has a right

derived functor

      

R Hom•  = RIIRI Hom•  : D(!)op × D(!) → D(Mod Z)

such that R Hom• ( P• , Y • ) > Hom• ( P• , Y • ) provided P•  ∈  Ob(K(3)L).

 

     Remark 18.2.  (1) For any P  ∈  3, we have Q o !(P, –) →̃ R Hom• (P, –) o Q.

     (2) For any I  ∈  (, we have  Q o !(–, I) →̃ R Hom• (–, I) o Q.

     Proposition 18.9.  Assume ! has enough injectives.  Then the following hold.

     (1) For any X•  ∈  Ob(D(!)), Y •  ∈  Ob(D+(!)) and i ∈  Z we have

 

Hi(R Hom• ( X• , Y • )) > Exti( X• , Y • ).
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     (2) If ! satisfies the condition Ab4*, then for any X•  ∈  Ob(D(!)), Y •  ∈  Ob(D(!)) and i



∈  Z we have

 

Hi(R Hom• ( X• , Y • )) > Exti( X• , Y • ).

     Proof.  (1) By Proposition 4.7 we have a quasi-isomorphism Y •  → I•  with I•  ∈
Ob(K+(()).  Thus by Lemma 18. 3 and Proposition 10.12 we have

 

Hi(R Hom• ( X• , Y • )) > Hi( Hom• ( X• , I• ))

> K(!)( X• , Ti( I• ))

> D(!)( X• , Ti( I• ))

> D(!)( X• , Ti( Y • ))

> Exti( X• , Y • ).

     (2) By Proposition 12.15 we have a quasi-isomorphism Y •  → I•  with I•  ∈  Ob(K(()L).

Thus by Lemma 18. 3 and Proposition 9.13(2) we have

 

Hi(R Hom• ( X• , Y • )) > Hi( Hom• ( X• , I• ))

> K(!)( X• , Ti( I• ))

> D(!)( X• , Ti( I• ))

> D(!)( X• , Ti( Y • ))

> Exti( X• , Y • ).

     Proposition 18.10 (Dual of Proposition 18.9).  Assume ! has enough projectives.  Then

the following hold.

     (1) For any X•  ∈  Ob(D–(!)), Y •  ∈  Ob(D(!)) and i ∈  Z we have

 

Hi(R Hom• ( X• , Y • )) > Exti( X• , Y • ).

     (2) If ! satisfies the condition Ab4, then for any X•  ∈  Ob(D(!)), Y •  ∈  Ob(D(!)) and i ∈
Z we have

 

Hi(R Hom• ( X• , Y • )) > Exti( X• , Y • ).

     Proposition 18.11.  For any X•  ∈  Ob(C(!)) with A =EndC(!)( X•), we have ∂-functors

Hom• ( X• , –) : K(!) → K(Mod Aop),     Hom• (–, X•) : K(!)op → K(Mod A).

Furthermore, the following hold.
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     (1) If ! has enough injectives, then Hom• ( X• , –) : K+(!) → K(Mod Aop) has a right



derived functor R Hom• ( X• , –).

     (2) If ! has enough injectives and satisfies the condition Ab4*, then Hom• ( X• , –) : K(!)

→ K(Mod Aop) has a right derived functor R Hom• ( X• , –).

     (2) If ! has enough projectives, then Hom• (–, X•) : K–(!)op → K(Mod A) has a right

derived functor R Hom• (–, X•).

     (4) If ! has enough projectives and satisfies the condition Ab4, then Hom• (–, X•) :

K(!)op → K(Mod A) has a right derived functor R Hom• (–, X•).

 

     Proof.  By Lemma 18.1 we have functors

Hom• ( X• , –) : C(!) → C(Mod Aop),     Hom• (–, X•) : C(!)op → C(Mod A).

Thus by Proposition 18.5 we get ∂-functors

Hom• ( X• , –) : K(!) → K(Mod Aop),     Hom• (–, X•) : K(!)op → K(Mod A).

The remaining assertions are immediate by the construction of R Hom• .

     Throughout the rest of this section, R is a commutative ring and A, B are R-algebras.

     Definition 18.3.  For a ring A, we denote by Inj A, Proj A and Flat A the collection of

injective, projective and flat left A-modules, respectively.  Also, we denote by proj A the

collection of finitely generated projective left A-modules.  Right A-modules are considered as

left Aop-modules, where Aop denotes the opposite ring of A.

 

     Definition 18.4.  For a ring A, we denote by mod A the full subcategory of Mod A

consisting of finitely presented modules.  In case A is left coherent (resp. noetherian), mod A

consists of the finitely presented (resp. generated) modules and coinsides with the thick

subcategory of Mod A consisting of coherent modules.

 

     Definition 18.5.  For * = +, –, b or nothing, we denote by Kc
∗(Mod A) the full triangulated

subcategory of K*(Mod A) consistsing of complexes X•  ∈  Ob(K*(Mod A)) with the Hn( X•)

coherent and by Dc
∗(Mod A) the corresponding derived category.

 

     Definition 18.6.  A left A ⊗ R B
op-module V is an A-B-bimodule V such that the action of R

on V via A coinsides with that of R on V via B, i.e., rv = vr for all r ∈  R and v ∈  V.

 

     Remark 18.4.  For V • ∈  Ob(C(Mod A ⊗ R B
op)) the following hold.
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     (1) We have ring homomorphisms



 

φ : A → End
Mod opC B( )

( V •),     ψ : B → EndC(Mod A)( V •)op

such that φ(a)n(v) = av for all a ∈  A, n ∈  Z and v ∈  Vn, and ψ(b)n(v) = vb for all b ∈  B, n ∈  Z

and v ∈  Vn.

     (2) If V • ∈  Ob(K(Flat Bop)) and I•  ∈  Ob(K(Inj A)), then Hom• ( V •, I• ) ∈  Ob(K(Inj B)).

     (3) If V •
 ∈  Ob(K(Inj B

op)) and P•  ∈  Ob(K(Proj A)), then Hom• ( P• , V •) ∈  Ob(K(Inj B
op)).

     Proposition 18.12.  (1) We have a bi-∂-functor

      

Hom•  : K(Mod A ⊗ R B
op)op × K(Mod A) → K(Mod B)

which has a right derived functor

      

R Hom•  : D(Mod A ⊗ R B
op)op × D(Mod A) → D(Mod B)

such that R Hom• ( V •, X•) > Hom• ( V •, X•) provided either V • ∈  Ob(K(Proj A ⊗ R B
op)L) or

X•  ∈  Ob(K(Inj A)L).

     (2) We have a bi-∂-functor

      

Hom•  : K(Mod A)op × K(Mod A ⊗ R B
op) → K(Mod Bop)

which has a right derived functor

      

R Hom•  : D(Mod A)op × D(Mod A ⊗ R Bop) → D(Mod Bop)

such that R Hom• ( X• , V •) > Hom• ( X• , V •) provided either X•  ∈  Ob(C(Proj A)L) or V • ∈
Ob(K(Inj A ⊗ R B

op)L).

 

     Proof.  Straightforward.

 

     Remark 18.6.  Let B → A be a homomorphism of R-algebras and U : Mod A → Mod B the

induced functor.  Then the extended ∂-functor U : K(Mod A) → K(Mod B) has a right derived

functor R Hom• (AAB, –) such that Q o U →̃ R Hom• (AAB, –) o Q.

 

     Proposition 18.13.  We have a bi-∂-functor

      

Hom•  : K(Mod A)op × K(Mod R) → K(Mod Aop)
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which has a right derived functor

      

R Hom•  : D(Mod A)op × D(Mod R) → D(Mod Aop)

such that R Hom• ( X• , E•) > Hom• ( X• , E•) provided either X•  ∈  Ob(K(Proj A)L) or E• ∈
Ob(K(Inj R)L).

     Proof.  Straightforward.
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§19.  The left derived functor of ⊗

     Throught this section, R is a commutative ring and A, B are R-algebras.  For any ring A,

we denote by K(Inj A)L (resp. K(Proj A)L) the full subcategory of K(Inj A) (resp. K(Proj A))

consisting of 8-local (resp. 8-coloca) complexes, where 8 is the épaisse subcategory of

K(Mod A) consisting of acyclic complexes.  Also, we denote by E an injective cogenerator in

Mod R and by D both HomR(–, E) and R Hom• (–, E).

 

     Definition 19.1.  For M• ∈  Ob(C(Mod Aop)) and X•  ∈  Ob(C(Mod A)), we define a double

complex C• •  in Mod R as follows:

 

Cp, q = Mp ⊗ A X
q,

d p q
1

,  = dM
p  ⊗  id

X q ,

d p q
2

,  = (– 1)p + q id
M p  ⊗  dX

q

for p, q ∈  Z, and set M• ⊗  X•  = t’(C• •).  Then we get a bifunctor

 

⊗  : C(Mod Aop) × C(Mod A) → C(Mod R)

such that

 

[ M• ⊗  X•]n  = 
p q n+ =
⊕ Mp ⊗ A X

q

for M• ∈  Ob(C(Mod Aop)), X•  ∈  Ob(C(Mod A)) and n ∈  Z, and

 d
M X

n
• •⊗

(m ⊗  x) =  dM
p (m) ⊗  x  +  (– 1)n m ⊗  dX

q (x)

 for n ∈  Z, p, q ∈  Z with p + q = n and m ⊗  x ∈  Mp ⊗ A X
q.

     Definition 19.2.  For any M• ∈  Ob(C(Mod Aop)) and X•  ∈  Ob(C(Mod A)) we set

 

M• ⊗ gr X•   = 
p q+ =
⊕

0

Mp ⊗ A X
q.

Then we get a bifunctor 

 

⊗ gr : C(Mod Aop) × C(Mod A) → Mod R.

1

     Lemma 19.1.  For any M• ∈  Ob(C(Mod Aop)), X•  ∈  Ob(C(Mod A)) the following hold.



     (1) In case we identify ( M• ⊗  X•)n  with Tn M• ⊗ gr X•  for all n ∈  Z, the differntial is of

the form

 d
M X

n
• •⊗

 =  (– 1)n  { d
T Mn  ⊗ gr idX + id

T Mn  ⊗ gr dX}.

     (2) In case we identify ( M• ⊗  X•)n  with M• ⊗ gr T
n X•  for all n ∈  Z, the differential is of

the form

 d
M X

n
• •⊗

 =  dM ⊗ gr id
T Xn  + idM ⊗ gr d

T Xn .

     Proof.  Straightforward.

 

     Definition 19.3.  For any abelian category ! we denote by ρ : 
    
1

!Z  →̃ 
    
1

!Z  an

automorphism of the identity functor 
    
1

!Z  : !Z → !Z such that ρX
n  = (– 1)n id

X n  for all X ∈
Ob(!Z) and n ∈  Z.

 

     Lemma 19.2.  (1) For any M• ∈  Ob(C(Mod Aop)), X•  ∈  Ob(C(Mod A)) we have

 

d
TM X• •⊗

 =  – T( d
M X• •⊗

),     d
M TX• •⊗

 =  T( d
M X• •⊗

).

     (2) We have isomorphisms of bifunctors

 

α  : (– ⊗  –) o ( 1 × T) →̃ T o (– ⊗  –),     β : (– ⊗  –) o (T ×  1) →̃ T o (– ⊗  –)

such that for any M• ∈  Ob(C(Mod Aop)) and X•  ∈  Ob(C(Mod A)),

α (M, X ) = ρ
M TX• •⊗

,     β(M, X) = id
TM X• •⊗

.

In particular,  Tα  o β(1 × T) + Tβ o α (T × 1) = 0.

    Proof.  (1) Straightforward.

    (2) Let M• ∈  Ob(C(Mod Aop)) and X•  ∈  Ob(C(Mod A)).   Since

[ M• ⊗  T X•]n  = [ M• ⊗  X•]n + 1  = [T M• ⊗  X•]n

for all n ∈  Z, we have

M• ⊗  T X•  = T( M• ⊗  X•) = T M• ⊗  X•

2



in (Mod R)Z.  Thus by the part (1) we have isomorphisms in C(Mod R)

α (M, X ) = ρ
M TX• •⊗

 : M• ⊗  T X•  →̃ T( M• ⊗  X•),

β(M, X ) = id
TM X• •⊗

 : T M• ⊗  X•  →̃ T( M• ⊗  X•).

It is obvious that  Tα  o β(1 × T) + Tβ o α(T × 1) = 0.

 

     Lemma 19.3.  (1) M• ⊗  C(u) > Cρ( M• ⊗  u) for all M• ∈  Ob(C(Mod Aop)) and a

morphism u : X•  → Y •  in C(Mod A) (see Proposition 2.10).

     (2) C(u) ⊗  X•  > C(u ⊗  X•) for all X•  ∈  Ob(C(Mod A)) and a morphism u : M• → N •

in C(Mod Aop).

 

     Proof.  (1) We identify ( M• ⊗  X•)n with M• ⊗ gr T
n X•  for all M• ∈  Ob(C(Mod Aop)), X•

∈  Ob(C(Mod A)) and n ∈  Z.  Let M• ∈  Ob(C(Mod Aop)) and u : X•  → Y •  in C(Mod A).

Then

 

[ M• ⊗  C(u)]n > ( M• ⊗ gr T
n + 1 X•) ⊕  ( M• ⊗ gr T

n Y • ),

d
M C u

n
• ⊗ ( )

 = dM ⊗ gr id
T C un ( )

 + idM ⊗ gr d
T C un ( )

= 
d

d
M T X

M T Y

n

n

⊗
⊗











+gr

gr

id

id
1 0

0
 +  

id

id id
gr

gr gr

M T X
n

M
n

M T Y

d

T u d
n

n

⊗
− ⊗ ⊗











+

+
1 0

1 1( )

= 
d

M u d
M X

n

n n

M Y

n

• •

• •

⊗
+

• +
⊗

⊗












1

1

0

1(– ) ( )

for all n ∈  Z.

     (2) We identify ( M• ⊗  X•)n with Tn M• ⊗ gr X•  for all M• ∈  Ob(C(Mod Aop)), X•  ∈
Ob(C(Mod A)) and n ∈  Z.  Let X•  ∈  Ob(C(Mod A)) and u : M• → N •  in C(Mod Aop).  Then,

as in the part (1), we have

 

[C(u) ⊗  X•]n > (Tn + 1 M• ⊗ gr X•) ⊕  (Tn N •  ⊗ gr X•),

d
C u X

n

( ) ⊗ •  = 
–

( )

d

u X d
M X

n

n

N X

n

• •

• •

⊗
+

• +
⊗

⊗












1

1

0

for all n ∈  Z.
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     Proposition 19.4.  The bifunctor ⊗  gives rise to a bi-∂-functor



 

⊗  : K(Mod Aop) × K(Mod A) → K(Mod R).

     Proof.  By Lemma 19.3 and Proposition 3.1, for any u ∈  Htp( X• , Y • ) in C(Mod A) and

M• ∈  Ob(C(Mod Aop)) we have

 

M• ⊗  u ∈  Htp( M• ⊗  X• , M• ⊗  Y • ),

and for any u ∈  Htp( M•, N • ) in C(Mod Aop) and X•  ∈  Ob(C(Mod A)) we have

u ⊗  X•  ∈  Htp( M• ⊗  X• , N •  ⊗  X•).

Thus the bifunctor ⊗  : C(Mod Aop) × C(Mod A) → C(Mod R) gives rise to a bifunctor

 

⊗  : K(Mod Aop) × K(Mod A) → K(Mod R).

Next, by Lemmas 19.3 and 19.2

– ⊗  X•  : K(Mod Aop) → K(Mod R)

is a ∂-functor for all X•  ∈  Ob(K(Mod A)).  Also, by Lemmas 19.3, 19.2 and Proposition 2.10

M• ⊗  – : K(Mod A) → K(Mod R)

is a ∂-functor for all M• ∈  Ob(K(Mod Aop)).  Finally, it follows by Lemma 19.2 that

 

⊗  : K(Mod Aop) × K(Mod A) → K(Mod R).

is a bi-∂-functor.

     Remark 19.1.  (1) M• ⊗  X•  ∈  Ob(K*(Mod R)) for all M• ∈  Ob(K*(Mod Aop)) and X•  ∈
Ob(K*(Mod A)), where * = +, – or b.

     (2) M ⊗  X•  > M ⊗ A X•  for all M ∈  Mod Aop and X•  ∈  Ob(K(Mod A)).

     (3) M• ⊗  X > M• ⊗ A X for all M• ∈  Ob(K(Mod Aop)) and X ∈  Mod A.

     Lemma 19.5.  (1) There exists a natural isomorphism

 

4

Hom• ( M• ⊗  V •, N • ) →̃ Hom• ( M•, Hom• ( V •, N • ))



for V • ∈  Ob(D(Mod A ⊗ R B
op)), M• ∈  Ob(C(Mod Aop)) and N •  ∈  Ob(C(Mod Bop)).

     (2) There exists a natural isomorphism

 

Hom• ( V • ⊗  X• , Y • ) →̃ Hom• ( X• , Hom• ( V •, Y • ))

for V • ∈  Ob(D(Mod A ⊗ R B
op)), X•  ∈  Ob(C(Mod B)) and Y •  ∈  Ob(C(Mod A)).

