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81. Cochain complexes

Throughout this section, «{ is an abelian category and $ (resp. %) is the collection of
injective (resp. projective) objects of l. Unless otherwise stated, functors are covariant
functors.

Definition 1.1. We denote by 54 the category of Z-graded objectsin <, i.e., an object of
A% isafamily X ={X"} ,, with the X" 0 Ob(s4) and amorphism u: {X"} - {Y} isafamily
u={u},,, with theu" O (X", ¥"). We have an autofunctor T : s4* - s’ called a shift
functor, such that (TX)"= X"** for X 0 Ob(s4%) and (Tu)"= u"** for u 0 s4*(X, Y).

Remark 1.1. Each X [0 Ob(«) is considered as afamily {X"}, ,, such that X° =X and X" =
Oforn 0, sothat we get afull embedding « — %

Definition 1.2. A cochain complex X' = (X, d,) in s is apair of X 0 Ob(s4”) and d, O
A% (X, TX) with Td, o d, = 0, where X is called the underlying Z-graded object and d, is
called the differential. A morphismu : X° - Y of cochain complexes is defined as a
morphism u 0 «”(X, Y) such that Tu o d, = d, o u. We denote by C(s{) the category of
cochain complexesin s{. We have an autofunctor T: C(sd) — C(sd), called the translation,
suchthat T X" = (TX, —Td,) for X" = (X, dy). Sometimes, T( X") isdenoted by X'[n].

Remark 1.2. (1) Each X O Ob(s4”) is considered as a cohain complex with d, = 0, so that
we get afull enbedding s4” —» C(s4). Then X =0, , T-"(X"), the direct sum in C(s4), for all
X={X",,, O Ob(4?).

(2) Weset X =(X,—d,) for X0 Ob(C(s4)). Then X' = X foral X O Ob(C(s4)).

Proposition 1.1. C(s#) isan abelian category.

Proof. For each u O C(«A)( X", Y'), Ker u and Cok u are defined by the following
commutative diagram with exact rows:

0 - Keu - X — Y - Coku - O

0o - Keru”+l — Xn+l - Yn+l - COkUn+l - 0



Then Im u = Coim u canonically, so that we may identify Im u with Coim u. Also, the direct
sum of two cochain complexes X°, Y™ isdefined as follows

0
X'DY'=(XDY,EJIX .
do d,
Definition 1.3. We define additive covariant functors Z°, B, Z'*, B and H' : C(«4) -
A* asfollows:

Z'(X') = Ker dg,
B'(X)=Imd}?,

Z"(X)=Cok dy*,

B"(X')=Coim df =Im d} = B"*}( X"),
HY(X") = Z"(X")/BY(X").

for X 0 Ob(C(s4)) and n O Z.

Remark 1.3. (1) B" =To B'.
(2) For any X" 0 Ob(C(s4)), d, admits an epic-monic factorization

X o B'(X) - T(X).

Lemmal2. (1) Z': C(sA) — A% isleftexactand Z'" : C(s) — A isright exact.
(2) We have a commutative diagram of functors with exact rows and columns



(3) We have an exact sequence of functors
O-H - 272" 5ToZ - ToH - 0.

Proof. (1) Let0 - X' - Y - Z' - 0bean exact sequencein C(«). Applying Snake
lemmato the commuitative diagram with exact rows

0 - X - Y < Z - 0
dy | Ldy ! d,

0 - T(X) - T(Y) - T(Z) - O,
we get an exact sequence
0- Z(X) - Z(Y) - Z(Z) - 27 (T(X)) - Z"(T(Y")) - Z°(T(Z)) - 0.
(2) Straightforward.
(3) In the diagram of the part (2), since B =T o B’, we can splice the top row, shifted by

one, with the right end column to get a desired exact sequence.

Proposition 1.3. Let0 - X" - Y - Z" - 0bean exact sequence in C(s4). Then we
have a long exact sequencein s

L H(X) - H(Y) = H(Z) S ) e

Proof. By Lemma 1.2(1) we have a commutative diagram with exact rows

Z°(X) - Z°(Y) - Z°(Z) > 0
1 ! !

0 - T(Z'(X)) - T(Z'(Y) - T(Z'(Z)),
to which we apply Snake lemma. Then by Lemma 1.2(3) we get an exact sequence in «*
H'(X) ~ H(Y') = H(Z)) = T(H(X) = T(H'(Y) = T(H(Z).

Definition 1.4. Let % be another abelian category. Then every additive covariant (resp.
contravariant) functor F: 4 — 9B can be extended to an additive covariant (resp. contravariant)



functor F : C(d) —» C(B) asfollows: if F : A4 - B is covariant, then F : C(A) - C(B)
associates with each X* [0 Ob(C(s4)) a cochain complex F X* such that (F X*)" = F(X") and
doy = F(dy) forall n 0 Z; and if F: sl - 9B is contravariant, then F : C(sd) — C(®)
associates with each X* [0 Ob(C(s4)) a cochain complex F X* such that (F X")" = F(X"") and
di, = F(d ") foral nO Z.

Proposition 1.4. Let % be another abelian category and F : ¢ — 9B an additive functor.
Then for the extended functor F : C(sd) — C(%B) the following hold.

(1) If Fiscovariant,thenF o T=T o F.

(2) If Fiscontravariant, thenF o T =T o F,

Proof. Straightforward.

Proposition 1.5. Let B be another abelian category and F : ¢ — 9B an exact functor.
Then for the extended functor F : C(sd) — C(%B) the following hold.

(1) If Fiscovariant, thenF cH"=H"o Fforalln O Z.

(2) If Fiscontravariant, thenF o H"= H™ "o Ffor all n O Z.

Proof. Straightforward

Definition 1.5. We denote by U : C(sf) — s4* the underlying functor, i.e., U associates
with each complex X' = (X, d,) its underlying Z-graded object X.

Proposition 1.6. Let U: C(s) - s* denote the underlying functor. Then the following

hold.

(1) U is exact and has both a right adjoint S: «4* - C(s4) which associates with each
Z-graded object X a complex

M O
=(TXUOX,
09=(X0X, &

and aleft adjoint T-*o S: A” - C(HA).
(2) We have an exact sequence of functors

0- 1y, - SoU S T-0,

whereuy =d 1],e=[1 -d].



Proof. (1) It is obvious that U is exact. For any X' O Ob(C(4)) and Y O Ob(s4%), we
have natural isomorphisms

A . ~ . |:TU0de
AU(X), Y) ~ C(&ﬁ)(X,S(Y)),UHE u B

ARV, U(X)) 5 C)(T'Y), X),ur [u T(d, o u).
(2) Straightforward.

Remark 1.4. (1) ToS=So T.
(2) Let X" 00 Ob(C(sA4)). If the canonical exact sequence

X

0. X = qU(X)) 5 TX -0

splits, then X" = §Z'( X)).

(3) An object | O Ob(s4?) isinjectiveif and only if sois (1) O Ob(C(s4)).

(4) An object X* O Ob(C(«)) is injective if and only if X' = 1) with | O Ob(s{%)
injective.

Definition 1.6. An abelian category < is said to have enough injectives (resp. projectives)
if for each X [0 Ob(s4) there exists amonomorphismX - | with| 0. (resp. an epimorphism
P - XwithPO%).

Lemma 1.7. Let ¥ be a subcollection of Ob(s{) containing zero objects and closed under
finite direct sums and assume for any X [J Ob(«) there exists a monomorphism X — | ins
with | O £. Then for any X" [0 Ob(C(«4)) there exists a monomorphism X - 1* in C(«)
withthel" O &. Inparticular, if s has enough injectives, so does C(A).

Proof. For each n [0 Z, we have amonomorphism u™: X" - 1"in & withI" O %£. Thuswe
get amonomorphism u = {u"} : U(X) - | ={I"} in«% Then, since S: A* - C(«A) is
exact, we get a monomorphism Su) : SU(X')) - 1) in C(s4). Thus by Proposition 1.6(2)
we get a monomorphism X' — () in C(s4). Since by Proposition 1.6(1) S: «* - C(sA)
takes injective objectsinto injective objects, if the I" areinjective, sois ).

Definition 1.7. A complex X is called bounded below if X" =0 for n « 0, bounded above
if X" =0forn > 0and bounded if X" =0 forn<« 0and n>» 0. We denote by C*(s4), C(s4)
and Cb(&d) the full subcategory of C(s{) consisting of bounded below complexes, bounded



above complexes and bounded complexes, respectively.

Also, acomplex X' issaid to have a bounded below cohomology if H'( X") =0 for n<« 0,
to have a bounded above cohomology if H(X") = 0 for n » 0, and to have a bounded
cohomology if H'(X") =0 for n<« 0and for n» 0. For * =+ or —, we denote by C" b(szd) the
full subcategory of C'(s4) consisting of X* [0 Ob(C'(s4)) with bounded cohomology.

Remark 1.5. For * =+, —or b, C'(s{) is an abelian exact full subcategory of C(sA).

Definition 1.8. Let & be a subcollection of Ob(s4). For * = +, —, b or nothing, we denote
by C'(&) the full subcategory of C'(sf) consisting of X* [0 Ob(C (s4)) with X" O &£ for al n
0Z.

Remark 1.6. Let & be a subcollection of Ob(s4) containing zero objects and closed under
finite direct sums. Then, for * = +, —, b or nothing, C' (%) is an additive full subcategory of
C'(A).

Definition 1.9. A right resolution of X [0 Ob(s4) isamorphism i : X - 1" in C(s4) such
that H(1) : X — H(I") isanisomorphism, I" = 0 for all n< 0 and H"(1") = 0 for al n> 0,
i.e., we have an exact sequence 0 —» X 4 15 1t e,

A right resolution ¢ : X - |I" with I" O Ob(C(%)) is called an injective resolution. Let f
A Y)and u, - X - Iy, 4,0 Y - 1y beright resolutions of X and 'Y, respectively. Then a
morphism f OC(sd)( 15, 15) with f o, =, o fissaid to belying over f.

Lemma1.8. Let I" 0 Ob(C($)) with I" = 0for n < 0and X' 0 Ob(C(s4)) with H'(X’) =
Ofor n>0. Thenfor anyf: H°(X") - HY ") the following hold.

(1) Thereexists f OC(oA)( X, I") such that HO( f) =f.

(2) Incasef =0, for any f O C(4)(X, I")with HY( ) = fthere existsh O 44T X", 1)
suchthat f =hod, +T-Y(d, - h).

Proof. (1) Put " =0for n<0. By theinjectivity of Z'°(1°) =1°, we get a commutative
diagram with exact rows

0 - HAX) - Z%X) - Z{X) - O
fl l g V1 z

0 - HIY = 1° o ZYI).

Let 77: X° - Z °(X") be the canonical epimorphism and put f°=go 7z Then f°o d;* = 0.



Letn>1and assumethat 2': Z'(X") —» Z'(1") has been constructed. Then, by the injectivity
of I, there exist " : X" - I"and 22**: Z"* (X)) - Z"*X1") which make the following
diagram with exact rows commute

0 - Z(X) - X o Z"™YX) - 0
Al Lof" A

0 - ZYI') = 1" o ZYI).

Thus by induction we get a desired morphism f OC(A)(X, 17).

(2) Puth" =0 forn< 0. Notethat Z°(f) =0. Letu: Z%(X) - X°be theinclusion.
Since f®o =0, thereexistsh*: X* - 12 suchthat f°=h"o d% +h o d % It sufficesto
prove the following.

Claim: Let n =0 and assume that, for —1<i <n, theh' : X** _ I' have been constructed
tosatisfy f' = ho di + d*oh-'foral 0<i<n Thenthereexistsh'*': X"*? _, |™**
suchthat "= d" o h"+ h™ o d}*2,

Proof. Wehave (" —d" o h) o df =0, sothat (f"** — d - h") factors through d:**.

Definition 1.10. A left resolution of X [0 Ob(sd) isamorphisme: P° - Xin C(«) such
that H%e) : H°(P") — Xisanisomorphism, P"=0for al n>0and H"(P*) = 0foral n<0,
i.e., we have an exact sequence --- — P~* - P° SX.o,

A leftresolution €: P° - X with P° [0 Ob(C(%)) is called a projective resolution. Letf [
AX, Y)and g : B - X &: R - Y beleft resolutions of X and Y, respectively. Then a
morphism f OC(sd)(P;, B) with &0 f =f o &, issaidto belying overf.

Lemma 1.9 (Dual of Lemma1.7). Let &£ be a subcollection of Ob(s{) such that for any X
[0 Ob(«A) there exists an epimorphism P —» X in o with P O &. Then for any X' [
Ob(K(s4)) there exists an epimorphism P° - X' in C(sf) with the P" 0 &. In particular, if
A has enough projectives, so does C(A).

Lemma 1.10 (Dua of Lemma 1.8). Let P"'UJ Ob(C(s{)) with the P" 0 % and P"= 0 for n
>0, and let X* [0 Ob(C(s4)) with H'(X*) =0for n< 0. Thenfor anyf: H°(P") - H°(X")
the following hold.

(1) Thereexists f O C(sA)(P", X') such that HO( f) =f.