     Proof.  (1) For any n ∈  Z, we may consider that

 

Homn ( M• ⊗  V •, N • )    = 
p q r n+ + =

∏ HomB(M
– p ⊗ A V

– q, Nr),

Homn ( M•, Hom• ( V •, N • ))    = 
p q r n+ + =

∏ HomA(M
– p, HomB(V

– q, Nr)).

For any p, q, r ∈  Z we have a natural isomorphism

 

φ  p, q, r : HomB(M
– p ⊗ A V– q, Nr) →̃ HomA(M– p, HomB(V– q, Nr))

such that

φ  p, q, r(up, q, r)(mp)(vq) = (– )
( )

1
1

2

q q +

 up, q, r(mp ⊗  vq)

for up, q, r ∈ HomB(M
– p ⊗ A V– q, Nr), mp ∈  M– p and vq ∈  V– q.  Thus for any n ∈  Z we have a

natural isomorphism

φ  n = (φ  p, q, r)  : 
p q r n+ + =

∏ HomB(M– p ⊗ A V– q, Nr)   →̃ 
p q r n+ + =

∏ HomA(M
– p, HomB(V

– q, Nr)).

It is easy to see that φ commutes with differentials.

     (2) By symmetry.

     Remark 19.2.  For V • ∈  Ob(D(Mod A ⊗ R B
op)) the following hold.

     (1) If V • ∈  Ob(K(Proj Bop)) and P•  ∈  Ob(K(Proj Aop)), then P•  ⊗  V • ∈  Ob(K(Proj Bop)).

     (2) If V • ∈  Ob(K(Flat Bop)) and P•  ∈  Ob(K(Flat Aop)), then P•  ⊗  V • ∈  Ob(K(Flat Bop)).

     Lemma 19.6.  For a bi-∂-functor ⊗  : K(Mod Aop) × K(Mod A) → K(Mod R) the following

hold.

     (1) If either M• ∈  Ob(K(Mod Aop)) or P•  ∈  Ob(K(Proj A)L) is acyclic,  so is M• ⊗  P• .
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     (2) If either M• ∈  Ob(K(Mod Aop)) or P•  ∈  Ob(K–(Flat A)) is acyclic,  so is M• ⊗  P• .



     (3) If either P•  ∈  Ob(K(Proj Aop)L) or X•  ∈  Ob(K(Mod A)) is acyclic,  so is P•  ⊗  X• .

     (4) If either P•  ∈  Ob(K–(Flat Aop)) or X•  ∈  Ob(K(Mod A)) is acyclic,  so is P•  ⊗  X• .

 

     Proof.  (1) Since by Lemma 19.5(2) D( M• ⊗  P•) →̃ Hom• ( P• , D( M•)), Lemma 18.6(4)

applies.

     (2) Since by Lemma 19.5(1) D( M• ⊗  X•) →̃ Hom• ( M•, D( X•)) with D( X•) ∈
Ob(K+(Inj Aop)), Lemma 18.6(1) applies.

     (3) and (4) follow by symmetry.

 

     Proposition 19.7.  The bi-∂-functor ⊗  : K(Mod Aop) × K(Mod A) → K(Mod R) has both a

left derived functor

⊗
L

 = ⊗
L LI II

 : D(Mod Aop) × D(Mod A) → D(Mod R)

such that M• ⊗
L LI II

 P•  > M• ⊗  P•  for all M• ∈  Ob(K(Mod Aop)) and P•  ∈  Ob(K(Proj A)L),

and a left derived functor

⊗
L

 = ⊗
L LII I

 : D(Mod Aop) × D(Mod A) → D(Mod R)

such that P•  ⊗
L LII I

 X•  > P•  ⊗  X•  for all P•  ∈  Ob(K(Proj Aop)L) and X•  ∈  K(Mod A).

     Proof.  We claim first that ⊗
L LI II

 exists.  For any M• ∈  Ob(K(Mod Aop)), by Proposition

12.20 and Lemma 19.6(1) K(Proj A)L satisfies the hypotheses of Proposition 14.6 for M• ⊗  –

: K(Mod A) → K(ModR).  Thus by Lemma 17.5 we have a bi-∂-functor

⊗
LII

 : K(Mod Aop) × D(Mod A) → D(Mod R).

Then, for any P•  ∈  Ob(K(Proj A)L), by Lemma 19.6(2) – ⊗
LII

 P
•  : K(Mod Aop) → D(Mod R)

vanishes on the acyclic complexes.  Also, by Proposition 12.21(1) K(Proj A)L →̃ D (Mod A).

Thus Proposition 17.7 applies.  The existence of ⊗
L LII I

 follows by symmetry.

     Proposition 19.8.  M• ⊗
L

 X•  > M• ⊗  X•  provided either X•  ∈  Ob(K–(Flat A)) or M• ∈
Ob(K–(Flat Aop)).

 

     Proof.  Assume X•  ∈  Ob(K–(Flat A)).  By Proposition 4.11 there exists a quasi-isomorphism

s : P•  → X•  with P•  ∈  Ob(K–(Proj A)).  Then, since C(s) is acyclic, and since C(s) ∈

6

Ob(K–(Flat A)), by Lemmas 19.3(1) and 19.6(1) M• ⊗  s is a quasi-isomorphism.  Thus



 

M• ⊗  X•  > M• ⊗  P•

> M• ⊗
L

 P•

> M• ⊗
L

 X• .

By symmetry, M• ⊗
L

 X•  > M• ⊗  X•  if M• ∈  Ob(K–(Flat Aop)).

 

     Remark 19.3.  (F ⊗
L

 –) o Q →̃ Q o (F ⊗ A –) for all F ∈  Flat Aop.

     Proposition 19.9.  (1) We have a bi-∂-functor

 

⊗  : K(Mod A ⊗ R Bop) × K(Mod B) → K(Mod A)

which has a left derived functor

⊗
L

 : D(Mod A ⊗ R B
op) × D(Mod B) → D(Mod A)

such that V • ⊗
L

 X•  > V • ⊗  X•  provided either V • ∈  Ob(K(Proj A ⊗ R Bop)L) or X•  ∈
Ob(K(Proj B)L).

     (2) We have a bi-∂-functor

 

⊗  : K(Mod Aop) × K(Mod A ⊗ R B
op) → K(Mod Bop)

which has a left derived functor

⊗
L

 : D(Mod Aop) × D(Mod A ⊗ R Bop) → D(Mod Bop)

such that M• ⊗
L

 V • > M• ⊗  V • provided either V • ∈  Ob(K(Proj A ⊗ R Bop)L) or M• ∈
Ob(K(Proj Aop)L).

     Proof.  Straightforward.

     Remark 19.4.  Let B → A be a homomorphism of R-algebras and U : Mod A → Mod B the

induced functor.  Then the extended ∂-functor U : K(Mod A) → K(Mod B) has a left derived

functor (BAA ⊗
L

 –) such that (BAA ⊗
L

 –) o Q →̃ Q o U.

 

     Lemma 19.10.  (1) Assume A is commutative.  Then there exists a natural isomorphism
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M• ⊗  X•  →̃ X•  ⊗  M•

for M•, X•  ∈  Ob(C(Mod A)).

     (2) There exists a natural isomorphism

 

M• ⊗  ( V • ⊗  X•) →̃ ( M• ⊗  V •) ⊗  X• .

for M• ∈  Ob(C(Mod Aop)), V • ∈  Ob(C(Mod A ⊗ R B
op)) and X•  ∈  Ob(C(Mod B)).

     Proof.  (1) For any n ∈  Z we have a natural isomorphism

φ n : 
p q n+ =
⊕ Mp ⊗ A X

q   →̃ 
p q n+ =
⊕ Xq ⊗ A M

p

such that

φ n(mp ⊗  xq) = (– )
( )( – )

1
1

2

p q p q+ +

 xq ⊗  mp

for mp ⊗  xq ∈  Mp ⊗ A X
q, where p, q ∈  Z with p + q = n.  It is easy to see that φ commutes with

differentials.

     (2) For any n ∈  Z we have a natural isomorphism

φ n : 
p q r n+ + =

⊕ (Mp ⊗ A V
q) ⊗ B X

r    →̃ 
p q r n+ + =

⊕  Mp ⊗ A (V
q ⊗ B Xr)

such that

φ n((mp ⊗  vq) ⊗  xr) = (– )
( – )

1
2 1

2

r q r+

 mp ⊗  (vq ⊗  xr)

for (mp ⊗  vq) ⊗  xr ∈  (Mp ⊗ A V
q) ⊗ B X

r, where p, q, r ∈  Z with p + q + r = n.  It is easy to see

that φ commutes with differentials.

     Proposition 19.11.  (1) Assume A is commutative.  Then there exists a natural isomorphism

 

M• ⊗
L

 X•  →̃ X•  ⊗
L

 M•

for M• ∈  Ob(D(Mod A)) and X•  ∈  Ob(D(Mod A)).

     (2) There exists a natural isomorphism
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M• ⊗
L

 ( V • ⊗
L

 X•) →̃ ( M• ⊗
L

 V •) ⊗
L

 X•

for M• ∈  Ob(D(Mod Aop)), V • ∈  Ob(D(Mod A ⊗ R B
op))  and X•  ∈  Ob(D(Mod B)).

     Proof.  (1) Let M• ∈  Ob(K(Mod A)) and X•  ∈  Ob(K(Mod A)).  By Proposition 12.20 we

may assume M• ∈  Ob(K(Proj A)L).  Thus by Lemma 19.10(1) we have

 

M• ⊗
L

 X•  > M• ⊗  X•

> X•  ⊗  M•

> X•  ⊗
L

 M•.

     (2) Similar to (1).
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§20.  Hyper Tor

     Throught this section, R is a commutative ring and A, B are R-algebras.  For any ring A,

we denote by K(Inj A)L (resp. K(Proj A)L) the full subcategory of K(Inj A) (resp. K(Proj A))

consisting of 8-local (resp. 8-colocal) complexes, where 8 is the épaisse subcategory of

K(Mod A) consisting of acyclic complexes.  Also, we denote by E an injective cogenerator in

Mod R and by D both HomR(–, E) and RHom•(–, E).

  

     Definition 20.1.  For M• ∈  Ob(D(Mod Aop)), X•  ∈  Ob(D(Mod A)) and n ∈  Z we set

 

Torn( M•, X•) = H – n( M• ⊗
L

 X•),

which is called the nth hyper Tor.

     Proposition 20.1.  For any M• ∈  Ob(D(Mod Aop)), X•  ∈  Ob(D(Mod A)) and i ∈  Z, there

exist isomorphisms

 

D(Tori( M•, X•)) > Exti(M•, D( X•)),

D(Tori( M•, X•)) > Exti( X• , D( M•)).

     Proof.  Since by Proposition 12.20 we have a quasi-isomorphism P•  → M• with P•  ∈
Ob(K(Proj Aop)L), we have

 

D(Tori( M•, X•)) > D(H – i( M• ⊗
L

 X•))

> D(H – i( P•  ⊗
L

 X•))

> D(H – i( P•  ⊗  X•))

> Hi(D( P•  ⊗  X•))

> Hi( Hom• ( P• , D( X•))

> Hi(R Hom• ( P• , D( X•))

> Hi(R Hom• ( M•, D( X•))

> Exti( M•, D( X•)).

By symmetry, the last isomorphism follows.

 

     Proposition 20.2.  For X•  ∈  Ob(D(Mod A)) the following are equivalent.

     (1) X•  ∈  Ob(D(Mod A)fTd).

     (2) D( X•) ∈  Ob(D(Mod Aop)fid).

1

 



     Proof.  By Proposition 20.1.

 

     Proposition 20.3.  Let V • ∈  Ob(C(Mod A ⊗ R B
op)).  Then the following hold.

     (1) For each exact sequence 0 → X•  → Y •  → Z•  → 0 in C(Mod B), we have a long

exact sequence in Mod A

 

L → Tori( V •, X•) → Tori( V •, Y • ) → Tori( V •, Z•) → Tori – 1( V •, X•) → L ,

     (2) For each exact sequence 0 → L• → M• → N •  → 0 in C(Mod Aop), we have a long

exact sequence in Mod Bop

 

L → Tori( L•, V •) → Tori( M•, V •) → Tori( N • , V •) → Tori – 1( L•, V •) → L .

     Proof.  (1) Since V •
 ⊗

L

 – : D(Mod A) → D(Mod B) is a ∂-functor, and since by

Proposition 11.1 we have a triangle in D(Mod A) of the form ( X• , Y • , Z• , ⋅, ⋅, ⋅), we get a

triangle in Mod B of the form

 

( V • ⊗
L

 X• , V • ⊗
L

 Y • , V • ⊗
L

 Z• , ⋅, ⋅, ⋅).

     (2) By symmetry.

 

     Proposition 20.4.  Tori(M, X) coinsides with the usual Tor i
A (M, X) for all M ∈  Mod Aop, X

∈  Mod A and i ≥ 0.

 

     Proof.  Let M ∈  Mod Aop and X ∈  Mod A.  Put G = M ⊗ A – : Mod A → Mod R and take a

projective resolution P•  → X.  Then for any i ≥ 0 we have

 

Tori(M, X) > H – i(M ⊗
L

 X)

> H – i(M ⊗
L

 P•)

> H – i(M ⊗  P•)

> H – i(G( P•))

> Tor i
A (M, X).

     Definition 20.2.  A complex X•  ∈  Ob(K(Mod A)) is said to have finite flat dimension on

Mod Aop if, for i ›› 0, Tor i(–, X•) vanishes on Mod Aop.  Sometimes, flat dimension is called

Tor dimension.  For * = +, –, b or nothing, we denote by K*(Mod A)fTd the full subcategory of

K*(Mod A) consisting of X•  ∈  Ob(K*(Mod A)) which have finite flat dimension on Mod Aop.
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     Lemma 20.5.  For * = +, –, b or nothing, the following hold.

     (1) K*(Mod A)fTd is a full triangulated subcategory of K*(Mod A).

     (2) 8 ∩  K*(Mod A)fTd is an épaisse subcategory of K*(Mod A)fTd, where 8 is the épaisse

subcategory of K(Mod A) consisting of acyclic complexes.

     Proof.  (1) Let X•  ∈  Ob(K*(Mod A)fTd) and n ∈  Z.  Then Tori(–, Tn( X•)) > Tori – n(–, X•)

vanishes on Mod Aop for i ›› 0 and Tn( X•) ∈  Ob(K*(Mod A)fTd).  Also, for any u : X•  → Y •  in

K*(Mod A) with X• , Y •  ∈  Ob(K*(Mod A)fTd), since by Proposition 20.3 we have an exact

sequence

 

L → Tori(–, Y • ) → Tori(–, C(u)) → Tori + 1(–, X•) → L ,

Tori(–, C(u)) vanishes on Mod Aop for i ›› 0 and C(u) ∈  Ob(K*(Mod A)fTd).

     (2) By Proposition 7.7.

     Definition 20.3.  For * = +, –, b or nothing, according to Lemma 20.5, we have a derived

category

 

D*(Mod A)fTd = K*(Mod A)fTd / 8 ∩  K*(Mod A)fTd,

where 8 is the épaisse subcategory of K(Mod A) consisting of acyclic complexes.

 

     Proposition 20.6.  For * = +, –, b or nothing, the following hold.

     (1) D*(Mod A)fpd , D*(Mod A)fTd.

     (2) The canonical functor D*(Mod A)fTd → D(Mod A) is fully faithful.

     Proof.  (1) By Proposition 20.1.

     (2) It follows by definition that K*(Mod A)fTd is closed under quasi-isomorphism classes in

K*(Mod A).  Thus by Proposition 8.17 the canonical functor D*(Mod A)fTd → D*(Mod A) is

fully faithful.

     Lemma 20.7.  For X•  ∈  Ob(D(Mod A)) the following are equivalent.

     (1) X•  ∈  Ob(D(Mod A)fTd).

     (2) For i ›› 0, Tor i(–, X•) vanishes on mod Aop.

     (3) There exists an isomorphism P•  → X•  in D(Mod A) with P•  ∈  Ob(K+(Flat A)).

 

     Proof.  (1) ⇒  (2).  Obvious.

     (2) ⇒  (3).  Take n ∈  Z such that, for i > n, Tori(–, X•) vanishes on the finitely presented

3

modules.  By Proposition 12.20 there exists a quasi-isomorphism P•  → X•  with P•  ∈



Ob(K(Proj A)L).  Then for i > n we have

 

H– i( P•) > H– i( X•)

> H – i(A ⊗
L

 X•)

> Tori (A, X•)

 0.

Thus by Lemma 10.6 we have a quasi-isomorphism P•  → σ≥ –n( P•).  Next, since we have a

projective resolution of B – n( P•)

 

L  → P – n – 2 → P – n – 1 → B  – n( P•) → 0,

by Proposition 20.4 we have

Tor1(M, B – n( P•)) > H– (n + 2 )((M ⊗ A P•))

> H– (n + 2 )((M ⊗
L

 P•))

> H– (n + 2 )((M ⊗
L

 X•))

> Torn + 2(M, X•)

 0

for all M ∈  mod Aop.  Thus B  – n( P•) is flat and σ≥ –n( P•) ∈  Ob(K+(Flat A)).

     (3) ⇒  (1).  For i ›› 0, since P•  ∈  Ob(K+(Flat A)), we have

 

Tori(M, X•) > Tor i(M, P•)

> H– i((M ⊗
L

 P•))

> H– i((M ⊗  P•))

 0

for all M ∈  Mod Aop.

     Lemma 20.8.  For X•  ∈  Ob(K(Mod A)) the following are equivalent.

     (1) X•  ∈  Ob(K(Mod A)fid).

     (2) For i ›› 0, Exti(–, X•) vanishes on the finitely generated modules.

 

     Proof.  (1) ⇒  (2).  Obvious.

     (2) ⇒  (1).  Take n ∈  Z such that, for i > n, Exti(–, X•) vanishes on the finitely generated

modules.  By Proposition 12.15(1) there exists a quasi-isomorphism X•  → I•  with I•  ∈

4

Ob(K(Inj A)L).  Then for i > n we have



 

Hi( X•) > Hi( Hom• (A, X•))

> Hi(R Hom• (A, X•))

> Exti(A, X•)

 0.

Thus by Lemma 10.7 we have a quasi-isomorphism σ  n( I• ) → I• .  Next, since we have an

injective resolution of Zn( I• )

 

0 → Zn( I• ) → In  → In + 1 → L ,

for any finitely generated modules Y ∈  Mod A we have

Ext1(Y, Zn( I• )) > Hn + 1(HomA(Y, I• ))

> Hn + 1(R Hom• (Y, I• ))

> Hn + 1(R Hom• (Y, X•))

> Extn + 1(Y, X•)

 0.

It follows by Baer’s criterion that Zn( I• ) is injective.  Thus σ  n( I• ) ∈  Ob(K–(Inj A)) and

 

Exti(Y, X•) > Exti(Y, σ  n( I• ))

> Hi((R Hom• (Y, σ  n( I• ))))

> Hi(( Hom• (Y, σ  n( I• ))))

 0

for all i > n and Y ∈  Mod A.
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§21.  Universal coefficient theorems

     Throughout this section, ! is an abelian category, ( (resp. 3) is the collection of injective

(resp. projective) objects of ! and 8 is the épaisse subcategory of K(!) consisting of acyclic

complexes.  Also, R is a commutative ring and A is an R-algebra.  We denote by E an

injective cogenerator in Mod R and by D both HomR(–, E) and R Hom• (–, E).

     Lemma 21.1.  Let X•  ∈  Ob(K(!)).  Assume one of the following canonical exact

sequences splits in !Z

 

0 → B•( X•) → X•  → ′•Z ( X•) → 0,

0 → Z•( X•) → X•  → ′•B ( X•) → 0.

Then X•  > H•( X•) in D(!).

     Proof.  Assume the canonical exact sequence

 

0 → Z•( X•) →
u

 X•  →
v

 ′•B ( X•) → 0

splits as an exact sequence in !Z.  Let v’ : ′•B ( X•) → X•  be a morphism in !Z with v o v’ =

id
′ • •B X( )

.  Let w : ′•B ( X•) → T( Z•( X•)) be the inclusion.  Then, since dX = Tu o w o v, dX o v’

= Tu o w and we get a morphism ϕ = t[– w   v’] : ′•B ( X•) → C(u) in C(!).  Put ε = [1  0] :

C(u) → T( Z•( X•)) and v̂  = [0   v] : C(u) → ′•B ( X•).  Then Q(ϕ) = Q( v̂)– 1 and – w = ε o ϕ.

Thus by Proposition 11.1(2) we have a triangle in D(!)

 

( Z•( X•), X• , ′•B ( X•), u, v, – w).

 Then, since T– 1( ′•B ( X•)) = B•( X•), by (TR2) we have a triangle in D(!)

 

( B•( X•), Z•( X•), X• , T– 1(w), u, v).

On the other hand, since T– 1(w) : B•( X•) → Z•( X•) is the inclusion, again by Proposition

11.1(2) we have a triangle in D(!) of the form

 

( B•( X•), Z•( X•), H•( X•), T– 1(w), ⋅, ⋅).

It follows by Corollary 6.7 that X•  > H•( X•) in D(!).  In case the canonical exact sequence
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0 → B•( X•) → X•  → ′•Z ( X•) → 0

splits in !Z, by the dual argument we conclude also that X•  > H•( X•) in D(!).

     Definition 21.1.  For an abelian category ! we set

 

gl dim ! = sup{n ≥ 0 |   Ext
!
n (X, Y)  0 for some X, Y ∈  Ob(!)},

which we call the global dimension of !.

     Lemma 21.2.  Assume gl dim ! ≤ 1.  Then the following hold.

     (1) I•  > H•( I• ) in D(!) for all I•  ∈  Ob(K(()).

     (2) P•  > H•( P•) in D(!) for all P•  ∈  Ob(K(3)).

 

     Proof.  (1) Note first that B•( I• ) ∈  Ob(K(()).  Thus the canonical exact sequnce

0 → B•( I• ) → I•  → ′•Z ( I• ) → 0

splits in !Z and Lemma 21.1 applies.

     (2) Dual of (1).

     Lemma 21.3.  Assume gl dim ! ≤ 1 and ! has either enough injectives or enough

projectives.  Then X•  > H•( X•) for all X•  ∈  Ob(D(!)).

 

     Proof.  By Lemmas 16.2, 16.6 and 21.2.

 

     Definition 21.2.  For each n ∈  Z we set Hn = H – n : C(!) → !, called the nth homology

functor.

     Proposition 21.4 (Universal coefficient theorem in cohomology).  Assume ! has enough

injectives.  Then for any n ∈  Z there exists a natural exact sequence

 

0 →   Ext
!
1 (Hn – 1( X•), Y) → Extn( X• , Y) → !(Hn ( X•), Y) → 0

for X•  ∈  Ob(D(!)) and Y ∈  Ob(!) with inj dim Y ≤ 1.  Furthermore, if gl dim ! ≤ 1, then

for any X•  ∈  Ob(D(!)) and n ∈  Z there exists a split exact sequence of functors on !

 

0 →   Ext
!
1 (Hn – 1( X•), –) → Extn( X• , –) → !(Hn ( X•), –) → 0.
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     Proof.  Take an injective resolution Y → I•  such that Ii = 0 for i ≥ 2.  Then C(T– 1 dI
0) = I•

and we have a triangle ( I• , I 0, I 1, ⋅, dI
0 , ⋅) in K+(!).  Thus for any n ∈  Z we have an exact

sequence

 

Extn – 1( X• , I 0) → Extn – 1( X• , I 1) → Extn( X• , I• ) → Extn( X• , I 0) → Extn( X• , I 1).

Also, by Proposition 18.8(1) we have

Extn( X• , Ii) > H n(R Hom• ( X• , Ii))

> H n( Hom• ( X• , Ii))

> H n(!( X• , Ii))

> !(H –n( X•), Ii))

for all n ∈  Z and i = – 1, 0.  Thus for any n ∈  Z we have

Cok Extn – 1( X• , dI
0) >   Ext

!
1 (H –n + 1( X•), Y),

Ker Extn( X• , dI
0) > !(H –n ( X•), Y).

Since Y > I•  in D(!), we get a desired exact sequence.  Next, assume gl dim ! ≤ 1.  Then

by Lemma 21.3 X•  > H•( X•) in D(!) and we have

Extn( X• , X) > Extn( H•( X•), I• )

> H n(R Hom• ( H•( X•), I• ))

> H n( Hom• ( H•( X•), I• )).

Since

Homn( H•( X•), I• ) = !(H –n ( X•), I 0) ⊕  !(H –n + 1( X•), I 1),

d
H X I

n

Hom• • • •( ( ), )
 = 

  

0 0

00! ( ( ), )–H X dn
I

•





,

we have

H n( Hom• ( H•( X•), I• )) > !(H –n ( X•), Y) ⊕    Ext
!
1 (H –n + 1( X•), Y)

and the required splitting follows.
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     Proposition 21.5 (Dual of Proposition 21.4).  Assume ! has enough projectives.  Then for



any n ∈  Z there exists a natural exact sequence

 

0 →   Ext
!
1 (X, Hn – 1 ( Y • )) → Extn(X, Y • ) → !(X, Hn ( Y • )) → 0

for X ∈  Ob(!) with proj dim X ≤ 1 and Y •  ∈  Ob(D(!)).  Furthermore, if gl dim ! ≤ 1, then

for any Y •  ∈  Ob(D(!)) and n ∈  Z there exists a split exact sequence of functors on !

 

0 →   Ext
!
1 (–, Hn – 1 ( Y • )) → Extn(–, Y • ) → !(–, Hn ( Y • )) → 0.

     Lemma 21.6.  (1) Let I• , ′•I  ∈  Ob(!Z) be injective and u ∈  !Z( I• , ′•I ).  Then, if X•  ∈
Ob(C(!)) is acyclic, so is Hom• ( X• , C(T– 1u)).

     (2) Let P• , ′•P  ∈  Ob(!Z) be projective and u ∈  !Z( ′•P , P•).  Then, if X•  ∈  Ob(C(!)) is

acyclic, so is Hom• (C(u), X•).

 

     Proof.  (1) Let n ∈  Z.  Since by Lemma 18.3 we have

 

Hn ( Hom• ( X• , C(T– 1u))) > K(!)( X• , Tn(C(T– 1u))),

it suffices to show K(!)( X• , Tn(C(T– 1u))) = 0.  Since Tn( I• ), Tn( ′•I ) ∈  Ob(!Z) are injective

and Tn(C(T– 1u)) > C(T– 1(Tn(u))), we may assume n = 0.  Let t[f   g] ∈  C(!)( X• , C(T– 1u)).

We have f o T– 1dX = 0 and g o T– 1dX = T– 1(u o f).  Thus there exists h ∈  !Z(T X• , I• ) such that

f = h o dX.  Then (g – T– 1(u o h)) o T– 1dX = 0 and there exists h’ ∈  !Z(T X• , T– 1 ′•I ) such that

g – T– 1(u o h) = h’ o dX.  It follows that

f

g





 = 

h

h′





dX  +  

0 0

01T u–







T h

T h

–

–

1

1 ′








 .

Thus t[f   g] . 0 and K(!)( X• , Tn(C(T– 1u))) = 0.

     (2) Dual of (1).

     Lemma 21.7.  Assume gl dim ! < ∞.  Then the following hold.

     (1) If I•  ∈  Ob(K(()) is acyclic, then I•  = 0 in K(!) and Hom• ( X• , I• ) is acyclic for all

X•  ∈  Ob(K(!)).

     (2) If P•  ∈  Ob(K(3)) is acyclic, then P•  = 0 in K(!) and Hom• ( P• , Y • ) is acyclic for all

Y •  ∈  Ob(K(!)).

 

     Proof.  (1) Let I•  ∈  Ob(8 ∩ K(()).  Then we have Z•( I• ) ∈  Ob(K(()), B•( I• ) = Z•( I• )

and ′•Z ( I• ) = T( Z•( I• )).  Thus we have an exact sequence in C(!)
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0 → Z•( I• ) →
j

 I•  →
p

 T( Z•( I• )) → 0

with dI = Tj o p.  Since this exact sequence splits in !Z, there exists h ∈  !Z(T( Z•( I• )), I• )

such that p o h = id
T Z I( ( ))• • .  Then [j   h] : C(idZ) → I•  is an isomorphism in C(!) and by

Proposition 3.5 I•  = 0 in K(!). It then follows by Lemma 18.3 that Hom• ( X• , I• ) is acyclic

for all X•  ∈  Ob(K(!)).

     (2) Dual of (1).

     Proposition 21.8.  Assume gl dim ! < ∞.  Then the following hold.

     (1) If ! has enough injectives and satisfies the condition Ab4*, then R Hom• ( X• , I• ) >
Hom• ( X• , I• ) for all X•  ∈  Ob(K(!)) and I•  ∈  Ob(K(())

     (2) If ! has enough projectives and satisfies the condition Ab4, then R Hom• ( P• , Y • ) >
Hom• ( P• , Y • ) for all P•  ∈  Ob(K(3)) and Y •  ∈  Ob(K(!))

     (3) If ! has both enough injectives and enough projectives, then the bi-∂-functor Hom•  :

K(!)op × K(!) → K(Mod Z) has a right derived functor

      

R Hom•  : D(!)op × D (!) → D(Mod Z)

such that R Hom• ( P• , I• ) > Hom• ( P• , I• ) for all P•  ∈  Ob(K(3)) and I•  ∈  Ob(K(()).

     Proof.  (1) Let I•  ∈  Ob(K(()) and take a quasi-isomorphism s : I•  → ′•I  with ′•I  ∈
Ob(K(()L).  Since C(s) is acyclic, and since C(s) ∈  Ob(K(()), it follows by Lemma 21.7(1)

that Hom• ( X• , s) is a quasi-isomorphism.  Thus

 

Hom• ( X• , I• ) > Hom• ( X• , ′•I )

> R Hom• ( X• , ′•I )

> R Hom• ( X• , I• ).

     (2) Dual of (1).

     (3) The following Claims enable us to apply Proposition 17.3.

 

     Claim 1: For any X•  ∈  Ob(K(!)), K(() satisfies the hypotheses of Propostion 13.6 for

Hom• ( X• , –) : K(!) → K(Mod Z).

 

     Proof.  By Lemmas 16.2 and 21.7(1).

 

     Claim 2: For any Y •  ∈  Ob(K(!)), K(3) satisfies the hypotheses of Propostion 13.6 for

5

Hom• (–, Y • ) : K(!) → K(Mod Z).



 

     Proof.  By Lemmas 16.6 and 21.7(2).

 

     Proposition 21.9.  Assume gl dim ! ≤ 1.  Then the following hold.

     (1) If ! has enough injectives, then R Hom• ( X• , I• ) > Hom• ( X• , I• ) for all X•  ∈
Ob(K(!)) and I•  ∈  Ob(K(()).

     (2) If ! has enough projectives, then R Hom• ( P• , Y • ) > Hom• ( P• , Y • ) for all P•  ∈
Ob(K(3)) and Y •  ∈  Ob(K(!)).

     Proof.  (1) Let X•  ∈  Ob(K(!)) and  I•  ∈  Ob(K(()).  By Lemmas 16.2 and 21.7(1) K(()

satisfies the hypotheses of Propostion 13.6 for Hom• ( X• , –) : K(!) → K(Mod Z) and we

have RIIHom• ( X• , I• ) > Hom• ( X• , I• ).  Thus the next Claim completes the proof.

     Claim : For any Y •  ∈  Ob(D(!)), RII Hom• (–, Y • ) : K(!) → D(Mod Z) vanishes on the

acyclic complexes.

 

     Proof.  By Lemma 21.3 Y •  > H•( Y • ) in D(!).  Let

 

0 → H•( Y • ) → I•, 0  →
•d2

0,

 I•, 1 → 0

be an exact sequence in !Z with I•, 0 , I•, 1 ∈  Ob(!Z) injective.  Then, since by Proposition

15.12 H•( Y • ) > C(T – 1 d2
0•, ) in D(!), by Lemma 21.6(1) RII Hom• (–, Y • ) vanishes on the

acyclic complexes.

     (2) Dual of (1).

 

     Definition 21.3.  A ring A is called left (rsp. right) hereditary if left gl dim A ≤ 1 (resp.

right gl dim A ≤ 1).

 

     Remark 21.1.  For a ring A the following are equivalent.

     (1) A is left hereditary.

     (2) Every left ideal of A is projective.

 

     Proposition 21.10 (Universal coefficient theorem in homology).   For any n ∈  Z there

exists a natural exact sequence

 

0 → Hn ( M•) ⊗ A X → Torn( M•, X) → Tor 1
A (Hn – 1( M•), X) → 0

6

for M• ∈  Ob(D(Mod Aop)) and X ∈  Mod A with flat dim AX ≤ 1.  Furthermore, if A is right



hereditary, then for any M• ∈  Ob(D(Mod Aop)) and n ∈  Z there exists a split exact sequence

of functors on Mod A

 

0 → Hn ( M•) ⊗ A – → Torn( M•, –) → Tor 1
A (Hn – 1( M•), –) → 0.

     Proof.  Take a flat resolution F• → X such that Fi = 0 for i ≤ – 2.  Then C( dF
– 1) = F• and

we have a triangle (F – 1, F 0, F•, dF
– 1 , ⋅, ⋅) in K–(Mod A).  Thus, since M• ⊗

L

 – is a ∂-functor,

for any n ∈  Z we have an exact sequence

 

Torn( M•, F– 1) → Torn( M•, F0) → Torn( M•, F•) → Torn – 1( M•, F– 1) → Torn – 1( M•, F0).

Note also that

Torn( M•, Fi) > H – n( M• ⊗
L

 Fi)

> H – n( M• ⊗  Fi)

> H – n( M• ⊗ A Fi)

> H – n( M•) ⊗ A Fi

for all n ∈  Z and i = – 1, 0.  Thus for any n ∈  Z we have

Cok Torn( M•, dF
– 1) > H – n( M•) ⊗ A X,

Ker Torn – 1( M•, dF
– 1) > Tor 1

A (H – n + 1( M•), X).

Since F• > X in D(Mod A), we get a desired exact sequence.  Next, assume A is right

hereditary.  Then by Lemma 21.3 M• > H•( M•) in D(Mod Aop) and we have

Torn( M•, X) > Torn( H•( M•), F•)

> H – n( H•( M•) ⊗
L

 F•)

> H – n( H•( M•) ⊗  F•).