(2) Incasef=0, for any f O C(sA)(P", X*) with HO( f) = fthereexists h O 44T P", X')
suchthat f =ho d, + T-X(dy o h).



Definition 1.11. Let € be a category and A a set. We may consider A as a discrete
category. Namely, A is considered as a category such that Ob(/A) = A and there is no other
morphism than identity morphisms. Note that A® = A. We denote by 6" the functor
category [A, 6]. Then an object of €¢" isjust afamily of objects {X},, in 6. We have a
functor P : 6 - %", called the constant functor, which associates with each X [0 Ob(‘¢) a
family of objects{ X,} ,, suchthat X,= X foral A O A.

A product of {X,} 0 Ob(%¢") isaterminal object in the following category: an object is a
morphism in €" of the form f O €"(PX, {X,}) with X 0 Ob(%), i.e., a pair (X, {f,}) of X O
Ob(6) and a family of morphisms f, O 6(X, X,); amorphismh : (X, {f,}) - (Y, {g,}) isa
morphism h [0 €(X, Y) withf, =g, o hforal A OA. If {X,} hasaproduct (X, {p,}), then the
morphisms p, : X — X, are called projections. In case € is an additive category, a product is
usually called a direct product.

Remark 1.7. Let 6 be acategory and A aset. Then the following hold.
(1) A pair (X, {p,}) isaproduct of { X,} 00 Ob(%") if and only if the mapping

€Y, X) — TTe(Y, X)), f=> (py o )

isabijection for al Y [0 Ob(€).

(2) Assume every {X,} 0 Ob(%") has a product ([] X,, {p,}). Then[]: %" - € isa
functor and is aright adjoint of the constant functor P : € — €”". Furthermore, the morphisms
p={p} : P( X)) - {X,} giveriseto the counit.

(3) Assume the constant functor P : ¢ — %" hasaright adjoint []: " - % and denote by
p:Pofl - 1, thecounit. Thenevery {X;} [ Ob(%") has aproduct ([ X,, {p,})-

Definition 1.12. An abelian category « is said to satisfy the condition Ab3" if arbitrary
direct products exist in &, and to satisfiy the condition Ab4" if arbitrary direct products exist
in s and for any set A the functor [1: A" - o isexact.

Remark 1.8. If o satisfies the condition Ab3’, then for any set A the functor [ : A" - o
isaright adjoint of the constant functor #{ — 4" and thus left exact.

Proposition 1.11. (1) If «{ satisfies the condition Ab3'", then so does C(4).
(2) If o satisfies the condition Ab4", then so does C(s4) and H' : C(s) — «* commutes

with direct products.

Proof. (1) Let { X}, bean arbitrary family of complexes in C(s4). Then we have a



complex [ X such that
M X =nx, d,.=Md.

forall n O Z. Also, for each u A, we have a homomorphism p, : [T X; - X, in C(«A)
suchthat py : [1 X] - XjisaprojectionforalnZ. Itiseasy to seethat for any Y'O
Ob(C(A)) the canonical homomorphism

ClA)(Y, T X3) = [T C) (Y, X3), ub (p, o u)

isanisomorphism. Thus ([T X}, {p,}) isadirect product of { X3}, -
(2) Straightforward.

Definition 1.13. Let 6 be a category and A aset. Denote by P : 6 - %" the constant
functor. A coproduct of {X,} O Ob(€") is an initia object in the following category: an
object isamorphismin 6" of the formf 0 €’ ({ X}, PX) with X 00 Ob(%€), i.e., apair ({f}, X)
of X [0 Ob(“€¢) and afamily of morphisms f, O €(X,, X); amorphismh: ({f,}, X) - ({g,},Y)
isamorphism h O 6(X, Y) withg, =h o f, foral A OA. If {X,} hasa coproduct ({i,}, X),
then the morphismsi, : X, - X are called Injections. In case ¢ is an additive category, a
coproduct is usually called adirect sum.

Remark 1.9. Let € be acategory and A aset. Then the following hold.
(1) A pair ({i,}, X) isacoproduct of {X,} [0 Ob(‘¢") if and only if the mapping

BXY) - [1CX, ), fr> (foi)

isahbijection for al Y [J Ob(€).

(2) Assume every {X,} O Ob(‘¢") has a coproduct ({i,}, O X,). ThenO : €" - % isa
functor and is aleft adjoint of the constant functor P : 6 — €. Furthermore, the morphisms
i={i,} :{X} - PO X)) giveriseto the unit.

(3) Assume the constant functor P : € — %" has aleft adjoint O : €" - % and denote by i
:1,, — PO theunit. Thenevery {X;} 0 Ob(%") hasacoproduct ({i,},0 X)).

Definition 1.14. An abelian category A is said to satisfy the condition Ab3 if arbitrary
direct sums exist in o, and to satisfiy the condition Ab4 if arbitrary direct sums exist in s

and for any set A the functor O : 4" — o isexact.

Remark 1.10. If o satisfies the condition Ab3, then for any set A the functor O : " —



isaleft adjoint of the constant functor ¢ — 4" and thus right exact.

Proposition 1.12 (Dual of Proposition 1.11). (1) If o satisfies the condition Ab3, then so
does C(A).

(2) If o satisfies the condition Ab4, then so does C(«) and H® : C(s) — <% commutes
with direct sums.

10



§2. Mapping cones

Throughout this section, «{ is an abelian category and $ (resp. %) is the collection of
injective (resp. projective) objects of l. Unless otherwise stated, functors are covariant
functors.

Definition 2.1. The mapping cone of u [1 C(A)(X", Y") isacochain complex of the form
0
C(u) =(TXOY, (O @
dru d,

Remark 2.1. (1) T(C(u)) = C((—1)" T'u) foral u O C(«A)( X", Y')and n O Z.

(2) Let 9B be another abelian category and F : { — 9B an additive functor. Then F(C(u))
= C(Fu) for all u 0 C(«)( X", Y*). IncaseF iscontravariant, F(C(u)) = C(T (Fu)).

(3 X0 Y =C(0,.,,,)foral X', Y" O Ob(C(s4)).

(4) Forany X" O Ob(C(sA)), U X" = Z'(C(id,)) and we have an isomorphism

dy oy - .
% 1E:C(ldx) % SU(X)).

Proposition 2.1. For any u [0 C(4)( X", Y") we have an exact sequencein C(#A)
u £
0-Y - C(U) - TX -0,
where =70 1] and e=[1 0].

Proof. Straightforward.

Proposition 2.2. For any u [0 C(s4)( X", Y) we have a commutative diagram with exact
rows

0 - X 5 clid) > TX -0
ul PO lo |
0. v L cuw S TX -0
[I —y ! PB | -Tu

0- Y - cld) - TY - o0,



i _ _d 0o _Ou 0O
whereu =10 1], e=[1 O],QO—@ uHandL,U—EO 1%

Proof. Straightforward.
Definition 2.2. A complex X" O Ob(C(«)) iscaled acyclicif H*(X") =0.

Remark 2.2. Let u: X - |' bearight resolution of X [1 Ob(s4). Then C(u) isan acyclic
complex

* —»0—>Xi |O—>|1—> et
Proposition 2.3. C(id,) isacyclic for all X" 1 Ob(C(s)).
Proof. LetenOZ. Let'Tu V] :Y - X""* 0 X"beamorphismin s with

3-dy*t ODWDZO
51 g

Then u=- dg o v and we have

o Gdd 0 OO

WH H1 ded
Thus H'(C(id,)) = 0.
Proposition 2.4. For any u [0 C(A)( X", Y*) we have a long exact sequence
o H(X) = HY(Y') = H(C(U) » HY™H(XT) = oo
Proof. By Proposition 2.2 we have an exact sequence of the form
0- X - Y OC(id,) — C(u) - 0.

Since by Proposition 2.3 H(C(id,)) = O for al n O Z, by Proposition 1.3 the assertion
follows.

Proposition 2.5. For any exact sequence 0 —» X' Sy Lz S oin C(«A) the
following hold.
(1) We have the following exact diagramin C(s)



0~ X 5 cliid) 5> TX - 0

0 - Y Cuy - TX - 0
v I
zZ = z
! !
0 0,

where =0 1], e=[1 0], @= % Sﬁand =10 V.

(2) H () : H(C(u) - H'(Z") isanisomorphism.
(3) The composite

w=H(Eo H (' H(Z) - H(TX)=T(H (X))
gives rise to a connecting morphism of a long exact sequence
L HYY) S HY(ZY) S HY™HX) S HY YY) S -

Proof. (1) According to Proposition 2.2, it only remains to check that rris a morphism in
C(A). Wehave

ol 00O
Trto dey,, = [0 TV] BTTJ 0.0
Y
=[0 Tvod,]
:[O dzov]
=d,omm

(2) By the part (1) we have an exact sequence 0 — C(id,) — C(u) 2z -0 Thus by
Propositions 1.3 and 2.3 H(77) is an isomorphism for all n [J Z.
(3) Let n Z. By Propositions 2.2, 2.3 and 1.3 we have an exact sequence

Lo HY(w H" (¢) i1y ey HUT@ o
HY(Y") 00 - HY(C(u)) @ - H"™Y(X') 0 - H"*Y{Y").



Since H"(u) =H"(7)* o H"(V) and " = H"(¢€) - H"(7)™*, the diagram

Hn(V) wn Hn+1 )
HYY') M- HY{Z) M- H™YX) - H"YY)
I L HY(m? Il I

n+1

L H'W H" (¢) . ) Y1\
HY(Y) M- H(C(W) - H™Y(X) M- H7Y(Y)
commutes and the top row is exact.

Lemma26. Let0 - X' » Y - Z' - Obean exact sequence in C(s4) which splits as
an exact sequence in #{%. Thenthereexissw: T-'Z" - X and @: Y° - C(w) such that the
following diagramin C(s{) commutes

0- X - Y - Z -0
| Lo I

0. X 4 cw S 7z - o
whereu =10 1], e=[1 Q).

Proof. Let f O «%(Y", X")withfu=id,, Theng=Tfod,—d, of O C(A)(Y", TX") and
gu = 0. Thusthere existsw [ C(4)(T"*Z", X) suchthat g=Two v. Finally, itiseasy to see
that p="Tv ] OC(«A)(Y", C(w)).

Proposition 2.7. Let0 - X 4 Y 5 Z . Obean exact sequencein A. Let y, : X - 15
be an injective resolution of X and 1, : Z — | aright resolution of Z. Then there exists a
right resolution i, : Y - 1, of Y such that we have a commutative diagram in C(sd) with
exact rows

=
™

Hx L oy Loy

=
™

0 - I, - 1, S 1, - o0,

Furthermore, we may assume that 1, = C(J) with O C(A)(T 15, 1), 4, = [y 0 € 077
with 6720 (Y, 1), 4 =70 1] and £ =[1 Q).

Proof. By Lemma 1.8 we have a commutative diagram in s{ with exact rows



— Uy o0& —d|oz —d?!

u
0 M- X M- Y M- 12 @M> I}@ m>

| 1ot 1 3° Lot
dp, d}

Hx
0 M- X M- 12 M- I} M- 12 M-

Taking the mapping coneof d: T-*1, - I}, weget adesired right resolution p,: Y - | of
Y. Thelast assertion follows by Lemma 2.6.

Proposition 2.8. Let0 - X L Y - Z -~ Obeanexact sequenceinsg and X - 15, Y -
I, injective resolutions of X and Y, respectively. Then the following hold.

(1) There exists f O C(sd)(1}, 1;) such that HO( f) =f.

(2) There exists an injective resolution Z — | of Z such that C( f) = C(idlg) O 15 in
C(A).

Proof. (1) By Lemma1.8.
(2) Note first that by Proposition 2.4 HY(C(f)) = Z and H'(C(f)) =0foradln 0. We
have an exact sequence in C(s{) of the form

0- C(id,) - C(f) -~ 13 -0,

which splits because by Proposition 1.6(1) C(id ,) isinjectivein C(s4). Notethat 1; 0% for
dln0Zand 1y =0foral n<0. Also, by Proposition 1.3 H%(1;) = Z and H"(1,) = O for all
n 0. Itfollowsthat |; isaninjectiveresolution of Z

Corollary 2.9. Let X 1 Ob(sd) andn=0. Let

be an exact sequencein .« and X — 15 aninjectiveresolution of X for 0<i <n. Thenthere
exists a monomorphismX — []7_; I3 in s

Proof. Incase n =0, the assertion isobvious. Letn>0and put X' , = Cok(X, - X, _,).
By Proposition 2.8 there exist ¢ : I, - 1 and aninjective resolution X\, - I5. of
X;_y suchthat C(id) O 1, = C(¢), wherel = I; . Incasen=1,X= X, and I3" isa
direct summand of 13 O 13", sothat X embedsin I3 O I3"*. Letn> 1 and assume the

assertionistruefor n—1. Then 13 = I3 0 13" and by induction hypothesis X embeds in

(Ofen) oyt =0 1.