Since

[ H•( M•) ⊗  F•] – n = (H – n + 1( M•) ⊗ A F
 – 1) ⊕  (H – n( M•) ⊗ A F 0),

d
H M F

n
• • •⊗( )

–  =  (– 1)n 
0 0

01 1H M dn
F

– –( )+ • ⊗





,
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we have



H – n( H•( M•) ⊗  F•) > Tor 1
A (H – n + 1( M•), X) ⊕  (H – n( M•) ⊗ A X)

and the required splitting follows.

 

     Lemma 21.11.  (1) Let P• , ′•P  ∈  Ob((Mod Aop)Z) be projective and u : ′•P  → P•  a

morphism in (Mod Aop)Z.  Then, if X•  ∈  Ob(C(Mod A)) is acyclic, so is C(u) ⊗  X• .

     (2) Let P• , ′•P  ∈  Ob((Mod A)Z) be projective and u : ′•P  → P•  a morphism in (Mod A)Z.

Then, if M• ∈  Ob(C(Mod Aop)) is acyclic, so is M• ⊗  C(u).

 

     Proof.  (1) By Lemma 19.5 D(C(u) ⊗  X•) →̃ Hom• (C(u), D( X•)) and Lemma 21.6(2)

applies.

     (2) By symmetry.

     Lemma 21.12.  (1) If A has finite left global dimension and if P•  ∈  Ob(K(Proj A)) is

acyclic, then P•  = 0 in K(Mod A) and M• ⊗  P•  is acyclic for all M• ∈  Ob(K(Mod Aop)).

     (2) If A has finite right global dimension and if P•  ∈  Ob(K(Proj Aop)) is acyclic, then P•  =

0 in K(Mod Aop) and P•  ⊗  X•  is acyclic for all X•  ∈  Ob(K(Mod A)).

 

     Proof.  (1) By Lemmas 21.7(2) and 19.5(2).

     (2) By symmetry.

     Proposition 21.13.  (1) If A has finite left global dimension, then M• ⊗
L

 P•  > M• ⊗  P•

for all M• ∈  Ob(K(Mod Aop)) and P•  ∈  Ob(K(Proj A)).

     (2) If A has finite right global dimension, then P•  ⊗
L

 X•  > P•  ⊗  X•  for all P•  ∈
Ob(K(Proj Aop)) and X•  ∈  Ob(K(Mod A)).

 

     Proof.  (1) Let P•  ∈  Ob(K(Proj A)).  By Proposition 12.20(1) we have a quasi-isomorphism

s : ′•P  → P•  with ′•P  ∈  Ob(K(Proj A)L).  Then, since C(s) is acyclic, and since C(s) ∈
Ob(K(Proj A)), by Lemmas 19.3(1) and 21.12(1) M• ⊗  s is a quasi-isomorphism.  Thus

 

M• ⊗
L

 P•  > M• ⊗
L

 ′•P

> M• ⊗  ′•P

> M• ⊗  P• .
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     (2) By symmetry.



§22.  Way-out functors

     Throughout this section, !, @ and # are abelian categories.  Also, R is a commutative

ring and A is an R-algebra.  We denote by E an injective cogenerator in Mod R and by D both

HomR(–, E) and R Hom• (–, E).  Unless otherwise stated, functors are covariant functors.

 

     Definition 22.1.  Let K* (!) be a localizing subcategory of D(!).  A ∂-functor F : D* (!)

→ D(@) is called way-out right (resp. left) if for any n1 ∈  Z there exists n2 ∈  Z such that

Hi(F( X•)) = 0 for i < n1 (resp. i > n1) and X•  ∈  Ob(D* (!)) with Hi( X•) = 0 for i < n2 (resp. i

> n2), and is called way-out in both directions if both way-out left and way-out right.

     In case F is contravariant, F is said to be way-out left, way-out right or way-out in both

directions if so is the covariant ∂-functor F : D* (!)op → D(@).

 

     Proposition 22.1.  Let F : ! → @ be an additive functor.  Assume there exists a

subcollection ( of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (,  Y ∈  ( if and only if Z

∈  (, and

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  (, then the induced

sequence 0 → FX → FY → FZ → 0 in @  is exact.

      Then R+F : D+(!) → D(@), which exists by Corollary 13.7, is way-out right.

  

      Proof.  Let n1 ∈  Z and put n2 = n1 + 1.   Let X•  ∈  Ob(D+(!)) with Hi ( X•) = 0 for i < n2.

We claim that Ri F( X•) = 0 for i < n1.  By Lemma 10.6 we have a quasi-isomorphism X•  →
σ ≥ n2

( X•) with σ ≥ n2
( X•) ∈  Ob(K+(!)).  Also, by Proposition 4.7 we have a quasi-isomorphism

σ ≥ n2
( X•) → I•  with I•  ∈  Ob(K+(()).  By construction, we may assume Ii = 0 for i < n2 – 1 =

n1.  Thus for any i < n1, since F( I• )i = F(Ii) = 0, we have

  

RiF( X•) > RiF( I• )

> Hi(Q(F( I• )))

 0.

     Proposition 22.2.  Let F : ! → @ be a left exact functor.  Assume there exists a

subcollection ( of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (,  Y ∈  ( if and only if Z

∈  (,

     (3) there exists an integer n ≥ 1 such that if

1

 



X 0 → X 1 → L → Xn – 1 → Xn → 0

is an exact sequence in ! with X 0, X 1,  L , Xn – 1 ∈  ( then Xn  ∈  (, and

     (4) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  (, then the induced

sequence 0 → FX → FY → FZ → 0 in @ is exact.

     Then RF : D(!) → D(@), which exists by Proposition 16.4, is way-out in both directions.

  

      Proof.  Note that by Proposition 16.4 RF |
  D+ ( )!

 > R+F.  Thus by Proposition 22.1 RF is

way-out right.  Next, let n1 ∈  Z and put n2 = n1 – n.  Let X•  ∈  Ob(D(!)) with Hi ( X•) = 0 for

i > n2.  We claim that RiF X( )•  = 0 for i > n1.  By Lemma 16.2 we have a quasi-isomorphism

X• → I•  with I•  ∈  Ob(K(()).  Since Hi ( I• ) = 0 for i ≥ n1 > n2, by Lemma 10.7 we have a

quasi-isomorphism σ ≤ n1
( I• ) → I• .  Also, since we have an exact sequence

  

I n2  → L → I n1 1–  → Zn1 ( I• ) → 0

with n1 – n2 = n, Zn1 ( I• ) ∈  Ob(K(()) and σ ≤ n1
( I• ) ∈  Ob(K(()).  Thus for any i > n1, since F(

σ ≤ n1
( I• ))i = 0, we have

  

Ri F( X•) > Ri F(σ ≤ n1
( I• ))

> Hi (Q(F(σ ≤ n1
( I• ))))

 0.

     Proposition 22.3.  Let F : ! → @ be a left exact functor.  Assume there exists a

subcollection ( of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism X → I in ! with I ∈  (,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with X ∈  (,  Y ∈  ( if and only if Z

∈  (,

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  (, then the induced

sequence 0 → FX → FY → FZ → 0 in @ is exact, and

     (4) F has finite cohomological dimension on !, i.e., there exists n ≥ 1 such that RiF

vanishes on ! for i > n (Note that by Corollary 13.7 R+F exists).

     Then RF : D(!) → D(@), which exists by Corollary 16.5, is way-out in both directions.

  

      Proof.  By Corollary 16.5 and Proposition 22.2.

     Proposition 22.4 (Dual of Proposition 22.1).  Let G : ! → @ be an additive functor.

Assume there exists a subcollection 3 of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists an epimorphism P → X in ! with P ∈  3,

2

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only



if X ∈  3, and

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact.

      Then L–G : D–(!) → D(@), which exists by Corollary 14.7, is way-out left.

     Proposition 22.5 (Dual of Proposition 22.2).  Let G : ! → @ be a right exact functor.

Assume there exists a subcollection 3 of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism P → X in ! with P ∈  3,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only

if X ∈  3,

     (3) there exists an integer n ≥ 1 such that if

 

0→ X– n → X– n + 1 → L → X– 1 → X 0

is an exact sequence in ! with X 0, X– 1,  L ,  X– n + 1 ∈  3 then X– n ∈  3, and

     (4) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact.

     Then LG : D(!) → D(@), which exists by Proposition 16.8, is way-out in both directions.

     Proposition 22.6 (Dual of Proposition 22.3).  Let G : ! → @ be a right exact functor.

Assume there exists a subcollection 3 of Ob(!) such that

     (1) for any X ∈  Ob(!) there exists a monomorphism P → X in ! with P ∈  3,

     (2) if 0 → X → Y → Z → 0 is an exact sequence in ! with Z ∈  3, then Y ∈  3 if and only

if X ∈  3,

     (3) if 0 → X → Y → Z → 0 is an exact sequence in ! with X, Y, Z ∈  3, then the induced

sequence 0 → GX → GY → GZ → 0 is exact, and

     (4) G has finite homological dimension on !, i.e., there exists n ≥ 1 such that LiG

vanishes on ! for all i > n (Note that by Corollary 14.7 L–G exists).

     Then LG : D(!) → D(@), which exists by Corollary 16.9, is way-out in both directions.

 

     Throughout the rest of this section, ( (resp. 3) is the collection of injective (resp.

projective) objects of !.  We denote by K(()L (resp. K(3)L) the full subcategory of K(()

(resp. K(3)) consisting of 8-local (resp. 8-colocal) complexes, where 8 is the épaisse

subcategory of K(!) consisting of acyclic complexes.

     Proposition 22.7.  Assume ! has enough injectives.  Then for X•  ∈  Ob(D(!)) the

following hold.

     (1) If X•  ∈  Ob(D+(!)), then R Hom• (–, X•) : D(!) → D(Mod Z) is way-out right.

3

     (2) If ! satisfies the condition Ab4* and if R Hom• (–, X•) : D(!) → D(Mod Z) is way-out



right, then X•  ∈  Ob(D+(!)).

 

     Proof.  (1) Let n1 ∈  Z.  Take n ∈  Z such that Hi( X•) = 0 for i < n and put n2 = (n – 1) – n1.

By Lemma 10.6 we have a quasi-isomorphism X•  → σ≥ n( X•).  Also, by Proposition 4.7 we

have a quasi-isomorphism σ≥ n( X•) → I•  with I•  ∈  Ob(K+(()) such that Ii = 0 for i < n – 1.

Let Y •  ∈  Ob(D(!)) with Hi( Y • ) = 0 for i > n2.  Since Hi( Y • ) = 0 for i > n2, by Lemma 10.7

we have a quasi-isomorphism σ ≤ n2
( Y • ) → Y • .  Thus for i < n1, since Ti( I• )j = Ii + j = 0 for j ≤

n2 and σ ≤ n2
( Y • )j = 0 for j > n2, by Proposition 10.12 we have

 

Exti( Y • , X•) > Exti(σ ≤ n2
( Y • ), I• )

> D(!)(σ ≤ n2
( Y • ), Ti( I• )))

> K(!)(σ ≤ n2
( Y • ), Ti( I• )))

 0.

     (2) By Proposition 12.15(2) we have a quasi-isomorphism X• → I•  with I•  ∈  Ob(K(()L).

For n1 = 0, there exists n2 = n ∈  Z such that Exti( Y • , X•) = 0 for i < 0 and Y •  ∈  Ob(D(!))

with Hi( Y • ) = 0 for i > n.  Let i < n and j : Zi( I• ) → Ii the inclusion.  Then, since by

Proposition 9.13(2) we have

 

K(!)(T– i(Zi( I• )), I• ) > D(!)(T– i(Zi( I• )), I• )

> D(!)(T– i(Zi( I• )), X•)

> D(!)(T– n(Zi( I• )), Ti – n( X•))

> Exti – n (T– n(Zi( I• )), X•)

 0,

there exists f : Zi( I• ) → Ii – 1 such that j = dI
i – 1  o f.  It follows that Bi( I• ) = Zi( I• ).  Consequently,

Hi( X•) > Hi( I• ) = 0 for all i < n and X•  ∈  Ob(D+(!)).

 

     Proposition 22.8.  Assume ! has enough injectives.  Then for X•  ∈  Ob(D+(!)) the

following are equivalent.

     (1) X•  ∈  Ob(D+(!)fid).

     (2) There exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(Kb(()).

     (3) R Hom• (–, X•) : D(!) → D(Mod Z) is way-out left (and thus by Proposition 22.7(1)

way-out in both directions).

 

     Proof.  (1) ⇒  (2).  By Proposition 11.12.

     (2) ⇒  (3).  Take n ∈  Z such that Ii = 0 for i > n.  Let n1 ∈  Z and put n2 = n – n1 + 1.  Let

Y •  ∈  Ob(D(!)) with Hi( Y • ) = 0 for i < n2.  By Lemma 10.6 we have a quasi-isomorphism
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Y •  → σ ≥ n2
( Y • ).  Thus for any i > n1, since Ti( I• )j = Ii + j = 0 for j ≥ n2 – 1 and σ ≥ n2

( Y • )j = 0



for j < n2 – 1, by Proposition 10.12 we have

 

Exti( Y • , X•) > Exti(σ ≥ n2
( Y • ), I• )

> D(!)(σ ≥ n2
( Y • ), Ti( I• ))

> K(!)(σ ≥ n2
( Y • ), Ti( I• ))

 0.

     (3) ⇒  (1).  For n1 = 0, there exists n2 = n ∈  Z such that Exti( Y • , X•) = 0 for i > 0 and Y •

∈  Ob(D(!)) with Hi( Y • ) = 0 for i < n.  Thus for any i > n and Y ∈  Ob(!) we have

 

Exti(Y, X•) > Exti – n (T– n Y, X•)

 0.

     Proposition 22.9.  Assume ! has enough injectives and satisfies the condition Ab4*.  Then

for X•  ∈  Ob(D(!)) the following are equivalent.

     (1) X•  ∈  Ob(D(!)fid).

     (2) There exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(K–(()L).

     (3) R Hom• (–, X•) : D(!) → D(Mod Z) is way-out left.

 

     Proof.  (1) ⇒  (2).  By Proposition 12.15(2).

     (2) ⇒  (3).  Take n ∈  Z such that Ii = 0 for i > n.  Let n1 ∈  Z and put n2 = n – n1 + 1.  Let

Y •  ∈  Ob(D(!)) with Hi( Y • ) = 0 for i < n2.  By Lemma 10.6 we have a quasi-isomorphism

Y •  → σ ≥ n2
( Y • ).  Thus for any i > n1, since Ti( I• )j = Ii + j = 0 for j ≥ n2 – 1 and σ ≥ n2

( Y • )j = 0

for j < n2 – 1, by Proposition 9.13(2) we have

 

Exti( Y • , X•) > Exti(σ ≥ n2
( Y • ), I• )

> D(!)(σ ≥ n2
( Y • ), Ti( I• ))

> K(!)(σ ≥ n2
( Y • ), Ti( I• ))

 0.

     (3) ⇒  (1).  Same as in the proof of Proposition 22.8.

 

     Remark 22.1.  (1) Assume ! has enough injectives.  Then it follows by Proposition 22.8

that D+(!)fid , Db(!).

     (2) Assume ! has enough injectives and satisfies the condition Ab4*.  Then it follows by

Proposition 22.9 that D(!)fid , D–(!).

 

     Proposition 22.10.  Assume ! has enough injectives and satisfies the condition Ab4*.
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Then for X•  ∈  Ob(D(!)) the following are equivalent.



     (1) X•  ∈  Ob(D+(!)fid).

     (2) There exists a quasi-isomorphism X•  → I•  with I•  ∈  Ob(Kb(()).

     (3) R Hom• (–, X•) : D(!) → D(Mod Z) is way-out in both directions.

 

     Proof.  (1) ⇒  (2) ⇒  (3).  By Proposition 22.8.

     (3) ⇒  (1).  By Propositions 22.7(2) and 22.9.

     Proposition 22.11 (Dual of Proposition 22.7).  Assume ! has enough projectives.  Then

for X•  ∈  Ob(D(!)) the following hold.

     (1) If X•  ∈  Ob(D–(!)), then R Hom• ( X• , –) : D(!) → D(Mod Z) is way-out right.

     (2) If ! satisfies the condition Ab4 and if R Hom• ( X• , –) : D(!) → D(Mod Z) is way-out

right, then X•  ∈  Ob(D–(!)).

     Proposition 22.12 (Dual of Proposition 22.8).  Assume ! has enough projectives.  Then

for X•  ∈  Ob(D–(!)) the following are equivalent.

     (1) X•  ∈  Ob(D–(!)fpd).

     (2) There exists a quasi-isomorphism P• → X•  with P•  ∈  Ob(Db(3)).

     (3) R Hom• ( X• , –) : D(!) → D(Mod Z) is way-out left (and thus by Proposition 22.11(1)

way-out in both directions).

 

     Proposition 22.13 (Dual of Proposition 22.9).  Assume ! has enough projectives and

satisfies the condition Ab4.  Then for X•  ∈  Ob(D(!)) the following are equivalent.

     (1) X•  ∈  Ob(D(!)fpd).