Proposition 2.10. (1) Let n, [0 Z and define an automorphism p : 15)@Z 5 1&@2 of the
identity functor 1 , : s” - s” asfollows py = (=1)""™id,, for all X" 0 Ob(C(s4)) and n
[0 Z. Then pisan involution of 1&&1 ,i.e., o =id, and satisfies Tp = — p,.

(2) Let p: 1(%1 5 1&41 be an involution of the identity functor 1&41 such that To=— p;.
Then for any u O C(4)( X", Y") we have a cochain complex

B O0-dx O
Cw) =(TXDY, & dYE

Uo Orx

which makes the following diagram in C(s{) commute

c

x S v Lcw i oTX
I I I L prx
x S v Locw i oTx
I I Lo I

x S oy Locw L oTX),

c

c

BDTX

whereu="0 1], e=[1 0], € =[p O], = o 0Eand X =(X -d).

1

Proof. Straightforward.

Proposition 2.11. (Dua of Proposition 2.7). Let 0 - X fy Sz 0 be an exact
sequence in 4. Let g : P, — X bealeft resolution of X and ¢, : P, - Z a projective
resolution Z. Then there exists a left resolution €, : R - Y of Y such that we have a
commutative diagramin C(s{) with exact rows

=

=
™

0 o X N Y N Z - 0.
Furthermore, we may assume R' = Py 0 Py foralln>0and g =0 1], £ =[1 Q].

Proposition 2.12 (Dual of Proposition 2.8). Let0 - X - Y i Z - 0 be an exact
sequenceinsd and R - Y, P, - Zbe projective resolutions of Y and Z, respectively. Then
the following hold.

(1) Thereexists § O C(#4)(R,, P,’) such that H°(g) =g.



(2) There exists a projective resolution P, — X of X such that C(g) = C(id,) O TR in
C(A).

Corollary 2.13 (Dual of Corollary 2.9). Let X 1 Ob(s{) and n> 0. Let

0—>X—>X0—> —>Xn—>0

be an exact sequencein { and P;, — X' a projective resolution of X' for each 0<i <n. Then
there exists an epimorphism []'_ P,' - Xin4.

i=0 " x'



83. Homotopy categories

Throughout this section, «{ is an abelian category and $ (resp. %) is the collection of
injective (resp. projective) objects of l. Unless stated otherwise, functors are covariant
functors.

Proposition 3.1. For amorphismu O C(«4)( X", Y") the following are equivalent.
(1) Thereexistsh O o4*(T X", Y') suchthatu=ho d, + T(d, o h).

(2) The canonical exact sequence0 - Y° - C(u) - TX - 0gsplits

(3) ufactorsthrough[0 1] : X" - C(id,).

(4) ufactorsthrough[1 0] : C(id__,,) - Y.
(5) u factors through C(id,) for some Z" [J Ob(C(sA)).

Proof. The implications (3) [0 (5) and (4) O (5) are obvious. Also, it follows by
Proposition 2.2 that (2) = (3) and (2) = (4).
()0 (2. LethOAX(T X, Y)withu=hod, +T(d,o h). Since

[h 1 E;E: d,.
it sufficesto check that [h 1] : C(u) — Y' isamorphismin C(s{). We have

[Th 1] E;dx ;E= [Tf ~ThoTd, d,]
Y

=[dyoh d]
=d,[h 1].

(5 0 (). Letu=hovwithv="Tv, v,]: X' - C(id,), h=[h, h,] : C(id) - Y". Then
FTd, O0OpomvO OvO

impliesv, = Tv, o dy—d, o v,, and

dfn n=[m m]5 " 8

impliesTh, =d, o h, + Th, o Td,,. Thus



u=hyev, +h,oV,
=h,o(Tv,od, —d,ov,) + (T 'd,o T"h +hod)oV,
=h,oTv,od, +T'd, 0o T 'h, oV,
=(h, o Tv,) od, + T 'd, 0 T*(h, o TV,).

Definition 3.1. For each pair of X', Y° 0O Ob(C(s4)), we denote by Htp(X", Y*) the
subset of C(s4)( X", Y") consisting of morphisms u: X — Y* which satisfy the equivalent
conditions of Proposition 3.1.

Definition 3.2. Letu, vO C(4)( X", Y'). Thenuis said to be homotopic to v, written u
= v, ifu=vOHtp(X, Y). Ifh OAXT X", Y") satisfiesu—v=hod, + T }(d, o h), thenh
is called ahomotopy and written h: u = v.

Lemma 3.2. (1) For any X', Y" [0 Ob(C(«A)), Htp( X", Y") is an additive subgroup of
C(A)( X", Y).

(2) For any two consecutive morphismsu : X° - Y',v: Y - Z inC(«A), if either ud
Htp( X", Y*) or v Htp(Y", Z") thenvou O Htp( X", Z°).

(3) For any X, Y' [ Ob(C(«A)), the trandation T induces an isomorphismHtp( X", Y")
5 Htp(TX, TY).

Proof. By Proposition 3.1.

Definition 3.3. According to Lemma 3.2, we can define the residue category K(#) =
C(s4)/Htp, called the homotopy category, as follows: Ob(K(s4)) = Ob(C(s4)); and for each
pair of objects X, Y* [0 Ob(K(s{)) we set

K()(X, Y') = C(A) (X, Y YHp(X', Y°).

Then the trandlation T: C(sf) = C(s4) induces an autofunctor T: K(s4) = K(sf), which is also
called the trandation. Similarly, for a subcollection & of Ob(s4) and for * = +, —, b, (+, b),
(= b) or nothing, we define the homotopy category K'(£) = C'(£)/Htp. Then the canonical
functor K' () — K(s4) is fully faithful and K'(£) can be identified with the full subcategory
of K(s4) consisting of X" 0 Ob(C'(<£)).

Remark 3.1. Htp(X, Y) =0for al X, Y O Ob(s4?%), so that we have afull embedding % —
K(A).

Lemma3.3. Forany X', Y' [0Ob(C(s{)) we have exact sequences



Cs)(Clidy), Y7) - C(H)(X, Y7) — K(sA)(X', ¥) - 0,
C(sA)( X, C(id_.,)) - C(A)( X", Y) - K(A)( X', Y') = 0.

Proof. Straightforward.

Proposition 3.4. Let & be a subcollection of Ob(s{) containing zero objects and closed
under finite direct sums. Then, for * =+, —, b or nothing, the following hold.

(1) K'(%) is an additive category and the canonical functor C'(¥) — K'(£) is additive

(2) The canonical functor C'(¥) - K'(&) preserves direct products. In particular, if s
satisfies the condition Ab3', then arbitrary direct products exist in K(s4).

(3) The canonical functor C'(£) - K'(¥) preserves direct sums. In particular, if s
satisfies the condition Ab3, then arbitrary direct sumexist in K(sA).

Proof. (1) Immediate by definition.

(2) Let{Y,}, . beafamily of objectsin C (£) indexed by aset A and assume the direct
product [ Y, exists in C(£). Let X' O Ob(C(¥)). Since by Lemma 3.3 we have a
commutative diagram with exact rows

C(Cid) M) - CE)(X.MY,) - Ke(XY) - 0
! 1 1

MCE)Cid), ¥;) — MCE(X,Y) ~ MKE)(X,Y;) - 0,
where the vertical maps are canonical ones, it follows that
KEX Y S MTKEDX, Y))

canonically. The last assertion follows by Proposition 1.11.
(3) Dud of (2).

Proposition 3.5. For X' [0 Ob(C(s4)) the following are equivalent.
(1) X" =0inK(A).

(2) K(A)( X", X)) =0.

(3) Thereexistsh :id, = 0.

(4) X' =C(id,) in C(A) for Z" = Z'(X").

(5) X" = C(id,) in C(sA) for some Z* [0 Ob(C(sA)).



Proof. Theimplications (1) = (2) = (3) and (4) O (5) are obvious.

(3) 0 (4). Let Z' = Z'(X"). By Proposition 3.1'[0 1] : X" - C(id,) isasection. Since
C(id,) isacyclic, sois X". Thuswe may consider that B'(X') = Z" and B"(X') =TZ . Let
j: Z° - X betheinclusonandp: X - TZ" the epimorphism withd, = Tj o p. Note that
poT'd,=0. Sinceid, =hod + T *(d, h),

p=pe° (lflodx"'-r_l(dxO h))
=pohod,
=peheTjop.
Thus, since pisepic, id,, =poho Tj. Hence, sincep - j =0, we get an isomorphism in C(s{)
[hT() j]:C(id) 5> X.
(5) O (1). By Proposition 3.1.
Proposition 3.6. For X' [0 Ob(C(s)) the following are equivalent.
(1) X isinjective (resp. projective) in C().
(2) Z = Z'(X) isinjective (resp. projective) in«” and X" = C(id,).
Proof. (1) O (2). Thecanonical exact sequence0 - X' - C(id,) -~ TX - 0splits, so
that by Propositions 3.1 and 3.5 X' = C(id,) with Z" = Z'(X"). Incase X' isinjective, s0is
SZ' =C(id,). Letj:Y - Y beamonomorphismin s¢” and f O (Y, Z'). Since § is

monic, there exists § O C(4)(SY, SZ') suchthat & = § o §. Note that

._dg 0og . 7 . 7 .
g_Hh gHthgD&d(Y,Z),hD&d(TY,Z).

Thus, sinceUS=TUO 1 ., US) = U(g) o U(S(j)) impliesf = gj.

(2) O (1). Since Shas an exact left adjoint U, S takes injective objects into injective
objects. Thus C(id,) = SZ" isinjective.

Lemma 3.7. For any X [0 Ob(s4), Y [ Ob(C(s4)) we have isomor phisms

K()(X, Y7) = HAAX, Y7, KE)(Y", X) = HO(A(Y, X)).

Proof. We may consider that



C()(X Y)Y ={uO«A(X, Y% |d) ou=0}
=Z°%(A(X, Y)),

C(sA)(C(idy), Y) ={(v, u) O (X, Y7 x A(X Y) Ju=d, " o v},

Then, for =10 1] : X — C(id,), we have Im(C(#4) (i, Y')) = B%(A(X, Y")). Thus, since by
Lemma 3.3 we have an exact sequence

C(sA)(Clidy), Y') = ClA)(X, Y7) - K(s)(X, Y) = O,
we get K(s4)(X, Y') = H%sA(X, Y')). Dualy, we have K(sd)(Y", X) = H(sA(Y", X)).
Proposition 3.8. For any X 0 Ob(s4), Y* 0 Ob(C(s{)) and n 0 Z, we have isomorphisms
K(s)(X, T"Y") = HY(sA(X, Y)), K(s)(T" Y, X) = H'(A(Y", X)).
Proof. By Lemma 3.7 and Proposition 1.4 we have
K(st)(X, T"Y") = HYA(X, T" Y7))
= HYT"sA(X, Y"))
= HY(A(X, Y')).
Dually, we have K(sd)(T™" Y*, X) = H'(sd)(Y", X)).

Proposition 3.9. Thefunctor H" : C(sf) — 4” factors through K(sd).

Proof. Let ull Htp( X", Y*). Then u factors through some C(id,). Since by Proposition
2.3 C(id,) isacyclic, it follows that H" (u) = 0.

Remark 3.2. The converse of Proposition 3.9 fails, i.e,, for u C(d)( X", Y*), H'(u) =0
does not necessarily implyu = 0. Letf OAX,Y)andu="0 1]:Y — C(f). Then H ) is
just the canonical epimorphismY — Cok f. Also, u = 0if and only if fisaretraction. Thus,
in case f is an epimorphism and not aretraction, we have H*(u) =0and u == 0.

Proposition 3.10. Let A be another abelian category and F : s{ — 9B an additive functor.
Then the following hold.

(1) F is extended to an additive functor F : K(«f) - K(%B) which commutes with the
trandation.

(2) Assume F has a right (resp. left) adjoint G : %3 — . Then the extended functor G :



K(®B) - K(«A) isaright (resp. left) adjoint of F : K(d) - K(%B). Furthermore, if G: B - o
isfully faithful, sois G : K(B) - K(A).

Proof. (1) It is obvious that the extended functor F : C(sf) — C(%) commutes with the
translation. Let X', Y° O Ob(C(s4)). Since F(C(id,)) = C(id.,) for all Z O Ob(C(s4)), Fu
O Htp(F X*, FY*) for al u OHtp( X", Y°).

Q) LetG: B - oA bearight adjointof F: f -~ Bandlete 1, - GF,d: FG - 1, be
the unit and the counit, respectively. Then &, d are extended to homomorphisms of functors
& Ly » GF, 0:FG - 1, respectively. Itiseasy to see that the equations & o Fe =id,
GJdo g, = id; are also satisfied by extended functors. Furthermore, if §: FG - 1, isan
isomorphism, s0isd: FG - 1.

Proposition 3.11. For any u, v C(«#)( X", Y") the following hold.
() For hnOAXT X", Y'),h:u=vifandonly if

0
o= ﬁ L0 C(EW), )

(2) Thereexistsh : u= vifand only if there exists ¢ [1 C(s4)(C(u), C(v)) which makes the
following diagram commute

0 - Y S cuw 5 TX - o0
I Lo I

0. Y S cv 5 TX - o,
whereu =10 1] and e=[1 0].
Proof. (1) Straightforward.

(2) Note that ¢ 0 s4%(C(u), C(v)) makes the diagram commute if and only if it is of the
form

0
o= & %uithn o a7 (T, Y.
th 15
The assertion follows by the part (1).