     (2) There exists a quasi-isomorphism P• → X•  with P•  ∈  Ob(D+(3)L).

     (3) R Hom• ( X• , –) : D(!) → D(Mod Z) is way-out left.

 

     Remark 22.2.  (1) Assume ! has enough projectives.  Then it follows by Proposition

22.12 that D–(!)fpd , Db(!).

     (2) Assume ! has enough projectives and satisfies the condition Ab4.  Then it follows by

Proposition 22.13 that D(!)fpd , D+(!).

 

     Proposition 22.14 (Dual of Proposition 22.10).  Assume ! has enough projectives and

satisfies the condition Ab4.  Then for X•  ∈  Ob(D(!)) the following are equivalent.

     (1) X•  ∈  Ob(D–(!)fpd).

     (2) There exists a quasi-isomorphism P• → X•  with P•  ∈  Ob(Db(3)).

     (3) R Hom• ( X• , –) : D(!) → D(Mod Z) is way-out in both directions.

 

     Proposition 22.15.  For X•  ∈  Ob(D(Mod A)) the following are equivalent.
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     (1) X•  ∈  Ob(D–(Mod A)).



     (2) There exists a quasi-isomorphism P• → X•  with P•  ∈  Ob(K–(Flat A)).

     (3) – ⊗
L

 X•  : D(Mod Aop) → D(Mod R) is way-out left.

 

     Proof.  (1) ⇒  (2).  Take n ∈  Z such that Hi( X•) = 0 for i > n.  Then by Lemma 10.7 the

canonical monomorphism σ  n( X•) → X•  is a quasi-isomorphism.  Also, by Proposition 4.11

we have a quasi-isomorphism P• → σ  n( X•) with P•  ∈  Ob(K–(Proj A)).

     (1) ⇒  (2).  Let n1 ∈  Z.  Take n ∈  Z such that Pi = 0 for i > n and put n2 = n1 – n.  Let M•

∈  Ob(D(Mod Aop)) with Hi( M•) = 0 for i > n2.  By Lemma 10.7 we have a quasi-isomorphism

σ ≤ n2
( M•) → M•.  Thus for i < n1, since [σ ≤ n2

( M•) ⊗  P•]i = 0, we have

 

Hi( M• ⊗
L

 X•) > Hi(σ ≤ n2
( M•) ⊗

L

 P•)

> Hi(σ ≤ n2
( M•) ⊗  P•)

 0.

     (3) ⇒  (1).  For n1 = 0, there exists n2 = n ∈  Z such that Hi( M• ⊗
L

 X•) = 0 for i > 0 and

M• ∈  Ob(D(Mod Aop)) with Hi( M•) = 0 for i > n.  Thus for any i > – n we have

 

Hi( X•) > Hi(A ⊗
L

 X•)

> Hi + n (T– n(A) ⊗
L

 X•)

 0.

 

     Proposition 22.16.  For X•  ∈  Ob(D(Mod A)) the following are equivalent.

     (1) X•  ∈  Ob(D(Mod A)fTd).

     (2) There exists an isomorphism P•  → X•  in D(Mod A) with P•  ∈  Ob(K+(Flat A)).

     (3) – ⊗
L

 X•  : D(Mod Aop) → D(Mod R) is way-out right.

 

     Proof.  (1) ⇒  (2).  By Lemma 20.7.

     (2) ⇒  (3).  Let n1 ∈  Z.  Take n ∈  Z such that Pi = 0 for i < n and put n2 = n1 – n + 1.  Let

M• ∈  Ob(D(Mod Aop)) with Hi( M•) = 0 for i < n2.  By Lemma 10.6 we have a quasi-isomorphism

M• → σ ≥ n2
( M•).  Thus for i < n1, since [σ ≤ n2

( M•) ⊗  P•]i = 0, we have

 

Hi( M• ⊗
L

 X•) > Hi(σ ≤ n2
( M•) ⊗

L

 P•)

> Hi(σ ≤ n2
( M•) ⊗  P•)

 0.

     (3) ⇒  (1).  For n1 = 0, there exists n2 = n ∈  Z such that Hi( M• ⊗
L

 X•) = 0 for i < 0 and

M• ∈  Ob(D(Mod Aop)) with Hi( M•) = 0 for i < n.  Thus for any i > n and M ∈  Mod Aop we
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have



 

Tori(M, X•) > H– i(M ⊗
L

 X•)

> Hn – i(T– n(M) ⊗
L

 X•)

 0.

     Proposition 22.17.  For X•  ∈  Ob(D(Mod A)) the following are equivalent.

     (1) X•  ∈  Ob(D–(Mod A)fTd).

     (2) There exists an isomorphism P•  → X•  in D(Mod A) with P•  ∈  Ob(Kb(Flat A)).

     (3) – ⊗
L

 X•  : D(Mod Aop) → D(Mod R) is way-out in both directions.

 

     Proof.  By Propositions 22.15 and 22.16.

 

     Remark 22.3.  (1) It follows by Proposition 22.17 that D–(Mod A)fTd , Db(Mod A).

     (2) It follows by Propositions 22.13 and 22.17 that D–(Mod A)fpd , D–(Mod A)fTd.

     (3) It follows by Proposition 22.16 that D(Mod A)fTd , D+(Mod A).

     (4) It follows by Propositions 22.12 and 22.16 that D(Mod A)fpd , D(Mod A)fTd.
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§23.  Lemma on way-out functors

     Throughout this section, !, @ are abelian categories and !’, @’ are thick subcategories

of ! and @, respectively.  Unless stated otherwise, functors are covariant.

     Lemma 23.1.  For any X•  ∈  C(!) and n ∈  Z, there exists a commutative diagram with

exact rows and columns

 

0 0

↓ ↓

0 → ′<σ n ( X•) → σ≤ n( X•) → T– n(Hn( X•)) → 0

|| ↓ ↓

0 → ′<σ n ( X•) → X• → ′≥σ n ( X•) → 0

↓ ↓

σ> n( X•)  σ> n( X•)

↓ ↓

0 0 .

     Proof.  Straightforward.

     Lemma 23.2.  For any X•  ∈  C(!) and n ∈  Z, there exists a commutative diagram with

exact rows and column

 

0 0

↓ ↓

0 → σ< n( X•) → ′<σ n ( X•) → C( id
T B Xn n– ( ( ))• ) → 0

|| ↓ ↓

0 → σ< n( X•) → X• → σ≥ n( X•) → 0

↓ ↓

′≥σ n ( X•)  ′≥σ n ( X•)

↓ ↓

0 0 .

1



     Proof.  Straightforward.

     Definition 23.1.  For each n ∈  Z, we define truncation functors τ > n, τ ≤ n : C(!) → C(!) as

follows:

 

τ > n( X•)i = 
X i n

i n

i ( )

( )

>
≤



 0

,    τ ≤ n( X•)i = 
0 ( )

( )

i n

X i ni

>
≤





for X•  ∈  C(!).  We set τ  ≥ n = τ> n – 1 and τ < n = τ ≤ n – 1.

 

     Lemma 23.3.  For any X•  ∈  C(!) and n ∈  Z, there exists a commutative diagram with

exact rows and columns

 

0 0

↓ ↓

0 → τ > n( X•) → τ ≥ n( X•) → T– n(Xn) → 0

|| ↓ ↓

0 → τ > n( X•) → X• → τ ≤ n( X•) → 0

↓ ↓

τ < n( X•)  τ < n( X•)

↓ ↓

0 0 .

     Proof.  Straightforward.

 

     Lemma 23.4.  For any X•  ∈  C(!) and n ∈  Z, there exist triangles in D(!) of the

following form

 

(1) (τ > n( X•), X• , τ  ≥ n( X•), ⋅, ⋅, ⋅),

(2) (τ > n( X•), τ  ≥ n( X•), T– n(Xn), ⋅, ⋅, ⋅),

(3) (T– n(Xn), τ ≤ n( X•), τ  < n( X•), ⋅, ⋅, ⋅),

(4) (σ≤ n( X•), X• , σ> n( X•), ⋅, ⋅, ⋅),

(5) (σ< n( X•), σ≤ n( X•), T– n(Hn( X•)), ⋅, ⋅, ⋅),

(6) (T– n(Hn( X•)), σ≥ n( X•), σ> n( X•), ⋅, ⋅, ⋅).

2



     Proof.  By Lemma 23.3 we have exact sequences in C(!)

 

0 → τ 
> n( X•) → X•  → τ  ≥ n( X•) → 0,

0 → τ> n( X•) → τ ≥ n( X•) → T– n(Xn) → 0,

0 → T– n(Xn) → τ ≤ n( X•) → τ < n( X•) → 0.

Thus by Proposition 11.1(2) we get first three triangles.  Also, by Lemma 23.1 we have exact

sequences in C(!)

 

0 → σ≤ n( X•) → X•  → σ> n( X•) → 0,

0 → ′<σ n ( X•) → σ≤ n( X•) → T– n(Hn( X•)) → 0,

0 → T– n(Hn( X•))→ ′≥σ n ( X•) → σ> n( X•) → 0.

Thus, since by Lemma 23.2 we have isomorphisms in D(!)

σ< n( X•) →̃ ′<σ n ( X•),     σ≥ n( X•)) →̃ ′≥σ n ( X•),

by Proposition 11.1(2) we get last three triangles.

 

     Proposition 23.5 (Lemma on way-out functors).  Let F, G :   D ′!
* (!) → D(@) be

∂-functors, where * = +, –, b or nothing, and η  ∈  Hom (F, G).  Then the following hold.

     (1) Assume η (X) is an isomorphism for all X ∈  Ob(!’).  Then η( X•) is an isomorphism

for all X•  ∈  Ob(  D ′!
b (!)).

     (2) Assume η (X) is an isomorphism for all X ∈  Ob(!’), and assume both F and G are

way-out right.  Then η( X•) is an isomorphism for all X•  ∈  Ob(  D ′!
+ (!)).

     (3) Assume there exists a subcollection ( of Ob(!’) such that (a) for any X ∈  Ob(!’)

there exists a monomorphism X → I with I ∈  (, and (b) η (I) is an isomorphism for all I ∈  (,

and assume both F and G are way-out right.  Then η ( X•) is an isomorphism for all X•  ∈
Ob(  D ′!

+ (!)).

     (4) Assume η (X) is an isomorphism for all X ∈  Ob(!’), and assume both F and G are

way-out left.  Then  η( X•) is an isomorphism for all X•  ∈  Ob(  D ′!
– (!)).

     (5) Assume there exists a subcollection 3 of Ob(!’) such that (a) for any X ∈  Ob(!’)

there exists an epimorphism P → X with P ∈  3, and (b) η (P) is an isomorphism for all P ∈
3, and assume both F and G are way-out left.  Then η( X•) is an isomorphism for all X•  ∈
Ob(  D ′!

– (!)).

     (6) Assume η (X) is an isomorphism for all X ∈  Ob(!’), and assume both F and G are

3

way-out in both directions.   Then η ( X•) is an isomorphism for all X•  ∈  Ob(  D ′!
(!)).



 

     Proof.  We need the following.

 

     Claim: Let X•  ∈  Ob(  D ′!
* (!)).  If η( X•) is an isomorphism, so is η(Tn X•) for all n ∈  Z.

 

     Proof.  Let F = (F, α) and G = (G, β).  Then, since ηT = β – 1 o Tη o α , it follows that η( X•)

is an isomorphism if and only if so is η(T X•).

 

     (1) Let X•  ∈  Ob(  D ′!
b (!)).  For n ›› 0, σ> n( X•) = 0 and η (σ> n( X•)) is an isomorphism.

Let n ∈  Z and assume η(σ> n( X•)) is an isomorphism.  We claim that η (σ≥ n( X•)) is an

isomorphism.  By Lemma 23.4 we have a triangle of the form

 

(T– n(Hn( X•)), σ≥ n( X•), σ> n( X•), ⋅, ⋅, ⋅).

Since by Claim η(T– n(Hn( X•))) is an isomorphism, so is η(σ≥ n( X•)) by Proposition 6.6.

Thus, since X•  = σ> n( X•) for n ‹‹ 0, it follows by induction that η( X•) is an isomorphism.

     (2) Let X•  ∈  Ob(  D ′!
+ (!)) and n ∈  Z.  We claim that Hn(η( X•)) is an isomorphism.  Put

n1 = n + 1.  There exist n2(F) ∈  Z such that Hi(F( X•)) = 0 for i < n1 and X•  ∈  Ob(D(!) with

Hi( X•) = 0 for i < n2(F), and n2(G) ∈  Z such that Hi(G( X•)) = 0 for i < n1 and X•  ∈  Ob(D(!)

with Hi( X•) = 0 for i < n2(G).  Put n2 = max{n2(F), n2(G)}.  Since Hi(σ > n2
( X•)) = 0 for i < n2,

we have

 

Hn(F(σ > n2
( X•))) = Hn – 1(F(σ > n2

( X•))) = 0,

Hn(G(σ > n2
( X•))) = Hn – 1(G(σ > n2

( X•))) = 0.

Since by Lemma 23.4 we have a triangle of the form

(σ ≤ n2
( X•), X• , σ > n2

( X•), ⋅, ⋅, ⋅),

we have a commutative diagram

Hn(F(σ ≤ n2
( X•))) →̃ Hn(F(( X•))

Hn(η(σ ≤ n2
( X•))) ↓ ↓ Hn(η( X•))

Hn(G(σ ≤ n2
( X•))) →̃ Hn(G(( X•)) .

By the part (1) η (σ ≤ n2
( X•)) is an isomorphism, so is Hn(η ( X•)).

     (3) By the part (2), it suffices to show that η(X) is an isomorphism for all X ∈  Ob(!’).

4

Let X ∈  Ob(!’).  By hypothesis (a) X has a right resolution X → I•  with I•  ∈  Ob(K+(()).  It



suffices to show that η( I• ) is an isomorphism, the proof of which consists of two steps.

 

     Step 1: η( I• ) is an isomorphism for all I•  ∈  Ob(Kb(()).

 

     Proof.  Let I•  ∈  Ob(Kb(()).  For n ›› 0, since τ> n( I• ) = 0, η(τ> n( I• )) is an isomorphism.

Let n ∈  Z and assume η(τ> n( I• )) is an isomorphism.  We claim that η(τ ≥ n( I• )) is also an

isomorphism.  By Lemma 23.4 we have a triangle of the form

 

(τ> n( I• ), τ  ≥ n( I• ), T– n(In), ⋅, ⋅, ⋅).

Since by Claim η(T– n(In)) is an isomorphism, so is η (τ ≥ n( I• )) by Proposition 6.6.  Thus, since

I•  = τ > n( I• ) for n ‹‹ 0, it follows by induction that η( I• ) is an isomorphism.

 

     Step 2: η( I• ) is an isomorphism for all I•  ∈  Ob(K+(()).

 

     Proof.  Let I•  ∈  Ob(K+(()) and n ∈  Z.  We claim that Hn(η ( I• )) is an isomorphism.  Put

n1 = n + 1.  There exist n2(F) ∈  Z such that Hi(F( X•)) = 0 for i < n1 and X•  ∈  Ob(D(!)) with

Hi( X•) = 0 for i < n2(F), and n2(G) ∈  Z such that  Hi(G( X•)) = 0 for i < n1 and X•  ∈
Ob(D(!)) with Hi( X•) = 0 for i < n2(G).  Put n2 = max{n2(F), n2(G)}.  Since Hi(τ  ≥ n( I• )) = 0

for i < n2, we have

 

Hn(F(τ  ≥ n( I• ))) = Hn – 1(F(τ  ≥ n( I• ))) = 0,

Hn(G(τ ≥ n( I• ))) = Hn – 1(G(τ ≥ n( I• ))) = 0.

Since by Lemma 23.4 we have a triangle of the form

(τ> n( I• ), I• , τ  ≥ n( I• ), ⋅, ⋅, ⋅),

we have a commutative diagram

Hn(F(τ> n( I• ))) →̃ Hn(F(( I• ))

Hn(η(τ> n( I• ))) ↓ ↓ Hn(η( I• ))

Hn(G(τ> n( I• ))) →̃ Hn(G(( I• )) .

By Step 1 η (τ> n( I• )) is an isomorphism, so is Hn(η( I• )).

     (4) Dual of (2).

     (5) Dual of (3).
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     (6) Let X•  ∈  Ob(  D ′!
(!)).  By the part (2) η(σ> 0( X•)) is an isomorphism, and by the part



(4) η(σ≤ 0( X•)) is an isomorphism.  Since by Lemma 23.4 we have a triangle of the form

 

(σ≤ 0( X•), X• , σ> 0( X•), ⋅, ⋅, ⋅),

it follows by Proposition 6.6 that η( X•) is an isomorphism.

      

     Proposition 23.6.  Let F :   D ′!
* (!) → D(@) be a ∂-functor, where * = +, –, b or nothing.

Then the following hold.

     (1) Assume F(X) ∈  Ob(  D ′@
(@)) for all X ∈  Ob(!’).  Then F( X•) ∈  Ob(  D ′@

(@)) for all

X•  ∈  Ob(  D ′!
b (!)).

     (2) Assume F(X) ∈  Ob(  D ′@
(@)) for all X ∈  Ob(!’), and assume F is way-out right.  Then

F( X•) ∈  Ob(  D ′@
(@)) for all X•  ∈  Ob(  D ′!