Lemma 3.12. Let y, : X - I bearight resolution of X [0 Ob(sd) and 1, : Y — | an
injective resolution of Y 0 Ob(sf). Then H% K(sf) — s induces an isomorphism



K()(1x, 15) = (X, Y), > H(9).

Proof. By Lemma1.8.

Proposition 3.13. Assume s has enough injectives. Choose arbitrarily an injective
resolution u, : X - |5 of each X O Ob(s4). Then I O Ob(K(s{)) is uniquely determined up

to isomorphisms and we get a full embedding

A o K(sd), X 1.

Proof. Let X - 1 be another injective resolution of X [0 Ob(s4). By Lemma 1.8 there
exist @0 C(sA)(1y, 1), wO C(A)(1°, 13) such that HY(@) = H°(¢) =id,. ThenH (Yo @) =
H%@o ¢) =id, and it follows by Lemma 3.12 that ¢y o = @o @ =id, in K(s4). Thus @isan
isomorphism in K(s4). The last assertion follows by Lemma 3.12.

Proposition 3.14. Let

o-. x L v Sz Lo
£l g I h
0. X - v 5 7z - o0

be a commutative diagramin s with exact rows and let

it &

£
0- 1 = 1 > 1, -0

0-1, = I, 51,0,

be exact sequences of injective resolutions over the top and the bottom rows, respectively.

Then for any f : I3, — 15 overfand h: |7 - 1. over h, the following hold.
(1) Thereexists g : |, — 1. over g which makes the following diagram commute

™m>

i

0~ I - 1 - 1, -0
fl 1§ ! h
. l'l . 8 .

0 - I, - 1, - 1 -0

(2) Incasef =g=h=0, for any u: f ~0andw: h = Othere exists v : g = 0 which

makes the following diagramin s/ commute



L Th LT .
0- T(y) - TUy) - TU) - 0
u |l I v L w
i . £
0 - |X N IY, - |Z - 0

Proof. (1) According to Proposition 2.7, we may assume
I, =C(d) withd O C(A)(T 1, 1),

_ Wz e My o &

55 HWIth o0 A(Y, IX)

=701, £=[10, =701 ad & =[10].

Then we have the following commutative diagrams with exact rows

M —Hz & 0 dloz 1 _dllz
0 M- X M- Y M- 12 M= I}@ m=
| 1ot L &° Lot
Hx 0 dlox 1 dllx 2 dli
0 M- X M- 12 M- I} M- 12 M-
fl Lof° Lot Lf?
Hy: d|0><' d'ﬁ(‘ d'i’

0 M- X M- IS M- I} Mo 12 Mo -,

H —Hz € _dloz _dllz
0 M- X M- Y - 1y M- 1y -

fl L g L n° e
o' —Hg &' _dloz _d'lz
0 M- X M- Y 0- |§, Dﬂqlzl, -

I 137t 1a8° 1at
Hx: 0 d|o><' 1 d'lx' 2 d'i'
0 M- X M- 13 M- I} M- 12 -

Thus, setting
gi= 51— tog: Y IZ,

=" —F" hh: 12 L 12 fornz0,

we get a commutative diagram with exact rows

12, = C(8) with & O C(d)(T 15,

0 .
My, = H 5’_1 HWIth o0 ﬂ(Y’,

%),

%),



0
H —Hz & —di,

0 M- X M- Y M- 12 @M> I}@ m>
0! Lyt Ly Lyt

dp, dl

H: ,
0 M- X M- IS M- I} M- 12 M-

It follows by Lemma 1.8 that there exist ¢": 1} — 1}, forn=0suchthat ¢ '=—¢° p, o ¢

and "= d o¢"—¢"" o d! foraln=0. Hence, setting

I
e

g:E‘P

n

o0
LR LA s )
f'0

for n> 0, we get adesired morphism g : I, - I...
(QPut¢ =¢ —(uo TO+ 3 o T 'w). Itisnot difficult to check that ¢’ O C(sd)(1, 15.)
and ¢’ %o p,=0. Thusby Lemma 1.8 thereexists V' : ¢’ = 0 and we get a desired homotopy

Lemma 3.15 (Dual of Lemma 3.12). Let &, : P, — X be a projective resolution of X [
Ob(sf) and &, : R - Y aleft resolution of Y 0 Ob(sf). Then H®% K(s4) — s induces an
isomor phism

KR, R S (X Y), o HY(9).
Proposition 3.16 (Dual of Proposition 3.13). Assume & has enough projectives. Choose

arbitrarily a projective resolution g, : B, — X of each X Ob(s4). Then R, U Ob(K(s)) is
uniquely determined up to isomor phisms and we get a full embedding

A - K(sd), Xi> Py

Proposition 3.17 (Dual of Proposition 3.14). Let

u

0O0- X S5 Y 5 Z 50

™

£l l g ! h

™,

0. X - v 5 7z _o0

be a commuta diagramin s with exact rows and let



P E L
b d PY, e d PZ, —)O

U £
0-P, - R - P -0 0-FP

be exact sequences of projective resolutions over the top and the bottom rows, respectively.

Thenforany f : P, ~ P, overfandh: P, - P} over h, thefollowing hold.
(1) Thereexists g : B, — R, over g which makes the following diagram commute

=
™
N
!
o

fl 1§ ! h

o- R - R L B -o.

(2) Incasef =g=h=0, forany u: f ~0andw: h = Othere exists v : g = 0 which

makes the following diagramin s¢* commute

LT L TE )
0- T(IX) - T(IY) - T(IZ) - 0
u !l v L w

/:1'
0 - I, - L. = L

!
o

10



84. Quasi-isomorphisms

Throughout this section, «{ is an abelian category and $ (resp. %) is the collection of
injective (resp. projective) objects of .

Proposition 4.1. The following conditions for u 0 K(s4)( X", Y") do not depend on the
choice of a representative of uin C(«4)( X", Y*) and are equivalent.

(1) H"(u) isan isomorphism.

(2) C(u) isacyclic.

Proof. According to Propositions 3.9 and 3.11, both the conditions do not depend on the
choice of arepresentative of uin C(«)( X", Y'). It follows by Propoaition 2.4 that (1) and
(2) areequivaent for u 0 C(A)( X", Y").

Definition 4.1. A morphism u O K(«)( X", Y") is called a quasi-isomorphism if it
satisfies the equivalent conditions of Proposition 4.1. We aso call amorphism u in C(#) a
quasi-isomorphism if it represents a quasi-isomorphism in K(s4).

Proposition 4.2. For any two consecutive morphismsu: X' - Y',v: Y - Z inK(«A)
the following hold.

(2) If two of u, vu and v are quasi-isomorphisms, then the rest is also a quasi-isomor phism.

(2) If two of C(u), C(vu) and C(v) are acyclic, then therest is also acyclic.

Proof. (1) Since H'(v) o H'(u) = H (w), if two of H'(u), H (v) and H"(v) are
isomorphisms, then the rest is aso an isomorphism.
(2) By the part (1) and Proposition 4.1.

Proposition 4.3. For any exact sequence 0 - X' Sy Lz~ oin C(sA) the
following hold.

(1) visaquasi-isomorphismif and only if X" isacyclic.

(2) uisaquasi-isomorphismif and only if Z* isacyclic.

3 [0 Vv]: C(u) - Z isaquasi-isomorphism.

(4) [Tu 0] : TX - C(v) isa quasi-isomorphism.

Proof. (1) and (2) By Proposition 1.3.
(3) By Proposition 2.5 we have an exact sequence

0- C(id) - CU) > Z -0,



0
where ¢ = % UE m=[0 Vv]. Then by Propositions 2.3 and 2.4 rris a quasi-isomorphism.
(4) Dud of (3).

Lemma4.4. Let I 0 Ob(K'($)). ThenK(sf)(—, 1") vanishes on the acyclic complexes.
In particular, if 1" isacyclic, then I" = 0in K(sA).

Proof. Letu O K(«A)( X", 1) with X* acyclic. We will construct a homotopy h: u = 0.
Wemay assumel"=0foral n<0. Leth*=0:X° - I"%. Then(W’—-d *oh™) o d;*=0.
Thus, the following Claim enables us to make use of induction to construct a desired homotopy
h:u=0.

Claimt Let n> 0 and assume that h"~*: X" - """ satisfies (u" — d" ™" o h""") o d} ™' = 0.
Then thereexistsh" : X"** - I" such that

w=hodl+d o and (Ut —doh)o df=0.

Proof. Sinceu" — d"* o h"* factors through Z"( X") = B"(X"), and since I" is injective,
u"—d" ' o h"*factorsthrough df. Thusthereexistsh” : X™** - I"withu"— d" o h"~1 =
h" o dy. Then we have

U —df oMo df =u'to df — d o (U — d? o b Y
=u" o dy—d o
=0.

Proposition 4.5. Let s O K(s4)(1°, X') be a quasi-isomorphism with I O Ob(K*($)).
Thenshasaleftinverset 0 K(«)( X", 1) which is also a quasi-isomor phism.

Proof. Lets O C(s4)(1°, X') be aquasi-isomorphism with 1" 0 Ob(K'($)). We claim
that id, — ts O Htp(1°, 1") for somet O C(«A)( X", 1'). By Proposition 2.2 we have a
push-out diagram in C(«{)

0 - I' - C(id) - TI' =0
sl PO | f |
0. X - C - TI' - 0.

Since C(s) is acyclic, by Lemma 4.4 w O Htp(C(s), T1"). Thus by Proposition 3.1 w factors
through v and we get a push-out diagram



S

0. X - Cb - TI' -0
ti PO 1g |
0 - I' - C(id) - TI' - 0.

Composing these diagrams, we get a push-out diagram

\

0~ I' - C(id) - TI' = 0
tsl PO | df |
0 - I' - C(id) - TI' - 0.

Thus by Propositions 2.2 and 3.11 id, — ts O Htp(1*, 1), i.e, t is aleft inverse of s It
follows by Proposition 4.2 that t is a quasi-isomorphism.

Corollary 4.6. Let sOK(s4)(1°, 1'") be a quasi-isomorphismwith 1", I'”* O Ob(K*(%)).
Then sis an isomor phism.

Proof. By Proposition 4.5 s has a left inverse t [0 K(«4)(1'", 17). Then again by
Proposition 4.5t hasaleft inverses O K(«)(I", 1""). Thuss=s andsisanisomorphism.

Proposition 4.7. Let & be a subcollection of Ob(s{) such that for any X [0 Ob({) there
exists a monomorphismX — | in sf with| O £. Thenfor any X' O Ob(K'(s1)) there exists a
monomorphism X* — 1" in C(s4) with I” O Ob(K'(£)) which is a quasi-isomrphism

Proof. We may assume X" =0 foraln<0. Foreachn 0, we have an exact sequence of
the form

drn

0 - HY(X) = Z"(X) - X"*1 L 2" (X)) = 0.

We have amonomorphism u®: X% - 1°with1°0 £. Since Z 4(X") = X°, by putting 2’ ° = 1°,
we get a monomorphism W’ : Z °(X) - Z ° Thus the following provides a desired

morphismu: X* - |°.

Clam Let n> 0 and u" : Z"(X') - Z" a monomorphism. Then there exists a
commutative diagram with exact rows

mn

0 - HYX) - ZY(X) - X' o Z™YX)- 0



Il u | PO v Il
0 - H(X) - Z" - Y"!I o, Z™{X)-0
" ” l\Nn+l lUn+l

£n gn+1

0 - H(X) - z" - 1™ _ zm .o
wherev"**, w**tand u"** are monomorphismsand I"** O £.
Proof. Straightforward.

Lemma 4.8 (Dual of Lemma4.4). Let P° [0 Ob(K™(?)). Then K(«)(P", —-) vanishes on
the acyclic complexes. In particular, if P isacyclic, then P° =0in K(A).

Proposition 4.9 (Dual of Proposition 4.5). Let s [0 K(A)( X", P") be a quasi-isomorphism
with P* 0 Ob(K™(%)). Thenshasarightinverset OK(s4)( P, X*) which is a quasi-isomor phism.

Corollary 4.10 (Dual of Corollary 4.6). Let s K(«4)(P'", P’) be a quasi-isomorphism
with P*, P 0 Ob(K™(?)). Then sisan isomorphism.

Proposition 4.11 (Dual of Proposition 4.7). Let & be a subcollection of Ob(s{) such that
for any X [0 Ob(#A) there exists an epimorphismP — Xin o with P O %. Then for any X' [
Ob(K™(A)) there exists an epimorphism P - X" in C(«) with P [0 Ob(K(¥)) which isa
guasi-isomrphism.



85. Mapping cylinders

Throughout this section, s is an abelian category. Unless otherwise stated, functors are
covariant functors.