+ (!)).

     (3) Assume there exists a subcollection ( of Ob(!’) such that (a) for any X ∈  Ob(!’)

there exists a monomorphism X → I with I ∈  (, and (b) F(I) ∈    Ob( ( ))D ′@
@  for all I ∈  (,

and assume F is way-out right.  Then F( X•) ∈  Ob(  D ′@
(@)) for all X•  ∈  Ob(  D ′!

+ (!)).

     (4) Assume F(X) ∈  Ob(  D ′@
(@)) for all X ∈  Ob(!’), and assume F is way-out left.  Then

F X( )•  ∈  Ob(  D ′@
(@)) for all X•  ∈  Ob(  D ′!

– (!)).

     (5) Assume there exists a subcollection 3 of Ob(!’) such that (a) for any X ∈  Ob(!’)

there exists an epimorphism P → X with P ∈  3, and (b) F(P) ∈    Ob( ( ))D ′@
@  for all P ∈  3,

and assume F is way-out left.  Then F( X•) ∈  Ob(  D ′@
(@)) for all X•  ∈  Ob(  D ′!

+ (!)).

     (6) Assume F(X) ∈  Ob(  D ′@
(@)) for all X ∈  Ob(!’), and assume F is way-out in both

directions.  Then F( X•) ∈  Ob(  D ′@
(@)) for all X•  ∈  Ob(  D ′!

(!)).

 

     Proof.  (1) Note first that F(T n X) ∈  Ob(  D ′@
(@)) for all X ∈  Ob(!’) and n ∈  Z.  Let X•  ∈

Ob(  D ′!
b (!)).  For n ›› 0, since σ> n( X•) = 0, F(σ> n( X•)) ∈  Ob(  D ′@

(@)).  Let n ∈  Z and

assume F(σ> n( X•)) ∈  Ob(  D ′@
(@)).  We claim that F(σ≥ n( X•)) ∈  Ob(  D ′@

(@)).  By Lemma

23.4 we have a triangle of the form

 

(T– n(Hn( X•)), σ≥ n( X•), σ> n( X•), ⋅, ⋅, ⋅).

Since F(T– n(Hn( X•))) ∈  Ob(  D ′@
(@)), it follows that F(σ≥ n( X•)) ∈  Ob(  D ′@

(@)).  Thus, since

X•  = σ> n( X•) for n ‹‹ 0, it follows by induction that F( X•) ∈  Ob(  D ′@
(@)).

     (2) Let X•  ∈  Ob(  D ′!
+ (!)) and n ∈  Z.  We claim Hn(F( X•)) ∈  Ob(@’).  Put n1 = n + 1.

There exists n2 ∈  Z such that Hi(F( X•)) = 0 for i < n1 and X•  ∈  Ob(D(!)) with Hi( X•) = 0

for i < n2.  Since Hi(σ > n2
( X•)) = 0 for i < n2, we have

 

Hn(F(σ > n2
( X•))) = Hn – 1(F(σ > n2

( X•))) = 0.
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Thus, since by Lemma 23.4 we have a triangle of the form



(σ ≤ n2
( X•), X• , σ > n2

( X•), ⋅, ⋅, ⋅),

we get Hn(F(σ ≤ n2
( X•))) > Hn(F(( X•)).  Since σ ≤ n2

( X•) ∈  Ob(  D ′!
b (!)), by the part (1) we

have F(σ ≤ n2
( X•)) ∈  Ob(  D ′@

(@)), so that Hn(F(( X•)) > Hn(F(σ ≤ n2
( X•))) ∈  Ob(@’).

     (3) By the part (2), it suffices to show that F(X) ∈  Ob(@’) for all X ∈  Ob(!’).  Let X ∈
Ob(!’).  By hypothesis (a) X has a right resolution X → I•  with I•  ∈  Ob(K+(()).  It suffices

to show that F( I• ) ∈  Ob(  D ′@
(@)), the proof of which consists of two steps.

 

     Step 1: F( I• ) ∈  Ob(  D ′@
(@)) for all I•  ∈  Ob(Kb(()).

 

     Proof.  Note first that F(Tn I) ∈  Ob(  D ′@
(@)) for all I ∈  ( and n ∈  Z.  Let I•  ∈  Ob(Kb(()).

For n ›› 0, since τ> n( I• ) = 0, F(τ> n( I• )) ∈  Ob(  D ′@
(@)).  Let n ∈  Z and assume F(τ> n( I• )) ∈

Ob(  D ′@
(@)).  We claim F(τ ≥ n( I• )) ∈  Ob(  D ′@

(@)).  By Lemma 23.4 we have a triangle of

the form

 

(τ> n( I• ), τ  ≥ n( I• ), T– n(In), ⋅, ⋅, ⋅).

Since F(T– n(In)) ∈  Ob(  D ′@
(@)), it follows that F(τ ≥ n( I• )) ∈  Ob(  D ′@

(@)).  Thus, since I•  =

τ> n( I• ) for n ‹‹ 0, it follows by induction that F( I• ) ∈  Ob(  D ′@
(@)).

 

     Step 2: F( I• ) ∈  Ob(  D ′@
(@)) for all I•  ∈  Ob(K+(()).

 

     Proof.  Let I•  ∈  Ob(K+(()) and n ∈  Z.  We claim Hn(F( I• )) ∈  Ob(@’).  Put n1 = n + 1.

There exists n2 ∈  Z such that Hi(F( X•)) = 0 for i < n1 and X•  ∈  Ob(D(!)) with Hi( X•) = 0

for i < n2.  Since Hi(σ > n2
( I• )) = 0 for i < n2, we have

 

Hn(F(σ > n2
( I• ))) = Hn – 1(F(σ > n2

( I• ))) = 0.

Thus, since by Lemma 23.4 we have a triangle of the form

(σ ≤ n2
( I• ), I• , σ > n2

( I• ), ⋅, ⋅, ⋅),

we get Hn(F(σ ≤ n2
( I• ))) > Hn(F(( I• )).  Since σ ≤ n2

( I• ) ∈  Ob(  D ′!
b (!)), by the part (1) we

have F(σ ≤ n2
( I• )) ∈  Ob(  D ′@

(@)), so that Hn(F(( I• )) > Hn(F(σ ≤ n2
( I• ))) ∈  Ob(@’).

     (4) Dual of (2).

     (5) Dual of (3).

     (6) Let X•  ∈  Ob(  D ′!
(!)).  By the part (2) F(σ> 0( X•)) ∈  Ob(  D ′@

(@)), and by the part (4)
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F(σ≤ 0( X•)) ∈  Ob(  D ′@
(@)).  Thus, since by Lemma 23.4 we have a triangle of the form



 

(σ≤ 0( X•), X• , σ> 0( X•), ⋅, ⋅, ⋅),

it follows that F( X•) ∈  Ob(  D ′@
(@)).
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§24.  Connections between RHom•  and ⊗
L

 

     Throughout this section, R is a commutative ring and A, B are R-algebras.  For any ring A,

we denote by K(Inj A)L (resp. K(Proj A))L) the full subcategory of K(Inj A) (resp. K(Proj A)))

consisting of 8-local (resp 8-colocal) complexes in K(Inj A) (resp. K(Proj A))), where 8 is

the épaisse subcategory of K(Mod A) consisting of acyclic complexes.  Also, we denote by E

an injective cogenerator in Mod R and by D both HomR(–, E) and R Hom• (–, E).

     Proposition 24.1.  (1) There exists a natural isomorphism

 

R Hom• ( M• ⊗
L

 V •, N • ) →̃ R Hom• ( M•, R Hom• ( V •, N • ))

for M• ∈  Ob(D(Mod Aop)), V • ∈  Ob(D(Mod A ⊗ R Bop)) and N •  ∈  Ob(D(Mod Bop)).  In

particular, for any V • ∈  Ob(D(Mod A ⊗ R B
op)),

– ⊗
L

 V • : D(Mod Aop) → D(Mod Bop)

is a left adjoint of

R Hom• ( V •, –) : D(Mod Bop) → D(Mod Aop).

     (2) There exists a natural isomorphism

 

R Hom• ( V • ⊗
L

 X• , Y • ) →̃ R Hom• ( X• , R Hom• ( V •, Y • ))

for X•  ∈  Ob(D(Mod B)), V • ∈  Ob(D(Mod A ⊗ R Bop)) and Y •  ∈  Ob(D(Mod A)).  In

particular, for any V • ∈  Ob(D(Mod A ⊗ R B
op)),

V • ⊗
L

 – : D(Mod B) → D(Mod A)

is a left adjoint of

R Hom• ( V •, –) : D(Mod A) → D(Mod B).

     Proof.  (1) By Propositions 12.21 and 12.16 we may assume M• ∈  Ob(K(Proj Aop)L) and

N •  ∈  Ob(K(Inj Bop)L), respectively.  Then by Lemma 19.5 we have canonical isomorphisms

 

1

R Hom• ( M• ⊗
L

 V •, N • ) > R Hom• ( M• ⊗  V •, N • )



> Hom• ( M• ⊗  V •, N • )

> Hom• ( M•, Hom• ( V •, N • ))

> R Hom• ( M•, Hom• ( V •, N • ))

> R Hom• ( M•, R Hom• ( V •, N • )).

Next, by applying H 0 : D(Mod R) → Mod R, we get natural isomorphisms

 

                  Hom
Mod opD B( )

( M• ⊗
L

 V •, N • ) > H 0(R Hom• ( M• ⊗  V •, N • ))

> H 0(R Hom• ( M•, R Hom• ( V •, N • )))

> Hom
Mod opD A( )

( M•, R Hom• ( V •, N • ))

for M• ∈  Ob(D(Mod Aop)) and N •  ∈  Ob(D(Mod Bop)).

     (2) Similar to (1).

    Definition 24.1.  Let V ∈  Mod A ⊗ R B
op.  Then there exist a natural homomorphism

 

φX , Y : HomA(X, V) ⊗ B Y → HomA(X, V ⊗ B Y), h ⊗  y a (x a h(x) ⊗  y),

for X ∈  Mod A and Y ∈  Mod B, and a natural homomorphism

 

ψM, X : HomB(V, M) ⊗ A X → HomB(HomA(X, V), M), h ⊗  x a (f a h(f(x))),

for M ∈  Mod Bop and X ∈  Mod A.

     Lemma 24.2.  Let V ∈  Mod A ⊗ R B
op.  Then the following hold.

     (1) φX , Y is an isomorphism for all X ∈  mod A and Y ∈  Flat B.

     (2) φX , Y is an isomorphism for all X ∈  Proj A and Y ∈  mod B.

     (3) ψM, X is an isomorphism for all M ∈  Inj Bop and X ∈  mod A.

 

     Proof.  Straightforward.

     Lemma 24.3.  There exists a natural homomorphism

 

Hom• ( X• , V •) ⊗  Y •  → Hom• ( X• , V • ⊗  Y • )

for X•  ∈  Ob(K–(Mod A)), V • ∈  Ob(K+(Mod A ⊗ R Bop)) and Y •  ∈  Ob(K+(Mod B)), which is

an isomorphism provided either

2

     (a) X•  ∈  Ob(K–(mod A)) and Y •  ∈  Ob(K+(Flat B)), or



     (b) X•  ∈  Ob(K–(Proj A)) and Y •  ∈  Ob(K+(mod B)).

     Proof.  For any n ∈  Z we may consider that

 

[ Hom• ( X• , V •) ⊗  Y • ]n  = 
p q r n+ + =

⊕ HomA(X– p, Vq) ⊗ B Y
r,

[ Hom• ( X• , V • ⊗  Y • )]n  = 
p q r n+ + =

⊕ HomA(X– p, Vq ⊗ B Y
r),

which are finite direct sums, and we have a homomorphism

 

φX Y
n

,  : 
p q r n+ + =

⊕ HomA(X– p, Vq) ⊗ B Y
r   → 

p q r n+ + =
⊕ HomA(X– p, Vq ⊗ B Y

r)

such that

φX Y
n

, (hp, q ⊗  yr)(xp) = (– 1)pr   hp, q(xp) ⊗  yr

for hp, q ∈  HomA(X
– p, Vq), yr ∈  Yr and xp ∈  X– p, where p, q, r ∈  Z with p + q + r = n.  It is easy

to see that φ commutes with differentials.  The remaining assertions follow by Lemma 24.2.

     Lemma 24.4.  There exists a natural homomorphism

 

R Hom• ( X• , V •) ⊗
L

 Y •  → R Hom• ( X• , V • ⊗
L

 Y • )

for X•  ∈  Ob(D–(Mod A)), V • ∈  Ob(D+(Mod A ⊗ R B
op)) and Y •  ∈  Ob(D–(Mod B)fTd), which

is an isomorphism provided either

     (a) A is left coherent and X•  ∈  Ob(D–(mod A)), or

     (b) B is left coherent and Y •  ∈  Ob(D–(mod B)fpd).

     Proof.  By Propositions 10.15 and 22.17 we may assume X•  ∈  Ob(K–(Proj A)) and Y •  ∈
Ob(Kb(Flat B)), respectively.  Then we have

 

R Hom• ( X• , V •) ⊗
L

 Y •  > Hom• ( X• , V •) ⊗
L

 Y •

> Hom• ( X• , V •) ⊗  Y • ,

R Hom• ( X• , V • ⊗
L

 Y • ) > R Hom• ( X• , V • ⊗  Y • )

> Hom• ( X• , V • ⊗  Y • ).
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Thus by Lemma 24.3 we get a desired homomorphism 



     (a) Assume A is left coherent and X•  ∈  Ob(D–(mod A)).  Then by Proposition 10.15 we

may assume X•  ∈  Ob(K–(proj A)).  Thus by Lemma 24.3(1)

 

Hom• ( X• , V •) ⊗  Y •  →̃ Hom• ( X• , V • ⊗  Y • ).

     (b) Assume B is left coherent, X•  ∈  Ob(D–(Mod A)) and Y •  ∈  Ob(D–(mod B)fpd).  Then

by Proposition 11.17 we may assume Y •  ∈  Ob(Kb(proj B)).  Thus by Lemma 24.3(2)

 

Hom• ( X• , V •) ⊗  Y •  →̃ Hom• ( X• , V • ⊗  Y • ).

     Proposition 24.5.  Let A be left coherent.  Then there exists a natural isomorphism

 

R Hom• ( X• , V •) ⊗
L

 Y •  →̃ R Hom• ( X• , V • ⊗
L

 Y • )

 for X•  ∈  Ob( Dc
–(Mod A)), V • ∈  Ob(D+(Mod A ⊗ R B

op)) and Y •  ∈  Ob(D–(Mod B)fTd).

     Proof.  Let V • ∈  Ob(D+(Mod A ⊗ R B
op)) and Y •  ∈  Ob(D–(Mod B)fTd).  Then by Lemma

24.4 there exists a natural homomorphism

 

φX : R Hom• ( X• , V •) ⊗
L

 Y •  → R Hom• ( X• , V • ⊗
L

 Y • )

for X•  ∈  Ob(D–(Mod A)).  By Proposition 22.7(1) R Hom• (–, V • ⊗
L

 Y • ) is way-out right,

and by Propositions 22.7(1) and 22.17 (– ⊗
L

 Y • ) o R Hom• (–, V •) is also way-out right.

Thus, since by Lemma 24.4(1) φX is an isomorphism for all X•  ∈  Ob(D–(mod A)), it follows

by Proposition 23.5(2) that φX is an isomorphism for all X•  ∈  Ob( Dc
–(Mod A)).

 

     Lemma 24.6.  (1) There exists a natural homomorphism

 

Hom• ( V •, M•) ⊗  X•  → Hom• ( Hom• ( X• , V •), M•)

for V • ∈  Ob(D+(Mod A ⊗ R B
op)), M• ∈  Ob(K–(Mod Bop)) and X•  ∈  Ob(K(Mod A)), which is

an isomorphism provided M• ∈  Ob(Kb(Inj Bop)) and X•  ∈  Ob(K–(mod A)).

     (2) There exists a natural homomorphism

 

Hom• ( V •, M•) ⊗  X•  → Hom• ( Hom• ( X• , V •), M•)

for V • ∈  Ob(Db(Mod A ⊗ R Bop)), M• ∈  Ob(K(Mod Bop)) and X•  ∈  Ob(K(Mod A)), which is

4

an isomorphism provided M• ∈  Ob(K+(Inj Bop)) and X•  ∈  Ob(K+(mod A)).



     Proof.  Let V • ∈  Ob(D+(Mod A ⊗ R Bop)), M• ∈  Ob(K(Mod Bop)) and assume either (1) M•

∈  Ob(K–(Mod Bop)), or (2) V • ∈  Ob(Db(Mod A ⊗ R B
op).  Let X•  ∈  Ob(K(Mod A)).  For any n

∈  Z we may consider that

 

[ Hom• ( V •, M•) ⊗  X•]n   = 
p q r n+ + =

⊕ HomB(V– p, Mq) ⊗ A Xr,

[ Hom• ( Hom• ( X• , V •), M•)]n   = 
p q r n+ + =

∏ HomB(HomA(X
r, V– p), Mq).