Definition 5.1. Let € be a category with an autofunctor T: € = %. A cylinderin¢ isa
sextuple (X, Y, Z, u, v, w) of X, Y, Z [0 Ob(‘€) and u 0 €(X, Y), v €(Y, Z2),wd €(Z TX). A
homomorphism of cylinders

f,g,h): (XY, Zuv,w) - X,Y,Z,u,v,w)

isatriple (f, g, h) of f 0 6(X, X), g O (Y, Y), h O €(Z, Z') which make the following
diagram commute

c
<
2

X - Y - Z - TIX

fl I g | h LT

c
<
=

x oy Loz Y o1x.

Definition 5.2. For any u [0 K(«#4)( X", Y') we have acylinder (X", Y, C(u), u, v, w) in
K(sA), wherev=10 1] : Y° - C(u)andw=[1 0] : C(u) - TX", which we call the mapping
cylinder of u.

Definition 5.3. A cylinder (X', Y, Z', u, v, w) in K(#) is called a (distinguished)
triangleif it isisomorphic to some mapping cylinder.

Proposition 5.1. The mapping cylinder of u O K(sf)( X", Y") does not depend on the
choice of a representative of uin C(s)( X", Y).

Proof. Let u,u O C(A)( X", Y')withu=u inK(#A), i.e, u—u OHtp( X", Y). Then
by Proposition 3.11 we have an isomorphism of mapping cylinders

X - Y o Cu - TX

[ [ ! [
X - Y o Ccu) - TX.

C~

Proposition 5.2. For any triangle ( X*, Y*, Z°, u, v, w) we have a long exact sequence



o HY(X) 5 H(Y) - H(Z') > H""Y(X) - -+
Proof. By Propositions 2.4 and 3.9.
Proposition 5.3. For any X" JOb(C(«A)), (X*, X", 0,1id,, 0, 0) isatriangle.
Proof. By definition, C(id,) = 01in K(s{) for al X O Ob(C(s4)).

Proposition 5.4. For any mapping cylinder ( X*, Y, C(u), u, v, w) the following hold.
Q) (Y, C(u), TX", v, w, — Tu) isisomorphic to the mapping cylinder of v.
(2) (T"{C(u)), X, Y, =T 'w, u, v) isisomorphic to the mapping cylinder of — T-'w.

Proof. (1) Put

O

T
h=H1 o0 o2 Tx Ocid) - cw),
0 0 1f

Then h, § areisomorphismsin C(s4) with § = h~*. Put

Ol og
W= u 05:C(U) - TX O Clidy),
HO 1

G=[-Tu 1 0]: TX OC(id) - TY".
Then the following diagram in C(s4) commutes

Y L Ccu - TX DC@d) - TY
| | L h |
Yy L ocuw - cv - TY,

[0 00O
wherew’ = %. OB: C(u) - C(v),u =[1 0 0] :C(v) - TY'. Thuswe get the following
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commutative diagram in K(s{)

—Tu

Y L ocuw o TX - TY
I I Lh I
Y L ocu - cv - TY,

whereh="-Tu 1 0] isanisomorphisminK(s).

(2) Put

[EEN

00
u g Y 0C(d) - C-Tw),
_1@

o
1
o

o

H

u ]

0 Z:C(-Tw) ~ Y O Clidy).

0 -18

o

«
1
golile "oy

Then h, § areisomorphismsin C(s4) with § = h~*. Put

ol
(=0 X - Y 0C(id,),
AE

. 1 00 . .
V_H 0 UH.Y DC(IdX)aC(U)

Then the following diagram in C(s4) commutes

T 'w

THCW) - X 5 Y Ocid) - cu
| | Lh I

-1,

THCW) - X S CeTw L c),

@B . - @1 0 0g ~
whereu’ = %)D: X - C(=T'w),V = H) 1 OH: C(—T'w) -~ C(u). Thuswe get the
BH

following commutative diagram in K(s{)



T 'w

THCW) - X - Y 5 )
| | th |

T-1

THCW) - X L CETw) L o),
whereh="0 1 Q] isanisomorphism in K(s).

Proposition 5.5. For any commutative square in K(s{)

u

X oY
fl l g
NG

there exists h [ K(s4)(C(u), C(u')) such that
f,g,h): (X, Y,Cu,uv,w - (X, Y",CU),u,v,w)
is a homomor phism of mapping cylinders.

Proof. Let 0 =Tu 0 1] : X - Y O C(id,). Sinceu'f —gu O Htp( X", Y"), by
Proposition 2.1 thereexists[a b] : C(id,) — Y’ suchthat u'f =gu + b. Put

00
ot
OB: Y" O C(idy - C(u) O C(idy),

1H

o r»r O O

<>
1
S8

W=[1 0 0 0]:C(u)O C(idy) - TX,
g=[g a b]:Y OC(id) - Y",

ﬁ—DTf 00 OD'C 0 C(id,) - C(u
“Ha g a bl (u) O C(idy) - C(u).

Then the following diagram in C(s4) commutes

X" o Y OC(dy) - Cu)0C(d) - TX
fl L g Lh LT

u'

x* L Yy 00~ cu) - TX",



wherev' =0 1] : Y - C'), w =[1 0] : C(u') - TX'". Thus we get the following
commutative diagram in K(s{)

c

X S Y L oc o TX

fl lg I h LTt

c
<

xSy L ocwy SoTxe,

_t . v _ ) . _DTf 0N
wherev=T0 1]: Y - C(u), w=[1 0]:C(u) - TX andh—%_a b%

Proposition 5.6. For two consecutive morphismsu: X - Y, v:Y - Z inC(«A),
take the mapping cylinders

(X', Y, Cw,ui, Dl (X, Z°,C(v),w,j, Dl (Y, Z,C(v),v, LIK
and put f = E; SE C(u) - C(w),g= ETOU 2@ C(w) - C(v). Then the following hold.

(1) The following diagramin C(s{) commutes

u

X - Y

l_.

Cuy - TX
| lv If I

x 5 z Lcw - TX

ul I lg I Tu

<
=~

Y. — Z. End C(V) d TY'
il Lj [ L i

Ti)k

CU) - C) > CV) o T(CW).
(2) (C(u), C(vu), C(v), f, g, T(i)k) isisomorphic to the mapping cylinder of f.

Proof. (1) Straightforward.
(2) Put



™ 01 0
g oo _TBC afe c(f
"2 00 10 (v) O C(idn) - C(f),
o 10 o
M 1 Tu 0
—%) 00 SCf cv)oc
Y=5 o0 o of (f) - C(v) O C(idyy).
O o 1 o
Then @ @ areisomorphismsin C(«{) with = ¢ *. Put
Ju 00O
Oy 10
§=0 D cm) - OW) O Clidy)
00 oo’ ’
d1 o
- ®01 0( |
h_H S _TUH.C(V)DC(IdTX)—»T(C(u)).

Then the following diagram in C(s4) commutes

cw L cw) S cwocidy L Tew)

[ I Lo I
o - Ccw) > Cfh - T(CW),

0

0 0 0o

whereg’ 0 OH: C(f) - T(C(u)). Thuswe get the

I
S HLG &

O
il
o0 C(w) - C(f),h = B)
O
O

1

following commutative diagram in K(s{)

W) - Cw) > CH) o T(Cw)

I I Lo I
Cw - cw) > ch - TCw),



0 0g
_ 3 of o
where @ = o OBisan isomorphism in K(s4).
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86. Triangulated categories
Throughout this section, unless otherwise stated, functors are covariant functors.

Definition 6.1. A triangulated category is an additive category X, together with (1) an
autofunctor T: 3 = I, called the trandlation, and (2) a collection of cylinders (X, Y, Z, u, v,
w), called (distinguished) triangles. Thisdatais subject to the following four axioms:

(TR1) (1) Every cylinder (X, Y, Z, u, v, w) which isisomorphic to atriangle is atriangle.
(2) Every morphismu: X - Yisembedded inatriangle (X, Y, Z, u, v, w).
(3) Thecylinder (X, X, 0, id,, 0, O) isatriangle for all X O Ob().

(TR2) A cylinder (X, Y, Z, u, v, w) isatriangle if and only if (Y, Z, TX, v, w, — Tu) isa
triangle.

(TR3) For any triangles (X, Y, Z, u, v, w), (X, Y ,Z,u, v, w) and morphismsf: X - X,
g:Y - Y withgu=uf, thereexistsh : Z - Z' such that (f, g, h) is a homomorphism of

triangles.

(TR4) (Octahedral axiom) For any two consecutive morphismsu: X - Yandv:Y - Zif
we embed u, vu and vin triangles

XY, Z,ui, D) (X zY,w,j, Dand (Y,Z X, v, LK,

respectively, then there exist morphismsf : Z° - Y, g:Y - X such that the following
diagram commute

c

| lv L f |

wu j

ul [I lg L Tu

<
=~

il L | LT

zZ - Y - X - 17

and the bottom row is atriangle.



Remark 6.1. (TR4) isequivalent to the following.

(TR4)’ For any two consecutive morphismsu : X - Yandv:Y - Z, if we embed u, vu
andv in triangles

XY, Z,ui, D) (X ZY,w,j Dand (Y,Z, X, v, LK,

respectively, then there exists acommutative diagram

T = T
-Txk! !
X - Y - 7 o TX

wu j

with the rows and the columns being triangles.

Remark 6.2. If K is a triangulated category, then the opposite category K is also a
triangul ated category with the translation T~

Proposition 6.1. Let o4 be an abelian category. Then, for * =+, — b, (+, b), (—, b) or
nothing, the following hold.

(1) K'(«) isatriangulated category.

(2) If £ isa subcollection of Ob(s4) containing zero objects and closed under finite diret
sums, then K'(¥) is a full triangulated subcategory of K'(A).

Proof. (1) See Section 5.
(2) It is obvious that K'(<) is stable under the trandation T. Since & is closed under finite

direct sums, K'() is closed under mapping cones.

Throughout the rest of this section, we work over a triangulated category K. However,
except Lemma6.12, we will not need the octahedral axiom.

Lemma6.2. If (X,Y, Z u,v,w)isatriangle, then



XY, Z—-u-v,w), (X Y,Z —-u,v,—w) and (X, Y, Z, u,—V,—W)

aretriangles.

Proof. According to (TR2), it sufficesto prove one of them isatriangle. Since we have a
commutative diagram

c
<
=

X - Y - Z - TX

| L-1 | |
X - Y - Z - TX,

XY, Z,—u,—v,w)isatriangle.

Lemma6.3. Let (X, Y,Z,u, v,w),(X,Y,Z,u,Vv,w) betriangles. Then the following
hold.

() Foranyf: X - X andh:Z - Z with T(fjlw=w'h, thereexistsg: Y — Y such that
(f, 9, h) isa homomor phism of triangles.

(2 Foranyg:Y - Y andh: Z - Z withhv=Vv'g, thereexistsf: X - X' such that (f, g,
h) is a homomorphism of triangles.

Proof. (1) Sincefo (=T W) ==T {T(f) ow) ==T YW oh)==T~'W o T~*h, and since
by (TR2)

(T-ZXY,-T-w,uv), (T7Z,X,Y,-T"W,u,V)

are triangles, (TR3) applies.
(2) Similar to (1).

Lemma6.4. If (XY, Z u,Vv,w)isatriangle, thenvu = 0,wv = 0and T(w)u =0.

Proof. According to (TR2), it suffices to show vu = 0. By (TR2) and (TR3) we have a
commutative diagram

=

c
<
=



Definition 6.2. Let o be an abelian category. An additive functor H : i — sl iscalled a
cohomological functor if, for any triangle (X, Y, Z, u, v, w), the induced sequence

S HTX) - HTY) = H(T'Z) - HT™X) o -

isexact. If H: 3 - o isacohomologica functor, weset H' =H o T"for all n 0 Z and
define an additive functor

H 9 - % X {HX)} 0y

A contravariant cohomological functor H : 3 — o is defined as a covariant cohomological
functor H: H{® - of. Inthiscase, wesetH"=H T ": 3 - A fornO Z.

Proposition 6.5. For any W [0 Ob(¥) the following hold.

(1) H(W,-) : X - ModZ isa covariant cohomological functor.

(2) H (= W) : X - ModZ isa contravariant cohomological functor.

Proof. (1) Let (X, Y, Z u, v, w) beatriangle. Then, since by Lemma6.5vu = 0, we have
H(W, v) o H(W, u) = 0. Conversely, let g O H(W, Y) with (W, v)(g) = vg = 0. Then by

Lemma 6.3 there exists f O J(W, Y) which makes the following diagram commute

w - W 0 - TW
£l l g ! i

X - Y S5 zZ S TX
Thus g = H(W, u)(f) and the sequence
HW, X) > H(W,Y) - (W, 2

isexact. It follows by (TR2) that K (W, —) isacohomological functor.
(2) Dud of (2).

Proposition 6.6. For any homomorphism of triangles
f,g,h): (XY, Zuv,w) - (X,Y,Z,u,v,w),

if two of f, g and h are isomorphisms, then the rest is also an isomor phism.



Proof. Accordingto (TR2), it isenough to deal with the case wheref, g are isomorphisms.
By Proposition 6.5 we have a commutative diagram with exact rows

HTY,D) - HTX,D - HZ,D - HY,D - HX,D
H(Tg,-) | L (T, - L H(h - L (g, - L H(E -

HTY, D) - HTXS) - HZD) - HY,D - KX,

Thus, since by five-lemmad{(h, —) is an isomorphism, it follows by Y oneda lemmathat h is
an isomorphism.

Corallary 6.7. For any morphismu O J(X, Y), thetriangle (X, Y, Z, u, v, w) iS unique up
to isomor phisms.

Proof. Let (X,Y,Z,u, vV, W) be another triangle. Then by (TR3) thereexistsh:Z - Z
which makes the following diagram commute

u \

X - Y - Z - TX

| | Loh |
X - Y - z - TX

=

c
<
=

It follows by Proposition 6.6 that h is an isomorphism.

Definition 6.3. Let (X, Y, Z u, v, w) be atriangle. Then by Corollary 6.7 Zis uniquely
determined by u up to isomorphisms. So, sometimes we call Z the mapping cone of u and
denote it by C(u).

Lemma6.8. For atriangle (X, Y, Z, u, v, w) the following are equivalent.
(1) uisasection, i.e., J(u, X) issurjective.

(2) visaretraction, i.e., X(Z, v) issurjective.

B3 w=0.

Proof. (1) O (3). We have the following commutative diagram

c
<
=

X - Y - Z - IX

| L ! |

=



(2) O (3). Dud of (1) O (3).
(3) O (1) and (2). By Proposition 6.5.

Lemma6.9. For atriangle (X, Y, Z, u, v, w) the following are equivalent.
(1) uisan isomorphism.

(2)Z=0.

Proof. (1) O (2). Since by (TR2) and (TR3) we have a commutative diagram

by Proposition 6.6 Z = 0.
(2) 0 (1). By Lemma6.8 uisasection. Also, according to (TR2), again by Lemma6.8u
iSaretraction.

Proposition 6.10. Let A bea set and {(X,, Y,, Z, u,, V,, W,)} , 5 @ family of cylinders.
Then the following hold.

(1) Assume the constant functor % — " hasaright adjoint [, , : #* — H. Then the
direct product of cylinders

(M1 X5 TT Y5 TT Z,s T1 U TTVi TTW)
isatriangleif and only if every cylinder (X,, Y,, Z,, u,, v,, w,) isatriangle.
(2) Assume the constant functor % — H" has a left adjoint 00, , : %" - K. Then the
direct sum of cylinders
CX,0v,0z,0u,0v,Odw,)

isatriangleif and only if every cylinder (X,, Y,, Z,, u,, v,, w,) isatriangle.

Proof. (1) Note first that there exists a natural isomorphism T([] W,) > [] TW, for a
family of objects{W,},, . For each u 0 A, we denote by

P Xy = X, g [1Y,-Y, and r,: Mz, - 2,

projections.



“If” part. By (TR1) we have atriangle of the form ([ X,, [1Y,, Z, 1 u,, v, w). Then, for
each u O A\, by (TR3) we have a homomorphism of triangles

Mu, v w
nx, - nvy, - 2z > TqTx,

py ! I g I hy, L Tp,

X, - Y, -z, - TX.

Thus we get a commutative diagram

[Tuy w
nx, - ny, - z > n7x

I I Lh I
[Tu, v, [Tw,

nx, - nNY, - Nz - [OTX,.

<

It suffices to show that h is an isomorphism. We have a commutative diagram of functors

A=TX) - H=AY) - KD - HETTX) - HTITY)
I I L9 h) [ |
AEMX) - AT - HENZ) » HENTX) - K TTYD
! ! ! L ¢

N#EX) - MEY) - NHEZ) - NHETX) - [HETY).

By Proposition 6.5 the top and the bottom rows are exact, so is the middle one. Thus by
five-lemmaJ{ (-, h) is an isomorphism, so ish by Y onedalemma.

“Only if” part. By (TR1) we have a family of triangles {(X,, Y,, Z,’, U,, V,", W,")}, 5 -
Since by the “if” part we have atriangle of the form

(MX YR T2 w1y TTwy),

by (TR3) we have acommutative diagram

MMu, v, [Tw,
|_| X/\ - |_| Y/\ - |_| Z/\ - |_| TX/\
I [ Lh I
Mu, 1\ [Tw;

nx, - nNnY, - Nz, - NTX,.

For each uJ A, wedenote by r : [1 Z; — Z,; the projection. Also, for each v I A, there



existsi,: Z, - []Z, such that

Thus, by setting

: .
iy r

h u
h:Z, - NZ ~NZ -2,

for each u O A\, we get acommutative diagram

Mu, Mv, Mw,
nx, - T1Y, - Nz, - T1TX

[ [ LN [
[u, Vi , [1w;
nx, - nNY, - Nz, - [OTX,.

By Proposition 6.6 [1 h, : [1Z, - []Z, isanisomorphism and, for each A O A, we get an
isomorphism of cylinders

| | L h |

(2) Dud of (1).

Corollary 6.11. Atriangle (X, Y, Z, u, v, 0) decomposesinto a direct sum

00
X, Z0OX, Z 1 Q],0).
( BH[ ], 0)

Proof. Since we have triangles (X X, 0, id,, 0, 0), (0, Z Z, 0, id,, 0), by Proposition 6.10
(X, ZO X, Z, 0 1],[1 O], 0)isatriangle. Also, since by Lemma 6.8 thereexistsh:Z - Y
with vh = id,. we have a commuitative diagram

x % ozox Loz 2 X

1 Luh I I

u Y 0

X - Y - Z - TX,



whereu’ =0 1], v’ =[1 Q]. Thus by Proposition 6.6 the assertion follows.

Lemma 6.12. For any homomor phism of triangles

fogh: (XY, Zuv,w) - (X,Y,Z,u,v,w)

with h an isomorphism, thereexistsg’ : Y — Y’ such that
O
X, yox,y, i [0 —u], wh™V)
isatriangle and (f, g’, h) is a homomor phism of triangles.

Proof. Put w=wh™v'. We have an isomorphism of cylinders

V' w' -Tu'

Y - z - TX - TY
| Lht -1 |

h™1v' -w'h Tu'

Yy - Z - TX - TY.

Since the top row is atriangle, so is the bottom one. Note that by Lemma 6.4 w' hv = T(f)ww
=0. Thusby (TR4) we have a commutative diagram

h™tv' -wh Tu'

Yy - z 4 IX o 1Y
| bw Ly |

vy 2 o™ Lo STy

]
<

h™\v | | I} L T(hiv)

=
|

-

c

-Tv

Z - X - TY - TZ
wh | I 9 II L T(wh)
y ] 0
™ - Clw - Ty - T

with the rows being triangles. Thus by Corollary 6.11 we have an isomorphism of triangles

u £

X - TYOTX - TY - TX

I Linw I I
y ) 0

™ - Clw - TY o TX,



whereu="T0 1], e=[1 0]. Notethat [ )| *isof theform'[d 6], where dn=id,,, dy=0,
6n=0, By=idy and nd + yB=id.,,. Also, 6p=—Tuand Yy=Tu. Put¢ =-Tu 64
and ¢ =[@n Tu']. Thenwe have anisomorphism of cylinders

W ' y'
y 2 x5 1mvorxe Loty
[ I Linn I
] 7}

€

and the top row isalso atriangle. Putf =—-T0¢) andg’ =-T (yn). Then-T(¢) =
Tu f,-TXy)=[g" —u]andby (TR2)

xyox,y, E{E [0 —-U],w

isatriangle. In particular, by Lemma6.4 u'f' =g’ u. Since on=id., we have

T(V)T(g") =-T(V)yn
~T)T(h™V)yn
T(hT(v)on
=T(T(V),

sothat v'g" =hv. Also, sincefy= id,,., we have

T(f)w=- 6w
=0y h
=wh.

Thus (f', g”, h) is a homomorphism of triangles, so is (f —f, g° — g, 0). Hence by
Proposition 6.5 thereexists ¢ : Y —» X suchthat f —f=u¢. Putg =g —u ¢. Then we
have an isomorphism of cylinders

_,
@
]

X - YOX - Y - TX
R ||
X - YOX - Y - TX,

- A " 0
where f =u f], ¢ =[g -u], f'=Tu f],§" =[g" —-u]and @ = @ 1@ Thus the

top row is atriangle. Since §' f=0 gu=uf Also,vg =Vv(g" —u¢)=v g =hvand
TOwW=(T(F) - T(¢) T(u))w = T(f)w=wh. Thus(f, g’, h) isahomomorphism of triangles.

10



Lemma6.13. Let (X,Y,Z u,v,w) beatriangleand ¢ : Y - Ywithu=¢u. Then[v ¢]
'Y - Z 0O Yisasection.
Proof. By (TR2) and (TR3) we have a homomorphism of triangles

—-Tu

Y - Z - TX - TY

<
=

¢!l ! I L To
—Tu

Y - Z - TX - TY.

<
=

Since by Lemma 6.4 T(u)w = 0, by Lemma 6.12 we have atriangle of the form
v
(Y,Z0O Y, Z, B LJO).

It follows by Lemma6.8that'[v ¢]: Y - Z O Yisasection.

Lemma6.14. Let(f,g,h): (X, Y,Z, u,v,w) - (X,Y,Z,u,Vv,w) beahomomorphism
of triangles. Thenfor anyg : Y — Y thefollowing are equivalent.

(1) (f, g’, h) isalso a homomor phism of triangles.

(2) Thereexists @: Y - X suchthatg =g+ u gand u’ @u =0.

(3) Thereexists : Z —» Y suchthatg =g+ yvand v ¢yv=0.

Proof. (1) O (2). Since (0, g —g, 0) isahomomorphism of triangles, v’ (g —g) = 0 and
by Proposition 6.5 thereexists@:Y — X suchthatg —g=u@. Thenuf=gu=(g+ U @u
zgu+u@=uf+uqusotha uq@=0.

(20 (1). Wehavegu=(g+u@u=gu=uf Also, sinceby Lemma6.4vu =0,V(J
=Vv(g+u@=vg=hv.

(1) = (3). Dud of (1) = (2).

Lemma 6.15. Let o be an abelian category and % (resp. ) the collection of injective
(resp. projective) objects of . Then for any quasi-isomorphismu: X - Y’ the following
hold.

(1) K(s4)(u, 1") isanisomorphismfor all |* O Ob(K*($)).

(2) K(A)(P*, u) isan isomorphismfor all P* [ Ob(K(%)).

Proof. (1) Let 1" O Ob(K*($)). Since (X', Y, C(u), u, [1Dlis atriangle in K(s4), by
Proposition 6.5 we have an exact sequence

11



= K()(C(u), 1) = K)(Y", 17) = KE@)(X, 1) = K(A)(T'Cu), 1) - -

Also, since C(u) is acyclic, by Lemma4.4 we have
K(s)(C(), 1) = K(A)(T*C(u), 1") =0.

Thus K(s4)(u, 17) isan isomorphism.
(2) Dud of (1).
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§7. Epaisse subcategories

Throughout this section, J{, 7€ and§ are triangulated categories. Unless otherwise stated,
functors are covariant functors.

Definition 7.1. An épaisse subcategory U of a triangulated category I is a full
triangulated subcategory of J{ such that if u 00 K (X, Y) factors through (an object of) U and is
embedded in atriangle (X, Y, Z u, L1Dlin % with Z O Ob(W) then X, Y O Ob(W).

Proposition 7.1. For afull triangulated subcategory AU of K, the following are equivalent.
(1) U is an épaisse subcategory of .
(2) U is closed underisomorphism classes and taking direct summands.

Proof. (1) O (2). For any isomorphismu: X — YwithY O Ob(U), since by Lemma 6.9
we have atriangle of the form (X, Y, O, u, 0, 0), X J Ob(U). Note that zero morphisms factor
through AU. Thus, for any X, Y O Ob(J{), since by Corollary 6.11 we have a triangle of the
form (T-*X, Y, X0 Y, 0, LIJ0l X O Y O Ob(U) implies T*X, Y O Ob(W).

(20 (1. Let (X, Y, Z, u, L] Dlbe atriangle in % such that Z 0 Ob(U) and u factors
through Y’ O Ob(U). Weclam X, YO Ob(W). Letu : X - Y,u” 1Y - Ywithu=u"u'.
Then by (TR3) we have a homomorphism of triangles

Thus by Lemma 6.12 we have a triangle of the form (Y',Z O Y, Z [JLIDl Thusz OY O
Ob(At), so that Y TJ Ob(U). It then follows that X O Ob(W).

Definition 7.2. For an épaisse subcategory Al of K, we denote by ®(U) the collection of
morphismsu in K such that C(u) [J Ob(w).

Lemma 7.2. Let AU be an épaisse subcategory of J{. Then for f O H (X, Y) the following
are equivalent.

(2) f factors through (an object of) °U.

(2) There exists s [ d(U) such that sf = 0.

(3) There existst [J d(°U) such that ft = 0.