We have a homomorphism

 

ψ M X
n

,  : 
p q r n+ + =

⊕ HomB(V– p, Mq) ⊗ A Xr   → 
p q r n+ + =

∏ HomB(HomA(X
r, V– p), Mq)

such that

ψ M X
n

, (hp, q ⊗  xr)(f – r, – p) = (– )
( )

1
2 1

2

r p r+ +

 hp, q(f  – r, – p(xr))

for hp, q ∈  HomB(V– p, Iq), xr ∈  Xr and f– r, – p ∈  HomA(X
r, V– p), where p, q, r ∈  Z with p + q + r

= n.  It is easy to see that ψ commutes with differentials.  Next, assume either (1) M• ∈
Ob(Kb(Inj Bop)) and X•  ∈  Ob(K–(mod A)), or (2) V • ∈  Ob(Db(Mod A ⊗ R Bop)), M• ∈
Ob(K+(Inj Bop)) and X•  ∈  Ob(K+(mod A)).  Then

 

p q r n+ + =
⊕ HomB(HomA(Xr, V– p), Mq)   = 

p q r n+ + =
∏ HomB(HomA(X

r, V– p), Mq)

for all n ∈  Z and by Lemma 24.2(3) ψM, X is an isomorphism.

 

     Lemma 24.7.  (1) There exists a natural homomorphism

 

R Hom• ( V •, M•) ⊗
L

 X•  → R Hom• (R Hom• ( X• , V •), M•)

for V • ∈  Ob(D+(Mod A ⊗ R B
op)), M• ∈  Ob(D–(Mod Bop)) and X•  ∈  Ob(D(Mod A)), which is

an isomorphism if A is left coherent, M• ∈  Ob(D+(Mod Bop)fid) and X•  ∈  Ob(D–(mod A)).

     (2) There exists a natural homomorphism

 

R Hom• ( V •, M•) ⊗
L

 X•  → R Hom• (R Hom• ( X• , V •), M•)
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for V • ∈  Ob(Db(Mod A ⊗ R B
op)), M• ∈  Ob(D(Mod Bop)) and X•  ∈  Ob(D(Mod A)), which is



an isomorphism if A is left coherent, M• ∈  Ob(D+(Mod Bop)) and X•  ∈  Ob(D–(mod A)fpd).

     Proof.  Let V • ∈  Ob(D+(Mod A ⊗ R B
op)) and M• ∈  Ob(D(Mod Bop)).  Assume either (1)

M• ∈  Ob(D–(Mod Bop)), or (2) V • ∈  Ob(Db(Mod A ⊗ R B
op).  By Proposition 12.16 we may

assume M• ∈  Ob(K(Inj Bop)L).  Furthermore, in case M• ∈  Ob(D+(Mod Bop)), by Proposition

10.13 we may assume M• ∈  Ob(K+(Inj Bop)).  Let X•  ∈  Ob(D(Mod A)).  By Proposition

12.21 we may assume X•  ∈  Ob(K(Proj A)L).  Since we have isomorphisms

 

R Hom• ( V •, M•) ⊗
L

 X•  > Hom• ( V •, M•) ⊗  X• ,

R Hom• (R Hom• ( X• , V •), M•) > Hom• ( Hom• ( X• , V •), M•),

by Lemma 24.6 we get desired homomorphisms.

     Next, assume A is left coherent.  Assume either (1) M• ∈  Ob(D+(Mod Bop)fid) and X•  ∈
Ob(D–(mod A)), or (2) V • ∈  Ob(Db(Mod A ⊗ R Bop)), M• ∈  Ob(D+(Mod Bop)) and X•  ∈
Ob(D–(mod A)fpd).  By Proposition 10.13 we may assume M• ∈  Ob(K+(Inj Bop)).  In case M•

∈  Ob(D+(Mod Bop)fid), by Proposition 11.13 we may assume M• ∈  Ob(Kb(Inj Bop)).  Also, by

Propodition 10.15 we may assume X•  ∈  Ob(K–(proj A)).  Furthermore, in case X•  ∈  Ob(D–(mod

A)fpd), by Proposition 11.17 we may assume X•  ∈  Ob(Kb(proj A)).  Then, since by Lemma

24.6 the canonical homomorphism

Hom• ( V •, M•) ⊗  X•  → Hom• ( Hom• ( X• , V •), M•)

is an isomorphism, so is

 

R Hom• ( V •, M•) ⊗
L

 X•  → R Hom• (R Hom• ( X• , V •), M•).

     Proposition 24.8.  Let A be left coherent.  Then there exists a natural isomorphism

 

R Hom• ( V •, M•) ⊗
L

 X•  →̃ R Hom• (R Hom• ( X• , V •), M•)

 for V • ∈  Ob(D+(Mod A ⊗ R B
op)), M• ∈  Ob(D+(Mod Bop)fid) and X•  ∈  Ob( Dc

–(Mod A)).

     Proof.  Let V • ∈  Ob(D+(Mod A ⊗ R Bop)) and M• ∈  Ob(D+(Mod Bop)fid).  By Proposition

11.13 we may assume M• ∈  Ob(Db(Inj Bop)).  Then R Hom• ( V •, M•) > Hom• ( V •, M•) ∈

Ob(D–(Mod Aop)) and by Proposition 22.15 R Hom• ( V •, M•) ⊗
L

 – is way-out left.  Also, by

Propositions 22.7(1) and 22.8 R Hom• (–, M•) o R Hom• (–, V •) is way-out left.  By Lemma

24.7(1) there exists a natural homomorphism

6

 



ψX : R Hom• ( V •, M•) ⊗
L

 X•  → R Hom• (R Hom• ( X• , V •), M•)

for X•  ∈  Ob(D–(Mod A)), which is an isomorphism for X•  ∈  Ob(D–(mod A)).  Thus, it

follows by Proposition 23.5(4) that ψX is an isomorphism for X•  ∈  Ob( Dc
–(Mod A)).

 

     Corollary 24.9.  Let A be left coherent.  Then for any X•  ∈  Ob( Dc
–(Mod A)), Y •  ∈

Ob(D+(Mod A)) and i ∈  Z there exists an isomorphism

 

D(Exti( X• , Y • )) > Tor i(D( Y • ), X•).

In particular, Y •  ∈  Ob(D+(Mod A)fid) if and only if D( Y • ) ∈  Ob(D–(Mod Aop)fTd).

     Proof.  It follows by Proposition 24.8 that D( Y • ) ⊗
L

 X•  > D(R Hom• ( X• , Y • )).  Thus, for

any i ∈  Z, we have

 

D(Exti( X• , Y • )) > D(Hi(R Hom• ( X• , V •)))

> H– i(D(R Hom• ( X• , V •)))

> H– i(D( Y • ) ⊗
L

 X•)

> Tori(D( Y • ), X•).

The last assertion follows by Lemmas 20.7 and 20.8.

     Proposition 24.10.  Let A be left coherent.  Then there exists a natural isomorphism

 

D(R Hom• ( X• , Y • )) →̃ R Hom• ( Y • , D(A) ⊗
L

 X•)

 for X•  ∈  Ob( Dc
–(Mod A)fTd) and Y •  ∈  Ob( Dc

–(Mod A)).

     Proof.  Since HomR(–, E) > HomA(–, D(A)) as a functor from Mod A to Mod Aop, it

follows that R Hom• (–, E) > R Hom• (–, D(A)) as a ∂-functor from D(Mod A) to D(Mod Aop).

Thus by Propositions 24.5 and 24.8 we have

 

D(R Hom• ( X• , Y • )) > R Hom• (R Hom• ( X• , Y • ), E)

> R Hom• ( Y • , E) ⊗
L

 X•

> R Hom• ( Y • , D(A)) ⊗
L

 X•

> R Hom• ( Y • , D(A) ⊗
L

 X•).
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    Definition 24.2.  There exists a natural homomorphism



ψM, X : M ⊗ A X → HomA(HomA(X, A), M), m ⊗  x a (f a mf(x)),

for M ∈  Mod Bop and X ∈  Mod A.

     Lemma 24.11.  ψM, X is an isomorphism provided X ∈  proj A.

 

     Proof.  Straightforward.

     Lemma 24.12.  There exists a natural homomorphism

 

M• ⊗  X•  → Hom• ( Hom• ( X• , A), M•)

for M• ∈  Ob(K(Mod Aop)) and X•  ∈  Ob(K(Mod A)), which is an isomorphism provided

either

     (a) X•  ∈  Ob(Kb(proj A)), or

     (b) M• ∈  Ob(K–(Mod Aop)) and X•  ∈  Ob(K–(proj A)).

     Proof.  Let M• ∈  Ob(K(Mod Aop)) and X•  ∈  Ob(K(Mod A)).  For any n ∈  Z we may

consider that

  

[ M• ⊗  X•]n   = 
p q n+ =
⊕  Mp ⊗ A X

q,

[ Hom• ( Hom• ( X• , A), M•)]n   = 
p q n+ =
∏  HomA(HomA(X

q, A), Mp).

For any p, q ∈  Z we have a homomorphism

 

φ p, q : Mp ⊗ A X
q → HomA(HomA(X

q, A), Mp),  m ⊗  x a (h a (– 1)q mh(x)),

which is an isomorphism if Xq ∈  proj A.  Thus for any n ∈  Z we have a homomorphism

 

φ n : 
p q n+ =
⊕  Mp ⊗ A X

q   → 
p q n+ =
∏  HomA(HomA(X

q, A), Mp).

It is easy to see that φ commutes with differentials.  Assume either (a) X•  ∈  Ob(Kb(proj A)),

or (b) M• ∈  Ob(K–(Mod Aop)) and X•  ∈  Ob(K–(proj A)).  Then

p q n+ =
⊕  HomA(HomA(Xq, A), Mp)   = 

p q n+ =
∏  HomA(HomA(X

q, A), Mp)
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for all n ∈  Z.  Thus, since by Lemma 24.11 φ p, q is an isomorphism for all p, q ∈  Z, it follows

that φ is an isomorphism.

    Lemma 24.13.  There exists a natural homomorphism

M• ⊗
L

 X•  → R Hom• (R Hom• ( X• , A), M•)

for M• ∈  Ob(D(Mod Aop)) and X•  ∈  Ob(D(Mod A)), which is an isomorphism provided A is

left coherent and either

     (a) X•  ∈  Ob(D–(mod A)fpd), or

     (b) M• ∈  Ob(D+(Mod Aop)fid) and X•  ∈  Ob(D–(mod A)).

     Proof.  By Propositions 12.16 and 12.21 we may assume M• ∈  Ob(K(Inj Aop)L) and X•  ∈
Ob(K(Proj A)L), respectively.  Then the canonical homomorphisms

 

M• ⊗
L

 X•  → M• ⊗  X•

Hom• ( Hom• ( X• , A), M•) → R Hom• ( Hom• ( X• , A), M•)

are isomorphisms.  Also, since the canonical homomorphism

Hom• ( X• , A) → R Hom• ( X• , A)

 

is an isomorphism, we have a natural isomorphism

R Hom• ( Hom• ( X• , A), M•) →̃ R Hom• (R Hom• ( X• , A), M•).

 

Thus by Lemma 24.12 we get a natural homomorphism

M• ⊗
L

 X•  → R Hom• (R Hom• ( X• , A), M•).

 

Now, assume A is left coherent.  Assume either (a) X•  ∈  Ob(D–(mod A)fpd) or (b) M• ∈
Ob(D+(Mod Aop)fid) and X•  ∈  Ob(D–(mod A)).  By Proposition 10.15 we may assume X•  ∈
Ob(K–(proj A)).  Furthermore, in case X•  ∈  Ob(D–(mod A)fpd), by Proposition 11.17 we may

assume X•  ∈  Ob(Kb(proj A)).  Also, in case M• ∈  Ob(D+(Mod Aop)fid), by Proposition 10.13

we may assume M• ∈  Ob(Kb(Inj Aop)).  Then, since by Lemma 24.12 the canonical

homomorphism

 

9

M• ⊗  X•  → Hom• ( Hom• ( X• , A), M•)



is an isomorphism, so is

M• ⊗
L

 X•  → R Hom• (R Hom• ( X• , A), M•).

     Proposition 24.14.  Let A be left coherent.  Then there exists a natural isomorphism

 

M• ⊗
L

 X•  → R Hom• (R Hom• ( X• , A), M•)

 for M• ∈  Ob(D+(Mod Aop)fid) and X•  ∈  Ob( Dc
–(Mod A)).

     Proof.  Let M• ∈  Ob(D+(Mod Aop)fid).  Then by Proposition 11.13 we may assume M• ∈

Kb(Inj Bop), so that by Proposition 22.15 M• ⊗
L

 – is way-out left.  Also, by Propositions

22.7(1) and 22.8 R Hom• (–, M•) o R Hom• (–, A) is way-out left.  By Lemma 24.13 there

exists a natural homomorphism

 

ψX : M• ⊗
L

 X•  → R Hom• (R Hom• ( X• , A), M•)

for X•  ∈  Ob(D(Mod A)), which is an isomorphism provided X•  ∈  Ob(D–(mod A)).  Thus by

Proposition 23.5(4) ψX is an isomorphism for X•  ∈  Ob( Dc
–(Mod A)).

 

    Corollary 24.15.  Let A be left coherent with inj dim  AA < ∞.  Then there exists a natural

isomorphism

 

X•  →̃ R Hom• (R Hom• ( X• , A), A)

for X•  ∈  Ob( Dc
–(Mod A)).

    Proposition 24.16.  Let A be commutative.  Then there exists a natural homomorphism

R Hom• ( X• , Y •  ⊗
L

 Z•) → R Hom• ( X•  ⊗
L

 R Hom• ( Z• , A), Y • )

for X• , Y •  and  Z•  ∈  Ob(D(Mod A)), which is an isomorphism provided A is coherent and

either

     (a) Z•  ∈  Ob(D–(mod A)fpd), or

     (b) Y •  ∈  Ob(D+(Mod A)fid) and Z•  ∈  Ob(D–(mod A)).
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     Proof.  By Lemma 24.13 we have a natural homomorphism



 

Y •  ⊗
L

 Z•  → R Hom• (R Hom• ( Z• , A), Y • ).

Thus we get a natural homomorphism

 

R Hom• ( X• , Y •  ⊗
L

 Z•) → R Hom• ( X• , R Hom• (R Hom• ( Z• , A), Y • )).

Also, by Proposition 24.1 we have a natural isomorphism

 

R Hom• ( X• , R Hom• (R Hom• ( Z• , A), Y • )) →̃ R Hom• ( X•  ⊗
L

 R Hom• ( Z• , A), Y • ).

Consequently, we get a desired natural homomorphism

R Hom• ( X• , Y •  ⊗
L

 Z•) → R Hom• ( X•  ⊗
L

 R Hom• ( Z• , A), Y • ).

The last assertion follows by Lemma 24.13.
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§25.  Duality in Coherent rings

     Throughout this section, R is a commutative ring and A, B are R-algebras.  For any ring A,

we denote by K(Inj A)L (resp. K(Proj A)L) the full subcategory of K(Inj A) (resp. K(Proj A))

consisting of 8-local (resp. 8-colocal) complexes, where 8 is the épaisse subcategory of

K(Mod A) consisting of acyclic complexes.

 

     Definition 25.1.  Let V • ∈  Ob(Kb(Mod A ⊗ R B
op)).  Then, for any X•  ∈  Ob(K(Mod A))

and n ∈  Z,

  

[ Hom• ( Hom• ( X• , V •), V •)]n   = 
p q r n– + =

⊕ HomB(HomA(X
p, Vq), Vr),

which is a finite direct sum, and the differential is given by

d
X V V

n

Hom Hom• • • • •( ( , ), )
(h) = (– 1)r + 1 h o HomA( dX

p , Vq)

+ (– 1)n + 1 h o HomA(X
p, dV

q – 1)

+ dV
r  o h

for h ∈  HomB(HomA(X
p, Vq), Vr).  For any X•  ∈  Ob(K(Mod A)) and n ∈  Z, we define a

homomorphism

 

Xn → HomB(HomA(X
n, Vr), Vr),  x a (f a (– 1)n(r + 1) f(x)),

for each r ∈  Z and set

 

ε X
n  : Xn  → 

r
⊕  HomB(HomA(Xn, Vr), Vr)  →

p q r n– + =
⊕ HomB(HomA(X

p, Vq), Vr).

Then εX commutes with differentials.  Thus we get a homomorphism of ∂-functors

 

ε : 1K(Mod A) → Hom• (–, V •) o Hom• (–, V •)

     Remark 25.1.  Let V • ∈  Ob(C(Mod A ⊗ R Bop)).  There exists a ring homomorphism

 

ϕ : A → End
Mod opC B( )

( V •)

 

such that ϕ(a)n(v) = av for a ∈  A, n ∈  Z and v ∈  Vn, which gives rise to a ring homomorphism

1

A → End
Mod opK B( )

( V •).



On the other hand, since we have homomorphisms in C(Mod A)

A → Hom• ( Hom• (A, V •), V •) →̃ Hom• ( V •, V •),

by Lemma 18.3 we get a homomorphism in Mod A

A → End
Mod opK B( )

( V •),

which coinsides with the above ring homomorphism.

     Lemma 25.1.  For any V • ∈  Ob(Db(Mod A ⊗ R Bop)) there exists a homomorphism of

∂-functors

 

1D(Mod A) → R Hom• (–, V •) o R Hom• (–, V •).