Proof. (1) O (2). Letf =wforu: X - Z,v:Z - Y with Z O Ob(U). We have a



triangle (Y, C(v), TZ, s [J—Tv). Since TZ O Ob(W), s O ®(U). Thus, since by Lemma 6.4

T(9T(V) =0, we have sf =svu = 0.
(2) O (1). Letsf=0for sO ®(). Then we have atriangle (Y, Z C(s), s, [iw) and by

Proposition 6.5 there exists g : X — T*C(9) such that f = T(w)g.
1) - (3). Dud of (1) = (2).

Definition 7.3. We call asquarein J{

X - Y

fl l g

<

X - Y
ao-squareif there exists atriangle of the form

XYOX,Y, E;E[g _u], Ol

Lemma 7.3. The following hold.
(1) 0-squares are commutative.

(2) Every diagramin

X 5 Y
fl
Xl
can be completed to a 0-square.
(3) Every diagramin J{
Y
g
x 5oy

can be completed to a 0-square.
Proof. Obvious.

Lemma7.4. Let



fl l g

c

be a 0-square with
X YOX,v, ﬁjﬁ [g -ul, o

a triangle and embed u, u’ in triangles (X, Y, Z, u, v, w) and (X', Y, Z', U, V, W),
respectively. Then there exists an isomorphismh : Z = Z' such that w= wh™'v' and (f, g, h)
is a homomor phism of triangles.

Proof. Put f =[u f], §=[g —u]. Since[l 0] f =u, by (TR4) and Lemma 6.8 we
have a commutative diagram

Yox - vy - Tx L TyoTx

gl v II I Tg
—-Tu'

Y - Z - TX S TY

S
<

with the rows being triangles, where 71=[1 0] and i ="[0 1]. Thuswe get a homomorphism
of triangles

c
<
2

X - Y - Z - IX

fl g | LTt

c
hS}
<

X - Y 4 Z - TIX.

Also, by (TR3) thereexistsh: Z - Z' which makes the following diagram commute

u' @

"
X Loy L oz 5 oTX



I [ L h I
X S vy L oz L 1.

c
<

Hence (f, g, h) is a homomorphism of triangles. By Proposition 6.6 h is an isomorphism, so
that w=we=wh'v'.

Lemma 7.5. Every commutative square

Uy

x1 - Y1
fl l g
Xz - Yz

can be embedded in a commutative diagram

up vi w;
X - Y, - Cu) - TX
fl I g 1 I Tf
u; Va W,

X, - Y, - Cu) - TX
al I b ! | Ta
ch - Co - Z2 - TC)
il L ! Lo

Tuy Tvy

—Tw,
X, - TY, - TC(u) - T,
with the rows and the columns except the right end being triangles.

Proof. Put f =u, ], §=[g —u]and § =[g —u]. Let

X, - Y,
fl Il g
5 - Y

be a 0-square with (X,, Y, O X,, Y,’, f, §, o) atriangle. Since § f = 0, by Proposition 6.5
thereexistsh: Y, - Y,suchthat § =hg'. Embedf, g’ intriangles (X, X,, C(f), f, a, i) and
(Y, Y,), C(@), g, b, ]), respectively. Then, since (X, Y, O X,, Y., f, - J,-wisa
triangle, it follows by Lemma 7.4 that there exists an isomorphism o: C(f) = C(g') such that
—w=i0"" and (u, u,, o) isahomomorphism of triangles. Thus by (TR4) we have a



commutative diagram

-1

U g’ b’ o

X - Y, = Y, - Y, - C@) - C(f

fl I d l g I h I a I ao
uj h b

X - Y - Y, =Y, - Cg = Cog

al I o l b l c I B I B
o a B

ch - Cg) - Clg - Ch = Ch = C(h

il Ly 1 Lk I T(b)k | T(o~b)k
Tuy Tg' To' To™t

TXl — TYl = TYl — TY21 — TC(g1) — TC(f)

with the columns being triangles. Next, embed f, g’ in triangles (X, Y;, C(u,), u,, v;, w,) and
(X, Y, C(u,), u’, v/, w,"), respectively. Then by Lemma 7.4 there exists an isomorphism 1
: C(u) 5 C(u,’) suchthat w=w, 7', and (f, g, 1) is ahomomorphism of triangles. Thus
by (TR4) we have a commutative diagram

U Vi Wy

X, N Y, - Cu) - TX

fl l g U I Tf
u; Va W;

X, - Y, - Cu)) - TX

I L g Ly I
u; \7] W,

X, 5 Y, - C(u) = X,

uy | | I 0 IoTuy
h c k
Y, - Y, - ch - T,
VAR L, II T YA
5 T(vz)k
Cu,) - C{u) - C(h) M- TC(u,)
[ | II LTt

T(r~ )k

T ) 2
Cu) - Cu) - Ch) - Tou)
with the rows being triangles. Thus, since—io™ '’ = w=w,T"',’, we get a commutative

diagram

X, o Y, o CU) o TX

fl l g Loyt I Tf



u, V.

X oY, o oCcWw o T
al I b 15 | Ta
ao B T(r ')k
ch - Clg - Ch @D- TC()
il L I T(o7v,))k LT

Tuy Tvy —Tw.

X, - TY, - TCu) - T,
with the rows and the columns except the right end being triangles.

Definition 7.4. A multiplicative system in a category € is a collection S of morphismsin
“% which satisfies the following axioms:

(FR1) (1) id, O Sfor every X [J Ob(6).
(2) For st O S if stisdefined, thenst [0 S

(FR2) (1) Every diagram in 6

S

X - Y
fl with sO S
X1

can be completed to a commutative square

X - Y
fl I g withstOS
X S
(2) Every diagram in €
Y

Il g withtdS
X S Y

can be completed to a commutative square

X - Y



fl I g withstOS

t

X - Y
(FR3) For f, g 0 (X, Y) the following are equival ent.

(1) There existss [ Ssuch that sf = sg.
(2) There existst [0 Ssuch that ft = gt.

Definition 7.5. A multiplicative system Sin a category 6 is called saturated if it satisfies
the following axiom:

(FRO) For amorphismsin %, if there exist f, g such that sf, gs 0 S thens O S,

Definition 7.6. A multiplicative system Sin a triangulated category J{ is said to be
compatible with the triangulation if it satisfies the following axioms:

(FR4) For amorphismuin ¥, u Sifandonly if Tu O S,

(FR5) For triangles (X, Y, Z, u, v,w), (X', Y, Z,u,V,w) and morphismsf : X - X', g:
Y - Y inSwithgu = u'f, thereexistsh: Z -~ Z' in Ssuch that (f, g, h) is ahomomorphism
of triangles.

Proposition 7.6. Let U be an épaisse subcategory of K. Then ®(°U) is a saturated
multiplicative systemin 3 compatible with the triangulation.

Proof. (FRO) (1) Let f: X - X s:X > Y, g:Y - Y withsf,gsd®(U). By (TR3) we
have a commutative diagram

%]

X 5 Y 4 Cg - TX

| L g ! |

X - Y 5 C@g) - TX.

Also, by (TR4) we have a commutative diagram

X - X 4Lochm - TX

«\

X - Y o Cs) - TX



fl II ! LTt

1]

X S5 Y 4 Ccs - TX
v l II I Tv

ch - C) - C - TC@H

with the rows being triangles. Note that w = T(V)u factors through C(gs) [0 Ob(W), and that
C(w) = TC(sf) O Ob(U). Thus C(s) O Ob(UW).

(FR1) (1) C(id,) =0 O Ob(w) for al X O Ob(X).

(2QLet t:X - Y,s:Y > Zbein ®(U). By (TR4) we have atriangle of the form (C(t),
C(st), C(s), LILwW). Since C(s), TC(t) O Ob(AW), TC(st) = C(w) O Ob(AW).

(FR2) By Lemmas 7.3 and 7.4.

(FR3) By Lemma7.2.

(FR4) C(T"(9) = T"C(9) O Ob(U) foral s ®(U) andn O Z.

(FR5) By Lemma7.5.

Proposition 7.7. Let o be an abelian category and H : ¥ — s{ a cohomological functor.
Let AU be the full subcategory of K consisting of X [0 Ob(¥) with H(X) = 0 for all n O Z.
Then the following hold.

(1) U is an épaisse subcategory of .

(2) For amorphismsin ¥, s 0 ®(U) if and only if H'(s) isan isomorphismfor all n [ Z.

Proof. (1) It isobviousthat AU isstableunder T. Let u X (X, Y). Then for eachn 0 Z,
we have an exact sequence

H(X) - H(Y) - H(C(W) - H"(X) - H™X(Y).

Thus, if X, Y O Ob(), then C(u) O Ob(U). Thus A isafull triangulated subcategory of K.
Assume next that u factors through an object of U and that C(u) [0 Ob(U). Then, since H"(u)
=0foral nOZ,itfollowsthat X, Y [0 Ob(lW).

(2) “If” part. For any n[J Z, since we have an exact sequence

H'(X) = H'(Y) - HY(C(W) - H"(X) = H""(Y),

we have H"(C(u)).
“Only if” part. For any n [1Z, since we have an exact sequence

H™(C(W) - H'(X) - H'(Y) - HY(C(u)),

H"(s) is an isomorphism.



Corollary 7.8. Each X O Ob(X) defines épaisse subcategories of K

[ Ker @(x, o™, ] Ker (3= X) o T.
n0Z n0Z

Proof. By Proposition 6.5 H(X, —), H(—, X) are cohomological functors. Thus Proposition
7.7 applies.

Corollary 7.9. Let X O Ob(J) be a nonzero object and assume J{ has no proper épaisse
subcategory U such that X [J Ob(°U). Then the following hold.

(1) For any nonzero object Y [0 Ob(J{) there exists n [0 Z such that X(X, T"Y) 0.

(2) For any nonzero object Y [0 Ob(J{) there exists n [0 Z such that H(T™"Y, X) 0.

Proof. (1) Suppose to the contrary that J{(X, TY) =0 for al n 0 Z. Then, sinceJ{(Y,Y)
0, and since X(T- "X, Y) = 0 for al n O Z, by Corollary 7.8 we have a proper épaisse
subcategory

w= () Ker (= Y)oT™
n0Z
such that X [1 Ob(°U), a contradiction.
(2) Similar to (1).

Definition 7.7. Let 3¢ be another triangulated category. A d-functor F=(F, 8) : I - ¥ is
apair of an additive functor F : 3% — ¥ and an isomorphism of functors 8: FT = TF such
that, for any triangle (X, Y, Z, u, v, w) inJ{, (FX, FY, FZ, Fu, Fv, 6, - Fw) isatrianglein ¥.

A contravariant 9-functor F : 3 — 7€ isdefined as a covariant 0-functor F : H* - .

Proposition 7.10. (1) Theidentity functor 1, = (1,, id) isa 0-functor.

(2) Thetrandations T = (T, —id_.), T'=(T", - id, ): ¥ — X areo-functors

() LetF, G:H - F befunctorsand o: F - G anisomorphism. Then,if F=(F, f)isa
d-functor, s0isG = (G, Tao 80 g, ). Conversely, if G = (G, n) isa o-functor, soisF = (F,
Totonoo).

(4) For any two consecutive d-functorsF = (F, ) : K - #,G=(G, n) : # - 4, the
composite GF = (GF, .- G6) : i - 9 isao-functor.

(5) If F=(F, 9 isao-functor, then T'"F = (T'F, (- 1)"T"0) and FT" = (FT", (- 1)" 6_,,) are
o-functorsfor all n 0 Z.

(6) Let o4, B be abelian categoriesand F : ¢ — 9B an additive functor. Then the
extended functor F : K(4) —» K(9) isa d-functor.



Proof. Straightforward.

Definition 7.8. Let F =(F, ), G=(G, ) : ¥ - 7 be o-functors. A homomorphism of
o-functors ¢ : (F, 6) - (G, n) isahomomorphism of functors { : F -~ Gsuchthat o {; =
T{ - 6. We denote by Hom (F, G) the collection of homomorphisms of o-functors ¢ : (F, 6)

- (G, n).

Proposition 7.11. (1) If F=(F, 6) : 3 - ¥ isa o-functor, thenid. [0 Hom (F, F) and 6
O Hom (FT, TF).

2 IfF,G: ¥ - ¥ ared-functors, then £ — { O Hom (F, G) for all &, { [0 Hom (F, G).

(3 IfF, G H:H - 3 areo-functors, then £ - {0 Hom (F, H) for all {0 Hom (F, G)
and ¢ O Hom (G, H).

@IFG:H - #HandH : % - G ared-functors, thenH{ [0 Hom (HF, HG) for all { O
Hom (F, G).

B)IfH: % - HandF,G: I - % are d-functors, then ¢,, I Hom (FH, GH) for all { O
Hom (F, G).

Proof. Straightforward.

Proposition 7.12. Let F: KX - % bead-functor and AU = Ker F the full subcategory of I
consisting of X [ Ob(J{) with FX=0. Then the following hold.

(1) U is an épaisse subcategory of i

(2) For amorphismsin ¥, s [0 ®(U) if and only if F(s) is an isomor phism.