     Proof.  By Proposition 12.21 K(Proj A)L →̃ D(Mod A).  Let P•  ∈  Ob(K(Proj A)L).  We

have natural homomorphisms

 

P•  → Hom• ( Hom• ( P• , V •), V •),

Hom• ( Hom• ( P• , V •), V •) → R Hom• ( Hom• ( P• , V •), V •).

Also, since the canonical homomorphism

Hom• ( P• , V •) → R Hom• ( P• , V •)

 

is an isomorphism, we have a natural isomorphism

R Hom• ( Hom• ( P• , V •), V •) →̃ R Hom• (R Hom• ( P• , V •, V •).

 

Consequently, we get a desired natural homomorphism

P•  → R Hom• (R Hom• ( P• , V •), V •).

 

     Definition 25.2.  Let V • ∈  Ob(Db(Mod A ⊗ R B
op)).  A complex X•  ∈  Ob(D(Mod A)) is

called V •-reflexive if the canonical homomorphism

X•  → R Hom• (R Hom• ( X• , V •), V •).
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is an isomorphism.

     Remark 25.2.  Let V • ∈  Ob(Cb(Mod A ⊗ R B
op)).  There exists a sequence of homomorphisms

in D(Mod A)

 

A → Hom• ( Hom• (A, V •), V •) → R Hom• (R Hom• (A, V •), V •).

Thus, since V • > Hom• (A, V •) > R Hom• (A, V •), by Lemma 18.3 and Proposition 18.9(2)

we get a sequence of homomorphisms in Mod A

 

A → End
Mod opK B( )

( V •) → End
Mod opD B( )

( V •),

which are canonical ring homomorphisms.

     Lemma 25.2.  For V • ∈  Ob(Db(Mod A ⊗ R Bop)) the following are equivalent.

     (1) A is V •-reflexive.

     (2) (a) Exti( V •, V •) = 0 for i  0 in D(Mod Bop), and

(b) the canonical ring homomorphism  A → End
Mod opD B( )

( V •) is an isomorphism.

 

     Proof.  (1) ⇒  (2).  By Proposition 18.9(2)

 

Exti( V •, V •) > Hi(R Hom• ( V •, V •))

> Hi(A)

 0

for i  0 and

                                                      A  H 0(A)

> H 0(R Hom• ( V •, V •))

> End
Mod opD B( )

( V •)

in Mod A.

     (2) ⇒  (1).  Since Hi(R Hom• ( V •, V •)) = 0 for i  0, by Proposition 11.7

 

                                                      A > End
Mod opD B( )

( V •)

> Ext0( V •, V •)

> H 0(R Hom• ( V •, V •))

> R Hom• ( V •, V •))
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in D(Mod A).

     Lemma 25.3.  Let A be a left coherent ring and B a right coherent ring.  Then for any V •

∈  Ob(Db(Mod A ⊗ R B
op)) the following hold.

     (1) If  V • ∈  Ob(Kb(proj Bop)), then we have a ∂-functor

 

R Hom• (–, V •) : D–(mod A)fpd → D–(mod Bop)fpd.

     (2) If A is V •-reflexive, then there exists a natural isomorphism

 

X•  →̃ R Hom• (R Hom• ( X• , V •), V •)

for X•  ∈  Ob(D–(mod A)fpd).

     Proof.  Let X•  ∈  Ob(D–(mod A)fpd).  Then by Proposition 11.17 we may assume X•  ∈
Ob(Kb(proj A)).  Also, by Lemma 23.4 we have a triangle of the form

 

(τ> n( X•), τ  ≥ n( X•), T– n(Xn), ⋅, ⋅, ⋅).

Note that τ > n( X•) = 0 for n ›› 0, and that X•  = τ > n( X•) for n ‹‹ 0.

     (1) For n ›› 0, since τ> n( X•) = 0, R Hom• (τ> n( X•), V •) ∈  Ob(D–(mod Bop)fpd).  Let n ∈  Z

and assume R Hom• (τ> n( X•), V •) ∈  Ob(D–(mod Bop)fpd).  Note that, since R Hom• (A, V •) >
Hom• (A, V •) > V • ∈  Ob(Kb(proj Bop)), R Hom• (T– n(Xn), V •) ∈  Ob(D–(mod Bop)fpd).  Thus,

since we have a triangle in D–(mod Bop) of the form

 

(R Hom• (T– n(Xn), V •), R Hom• (τ ≥ n( X•), V •), R Hom• (τ > n( X•), V •), ⋅, ⋅, ⋅),

R Hom• (τ ≥ n( X•), V •) ∈  Ob(D–(mod Bop)fpd).  It follows by induction that R Hom• ( X• , V •) ∈
Ob(D–(mod Bop)fpd).

     (2) By Lemma 25.1 there exists a homomorphism of ∂-functors

 

η : 1D(Mod A ) → R Hom• (–, V •) o R Hom• (–, V •).

Note that for n ›› 0, since τ> n( X•) = 0, η(τ > n( X•)) is an isomorphism.  Let n ∈  Z and assume

that η(τ> n( X•)) is an isomorphism.  Since η(A) is an isomorphism, it follows that η(T– n(Xn))

is an isomorphism.  Thus by Proposition 6.6 η(τ ≥ n( X•)) is an isomorphism.  It follows by

induction that η ( X•) is an isomorphism.
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     Proposition 25.4.  Let A be a left coherent ring and B a right coherent ring.  Let V • ∈
Ob(Db(Mod A ⊗ R B

op)) such that V • ∈  Ob(Kb(proj A)) and V • ∈  Ob(Kb(proj Bop)).  Assume

both A and B are V •-reflexive.  Then R Hom• (–, V •) defines a duality between D–(mod A)fpd

and D–(mod Bop)fpd.

 

     Proof.  By Lemma 25.3.

 

     Corollary 25.5.  Let A be a left and right coherent ring.  Then R Hom• (–, A) defines a

duality between D–(mod A)fpd and D–(mod Aop)fpd.

     Lemma 25.6.  For V • ∈  Ob(Db(Mod A ⊗ R B
op)) such that V • ∈  Ob(D+(Mod A)fid).  Then

we have a ∂-functor

 

R Hom• (–, V •) : Db(Mod A) → Db(Mod Bop).

     Proof.  Let X ∈  Mod A.  Since V • ∈  Ob(D+(Mod A)), Ext i(X, V •) = 0 for i ‹‹ 0 and hence

R Hom• (X, V •) ∈  Ob(D+(Mod Bop)).  Also, since V • ∈  Ob(D+(Mod A)fid), Exti(X, V •) = 0 for

i ›› 0 and R Hom• (X, V •) ∈  Ob(D–(Mod Bop)).  Thus R Hom• (X, V •) ∈  Ob(Db(Mod Bop)).

Next, let X•  ∈  Ob(Db(Mod A)).  Then by Lemma 23.4 we have a triangle in Db(Mod A) of

the form

 

(τ> n( X•), τ  ≥ n( X•), T– n(Xn), ⋅, ⋅, ⋅).

Note that τ> n( X•) = 0 for n ›› 0, and that X•  = τ > n( X•) for n ‹‹ 0.  For n ›› 0, since τ> n( X•) =

0, R Hom• (τ> n( X•), V •) ∈  Ob(Db(Mod Bop)).  Let n ∈  Z and assume R Hom• (τ> n( X•), V •) ∈
Ob(Db(Mod Bop)).  Then, since R Hom• (T– n(Xn), V •) ∈  Ob(Db(Mod Bop)), and since we have

a triangle in D–(mod Bop) of the form

 

(R Hom• (T– n(Xn), V •), R Hom• (τ ≥ n( X•), V •), R Hom• (τ > n( X•), V •), ⋅, ⋅, ⋅),

R Hom• (τ ≥ n( X•), V •) ∈  Ob(Db(Mod Bop)).  It follows by induction that R Hom• ( X• , V •) ∈
Ob(Db(Mod Bop)).

 

     Lemma 25.7.  Let A be left coherent.  Let V • ∈  Ob(Db(Mod A ⊗ R B
op)) such that V • ∈

Ob(D+(Mod Bop)fid).  Then the following hold.

     (1) If A is V •-reflexive, then there exists a natural isomorphism
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X•  →̃ R Hom• (R Hom• ( X• , V •), V •)



for X•  ∈  Ob( Dc
– (Mod A)).

     (2) If A is V •-reflexive and V • ∈  Ob(D+(Mod A)fid), then there exists a natural isomorphism

 

X•  →̃ R Hom• (R Hom• ( X• , V •), V •)

for X•  ∈  Ob(Dc(Mod A)).

     (3) If B is right coherent and V • ∈  Ob(Dc(Mod A)), then we have a ∂-functor

 

R Hom• (–, V •) : Dc(Mod Bop) → Dc(Mod A).

     Proof.  (1) It follows by Propositions 22.7(1) and 22.8 that

R Hom• (–, V •) o R Hom• (–, V •) : D(Mod A) → D(Mod A)

is way-out left.  Thus Proposition 23.5(5) applies.

     (2) It follows by Proposition 22.8 that

R Hom• (–, V •) o R Hom• (–, V •) : D(Mod A) → D(Mod A)

is way-out in both directions.  Thus Proposition 23.5(5) and then Proposition 23.5(6) apply,

successively.

     (3) By Proposition 22.8 R Hom• (–, V •) : D(Mod Bop) → D(Mod A) is way-out in both

directions.  Thus, since R Hom• (B, V •) > V • ∈  Ob(Dc(Mod A)), Proposition 23.6(5) and

then Proposition 23.6(6) apply, successively.

    Proposition 25.8.  Let A be a left coherent ring and B a right coherent ring.  Let V • ∈
Ob(Db(Mod A ⊗ R Bop)) such that V • ∈  Ob( Dc

+ (Mod A)fid) and V • ∈  Ob( Dc
+ (Mod Bop)fid).

Then the following are equivalent.

     (1) R Hom• (–, V •) defines a duality between Dc(Mod A) and Dc(Mod Bop).

     (2) R Hom• (–, V •) defines a duality between Dc
b (Mod A) and Dc

b (Mod Bop).

     (3) Both A and B are V •-reflexive.

 

     Proof.  (1) ⇒  (2).  Let X•  ∈  Ob( Dc
b (Mod A)).  Then by Lemma 25.6 R Hom• ( X• , V •) ∈

Ob(Db(Mod Bop)).  Thus R Hom• ( X• , V •) ∈  Ob( Dc
b (Mod Bop)).  Similarly, R Hom• ( M•, V •)

∈  Ob( Dc
b (Mod A)) for all M• ∈  Ob( Dc

b (Mod Bop)).

     (2) ⇒  (3).  Obvious.

     (3) ⇒  (1).  By Lemma 25.7.
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     Definition 25.3.  Let A be a left and right coherent ring.  Then a bounded complex V • ∈
Ob(Db(Mod A ⊗ R A

op)) is called a dualizing complex if it satisfies the following conditions:

     (a) V • ∈  Ob( Dc
+ (Mod A)fid);

     (b) V • ∈  Ob( Dc
+ (Mod Aop)fid); and

     (c) R Hom• (–, V •) defines a duality between Dc(Mod A) and Dc(Mod Aop).

     Lemma 25.9.  Let A be a left coherent ring and B a right coherent ring.  Let V • ∈
Ob(Db(Mod A ⊗ R B

op)) such that V • ∈  Ob(D+(Mod A)fid) and V • ∈  Ob(Kb(mod Bop)).  Then

there exists a ∂-functor

 

R Hom• (–, V •) : Db(mod A) → Db(mod Bop).

     Proof.  Let X•  ∈  Ob(Db(mod A)).  Then by Proposition 10.15 we may assume X•  ∈
Ob(K–, b(proj A)).  Thus, since V • ∈  Ob(Kb(mod Bop)), R Hom• ( X• , V •) > Hom• ( X• , V •) ∈
Ob(Db(mod Bop)).  Also, by Lemma 25.6 R Hom• ( X• , V •) ∈  Ob(Db(Mod Bop)).  It follows

that R Hom• ( X• , V •) ∈  Ob(Db(mod Bop)).

 

     Corollary 25.10.  Let A be a left and right coherent ring with inj dim AA < ∞.  Then there

exists a ∂-functor

 

R Hom• (–, A) : Db(mod A) → Db(mod Aop),

which induces a ∂-functor

Db(mod A)/Db(mod A)fpd → Db(mod Aop)/Db(mod Aop)fpd.

     Proof.  By Lemma 25.9 and Corollary 25.5.

     Proposition 25.11.  Let A be a left and right coherent ring with inj dim AA = inj dim AA <

∞.  Then A itself is a dualizing complex.  In particular, R Hom• (–, A) induces a duality

between Db(mod A)/Db(mod A)fpd and Db(mod Aop)/Db(mod Aop)fpd.

 

     Proof.  It follows by Proposition 25.8 that A itself is a dualizing complex.  Then by

Corollary 25.b R Hom• (–, A) defines a duality between Db(mod A) and Db(mod Aop).  Thus by

Corollary 25.5 R Hom• (–, A) induces a duality between Db(mod A)/Db(mod A)fpd and Db(mod

Aop)/Db(mod Aop)fpd.
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     Proposition 25.12.  There exist natural isomorphisms



 

R Hom• ( M• ⊗
L

 X• , E•) →̃ R Hom• ( M•, R Hom• ( X• , E•)),

R Hom• ( M• ⊗
L

 X• , E•) →̃ R Hom• ( X• , R Hom• ( M•, E•))

 for M• ∈  Ob(D(Mod Aop)), X•  ∈  Ob(D(Mod A)) and E• ∈  Ob(D(Mod R)).

     Proof.  By Proposition 24.1.

 

     Proposition 25.13.  R Hom• ( X• , E•) ∈  Ob(D(Mod Aop)fid) for all X•  ∈  Ob(D(Mod A)fTd)

and E• ∈  Ob(D+(Mod R)fid).

 

     Proof.  By Lemma 20.7 and Proposition 11.12 we may assume X•  ∈  Ob(K+(Flat A)) and

E• ∈  Ob(Kb(Inj R)), respectively.  Then, for any M ∈  Mod Aop, since Hom• (M ⊗  X• , E•) ∈
Ob(K–(Mod R)), by Proposition 25.12

 

Exti(M, R Hom• ( X• , E•)) > Hi(R Hom• (M, R Hom• ( X• , E•)))

> Hi(R Hom• (M ⊗
L

 X• , E•))

> Hi( Hom• (M ⊗  X• , E•))

 0

for i ›› 0.

     Proposition 25.14.  Let A be left coherent.  Then there exists a natural isomorphism

 

R Hom• ( X• , E•) ⊗
L

 Y •  →̃ R Hom• (R Hom• ( Y • , X•), E•)

 for X•  ∈  Ob(D+(Mod A)), Y •  ∈  Ob( Dc
–(Mod A)) and E• ∈  Ob(D+(Mod R)fid).

     Proof.  By Proposition 24.8.

 

     Proposition 25.15.  Let A be left coherent.  Then R Hom• ( X• , E•) ∈  Ob(D–(Mod Aop)fTd)

for all X•  ∈  Ob(D+(Mod A)fid) and E• ∈  Ob(D+(Mod R)fid).

 

     Proof.  By Proposition 11.12 we may assume X•  ∈  Ob(Kb(Inj A)).  Also, we may assume

E• ∈  Ob(Kb(Inj R)).  Note that R Hom• ( X• , E•) > Hom• ( X• , E•) ∈  Ob(Db(Mod Aop)).

Next, for any Y ∈  mod A and i ›› 0, Hom• (Hom• (Y, X•), E•) ∈  Ob(Kb(Mod R)) and hence

by Proposition 25.14
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Tori(R Hom• ( X• , E•), Y) > H– i(R Hom• ( X• , E•) ⊗
L

 Y)

> H– i(R Hom• (R Hom• (Y, X•), E•))

> H– i( Hom• ( Hom• (Y, X•), E•))

 0.

Thus by Lemma 20.7 R Hom• ( X• , E•) ∈  Ob(D–(Mod Aop)fTd).

     Proposition 25.16.  Let A be left coherent.  Then there exists a natural isomorphism

 

R Hom• ( X• , E•) ⊗
L

 Y •  →̃ R Hom• (R Hom• ( Y • , X•), E•)

 for X•  ∈  Ob(D+(Mod A)fid), Y
•  ∈  Ob(Dc(Mod A)) and E• ∈  Ob(D+(Mod R)fid).

     Proof.  Let X•  ∈  Ob(D+(Mod A)fid) and E• ∈  Ob(D+(Mod R)fid).  By Lemma 24.7(2) there

exists a natural isomorphism

 

R Hom• ( X• , E•) ⊗
L

 Y •  →̃ R Hom• (R Hom• ( Y • , X•), E•)

for Y •  ∈  Ob(D–(mod A)).  By Proposition 25.15 R Hom• ( X• , E•) ∈  Ob(D–(Mod Aop)fTd) and

hence by Proposition 22.17 R Hom• ( X• , E•) ⊗
L

 – is way-out in both directions.  Also, it

follows by Proposition 22.8 that R Hom• (–, E•) o R Hom• (–, X•) is way-out in both directions.

Thus, the assertion follows by Proposition 23.5(6).
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