Proof. (1) It is obviousthat U is stable under T. Let (X, Y, Z, u, LID/be atrianglein ¥ .
Since we have a triangle in ¥ of the form (FX, FY, FZ, F(u), L[]0l if FX = FY = 0 then by
Lemma 6.9 FZ = 0. Thus is a full triangulated subcategory of 7. Assume next that u
factors through an object of A and that FZ = 0. Then, since F(u) = 0, and since by Lemma
6.9 F(u) isan isomorphism, it followsthat FX =FY = 0.

(2) By Lemma6.9.

Proposition 7.13. Let  be an abelian category and & a subcollection of Ob(s{)
containing zero objects and closed under finite direct sums. Let* =+, — b or nothing and let
F=(F,0):C(¥) - ¥ bean additive functor together with an isomorphism of functors 0 :
FT 5 TF. Assume (FX', FY", FC(u), Fu, Fv, 6, o Fw) isatriangle in J for all mapping
cylinder (X°, Y*, C(u), u, v, w) in C'(¥). Then F factors through K" (<) and the induced
functor K'(¥) - I isaa-functor.

Proof. Let X, Y 0O Ob(C (%)) and u O Htp( X", Y*). We have only to show Fu = 0.

10



Let (X, Y, C(u), u, v, w) the mapping cylinder of u, wherev="0 1] andw=[1 0]. Then
by Proposition 3.1 v isasection, soisFv. Thus, it follows by Lemma 6.8 that Fu= 0.
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88. Quotient categories

Throughout this section, € is a category and Sis a multiplicative system in €. Unless
otherwise stated, functors are covariant functors.

Definition 8.1. For amorphismf : X - Y, we set source(f) = X and sink(f) =Y.
Definition 8.2. For each X [0 Ob(‘¢), we have a category S* such that

Ob(SY) ={s 0 S| source(s) = X},
(s, §) = {f 0 G(Snk(9, Sink(s)) | s =fs} fors s 0 Ob(SY,

and acategory S, such that

Ob(S) ={t U S| sink(t) = X},
S(t, t') = {f U6 (source(t), source(t’)) | t=t'f} fort, ' 1 Ob(S).

Lemma 8.1. For any X [J Ob(%), S* satisfies the following axioms:

(LY Forany f, 0 S (s s), f,0S(ss)), thereexist s’ 0 S‘and g, 0 S(s/, "), 9, U
S¢(s,, s") such that g,f, = g.f,.

(L2) Forany f,, f, 0 S(s §), thereexist s" 0 S‘and g 0 S(s, ') such that df; = df..
(L3') S*hasaninitial object id,.

Proof. (L) Lets: X - VY, : X -Y,,s" : X Y,. Thens’ =fsfori=1,2. By
(FR2) thereexisth, : Y; - Zsuchthat h;s’ =h,s,’ andh, OS Since (h,f)s=h;s’ =hs, =
(hf,)swith s O § by (FR3) there existst : Z — Y” in Ssuch that (th))f, = t(h,f,) = t(hf,) =
(th)f,. Puts’ =th;s’ =ths,’. Thenby (FR1)s’ 0 Ob(S)andth O S(s’,s")fori=1,2

(L2) Lets: X - Y,s : X - Y. Sincefis=s =f,5 by (FR3) thereexistsg: Y - ZinS
such that of, = df,. Puts’ =gs. Thenby (FR1) s’ OOb(S)and g S (s, s").

(L3") By (FR1) id, 0 Ob(S").

Corollary 8.2. Let X 0 Ob(¢) ands, s, -+, S, J Ob(SY). Then there existss' [J Ob(S")
such that S(s,s) @ forall 1<i<n.

Proof. By (L1) and (L3).



Definition 8.3. For X, Y [0 Ob(‘6), we have a covariant functor
B(X, ) :S - (Sety),
where € (X, s) = 6(X, sink(9)) for s 0 Ob(S"), and a contravariant functor
€= Y): S - (Sets),
where €(t, Y) = 6(source(t), Y) for t O Ob(S).
Lemma8.3. Let X, Y O Ob(6). Definearelation~ on the collection
{(f,9) |sOOb(S), f O €(X, sink(s))}

asfollows: (f, s,) ~ (f,, s,) if and only if there exist h, O S'(s, ), h, O S(s, §') such that
(hf, s)=(hf,s). Then ~ isan equivalence relation and we have

lim 6(X,-) ={(f, s) | 0 OB(S), f 0 6(X, sink(9)}/~.

SY

Proof. It only remains to check the trnsitivity. Let (f, s) ~ (f, s), (f, ) ~ (fa S)).
Then, there exist g, 0 S¥(s,, S'), 9, O Ss,, S,') such that g,f, = g,f,, and there exist g, O
S(s, '), 9, 0S(s,, s’) such that g,'f, = gf,. Thus, since by (L1) thereexisth, 0 S(s/, "),
h, 0 S(s,’, s") such that h,g, = h,g,, we have h,g,f, = h,g,f, = h,g,’f, = hg.f,, so that (f,, s)
~ (f; ).

Definition 8.4. For X, Y J Ob(‘6), we denote by [(f, 9] the equivalence class of (f, s) with
s O Ob(S), f O %6(X, sink(9).

Lemma8.4. For any X, Y, Z [ Ob(S “6) we have a well-defined mapping

lim €(X, =) x lim (Y, ) — lim (X, -)

s’ s? s?

which is defined as follows: with each pair ([(f, S)], [(g, t)]), since by (FR2) thereexists I S
with source(s') = sink(t), g 0O %(sink(s), sink(s')) such that g's = s'g, we associate the
equivalence class[(g'f, S't)].

Proof. Straightforward.



Definition 8.5. We define a category S ¢, called the quotient category of 6, as follows:
(1) Ob(S *6) = Ob(); (2) for X, Y I Ob(‘), the morphism set is given by

S G(X,Y) = Iiﬂm G (X -);

SY

(3) for X, Y, Z 0 Ob(S *6), the law of composition is given by
SH6(X, V) x STE(Y, Z) — S6(X 2), (I(F, 9)], [(9, D]) = [('F, SD)],

where [(g', S')] O S *6(sink(s), sink(t)) with g's= s'g; and (4) the identity of X [ Ob(S %)
is given by the equivalence class [(id,, id,)].

Definition 8.6. We have afunctor Q : ¢ — S, called the canonical functor, such that

Q(X) =X for X1 Ob(6),
Q(f) =[(f, id,)] for f€(X,Y).

Lemma8.5. Q: %€ - S 6 takesterminal objectsto terminal objects.

Proof. Let Y [J Ob(“€) be aterminal object. Denote by &, the unique element of €(X, Y)
for X O Ob(6). Then [(f, s)] = [(&, 1, &,9)] = [(é,, id))] for al (f, s) withs [0 €(Y, Z) n Sand f
0 6(X, 2.

Proposition 8.6. For f, g 06€(X, Y) the following are equivalent.
(1) Q(f) = X9).

(2) There exists s 0 Ob(S") such that sf = sg.

(3) Thereexistst [1 Ob(S,) such that ft = gt.

Proof. (1) O (2). Notethat S(id,, s = {s} for all s 0 Ob(S). Thus by definition there
exists s [ Ob(S") such that (sf, s) = (sg, 9).

(2) O (1). WehaveQ(f) =[(f, id)] = [(sf, s)] =[(sg, 8)] = [(9, id))] = Q).

(2) = (3). By (FR3).

Proposition 8.7. The following hold.
(1) Q(9 isanisomorphismfor all sO S
(2) For any X, Y Ob(S *6) we have



SHE(X, ) ={Q(97'Q(N [s T Ob(S)), f O 6(X, sink(s))}
={Q@Q( " [t D Ob(S), g 0 6(source(t), )}

Proof. (1) Let s Swith source(s) = X, sink(s) = Y. Then by definition Q(s) o [(id,, 9] =
[(idy, idy]. Also, [(idy, $)] o Q) = [(s 9)] =[(id, id)].

(2) For any (f, s) with s 0 Ob(S") and f 00 6(X, sink(s)), since Q(s) » [(f, s)] = Q(f), by the
part (1) we get [(f, 5)] = Q(s) 'Q(f). Also, since by (FR2) there exist t 0 Ob(S), g U
@ (source(t), Y) such that ft = sg, Q(f)Q(t) = Q(9Q(g) and by the part (1) we get Q(g)Q(t) ' =
Q(9'Q().

Proposition 8.8. For f 06 (X, Y) the following are equivalent.
(1) Q(f) isan isomorphism.
(2) There exist morphisms g, hin€ withgf, fh O S,

Proof. (1) O (2). Thereexist s 0 Swith source(s) = X, g O (Y, sink(9) such that Q(f)~*
= Q(s)'Q(g). Since Q(s) = QAN = Q(df), [(s, id)] = [(gf, idy)] and there exists s [
Ob(S") suchthat s's = s gf. Then by (FR2) (s g)f 0S Dualy, there exist t 0 Swith sink(t) =
Y, h O %(source(t), X) andt’ [0 Ob(S,) such that f(ht') O S

(2) O (1). Since Q9)Q(f = Q(df) has aleft inverse, so does Q(f). Also, since Q(f)Q(h) =
Q(fh) has aright inverse, so does Q(f).

Corollary 8.9. Assume Sissaturated. Then for any f [16(X, Y) the following hold.
(1) Q(f) isanisomorphismif and only if f 0 S,

(2) If there exists s Ob(S") withsf 0 S thenf O S

(3) Ifthereexistst O Ob(S) withft O S thenf O S

Proof. (1) By Propositions 8.7(1) and 8.8.
(2) By Proposition 8.8 Q(f) = Q(9'Q(sf) is an isomorphism, thus by the part (1) f O S,
(3) By Proposition 8.8 Q(f) = Q(ft)Q(t)"* is an isomorphism, thus by the part (1) f 0 S

Proposition 8.10. Let % be another category and F : € — % a functor such that F(s) is
an isomorphismfor all s00 S, Then there exists a unique functor F' : S*¢ — % such that F

= QF'.
Proof. By Proposition 8.7(2).

Proposition 8.11. Let % be another category and F, G : S'6 - % functors. Then we
have a bijective correspondence



Hom(F, G) = Hom(FQ, GQ), T+ T,
where Hom(—, —) denotes the collection of homomor phisms of functors.

Proof. Since Ob(S *6) = Ob(‘¢), we may consider Hom(F, G) as a subcollection of
Hom(FQ, GQ). Let 0 0 Hom(FQ, GQ). For any ¢@= Q(s) *Q(f) O S *6(X, Y) with sink(s) =
Z, since we have a commutative diagramin &

FQf FQs
FOX - FQZ B0 FQY
Oy ! ! (%4 l Oy

GQf GQs
GOX M- GQz 8010 GQY,
0,0 Fo=Ggo a,. Thuso OHom(F, G).

Lemma 8.12 (Dual of Lemma 8.1). For any X [0 Ob(€), S, satisfies the following
axioms:

(L1 Forany g, 0 S,(s’, S"), 9, 0 S(s,, '), thereexist s S and f, 0 S(s s,'), f, O
S(s, s,) such that g,f, = g,f,.

(L2 Forany g,, 9, 0 S(S, s ), thereexists S, and f O S (s, s') such that g,f = g,f.
(L3')° S hasaterminal object id,.

Corollary 8.13 (Dual of Corollary 8.2). Let X J Ob(€¢) and t,, t,, ---, t T Ob(S)). Then
thereexistst’ 0 Ob(S)) suchthat S(t',t) @ forall 1<i<n.

Lemma 8.14 (Dual of Lemma 8.3). Let X, Y [ Ob(¢). Define a relation ~ on the
collection

{(t 9) [t TO(S, g I 6(source(t), Y)}

asfollows: (t;, g,) ~ (t,, g,) if and only if there exist h; O S(t’, t)), h, O S(t’, t,) such that
(t', g,h) =(t', g,h,). Then ~ isan equivalence relation and we have

Ii%m €C(— Y)={(t0) [ tDOL(S), g1 €(source(t), Y)}/~.
Sy



Definition 8.7. For X, Y 0 Ob(‘6), we denote also by [(t, g)] the equivalence class of (t, g)
witht 0 Ob(S)), g U “6(source(t), Y).

Proposition 8.15. For any X, Y [0 Ob(“¢) we have a bijection

6=6,,: lim€X ) > lim%(-Y)
- 5

which associates with each [(f, 9] the equivalence class of (t, g) such that ft = sg.

Proof. Let (f,, s,), (f, ) with [(f,, )] = [(f, S)], and let (t,, @), (t, &,) withfit, = sg, T,
=sg,. Weclam[(t, g,)] =[(t,, g,)]. By definition, there exist h, 0 S'(s,, s'), h, 0 S(s,, S)
such that (hf,, ) = (h,f,, s'). Puth’ = hf, = hf,. Then by (FR2) thereexistt' 0 Ob(S,) and
g 0O “%(source(t’), Y) suchthat h't' =sg. Again by (FR2), there exist j [ Swith sink(j) =
source(t’) and j, O “6(source(j), source(t,)) such that tj, = t'j. Sincesgj=ht]j=hft] =
hftj,=hs,gj, =s9,,, by (FR3) thereexistsj’ O Ssuch that g'jj’ = g,j,j’. Note aso that by
(FRD) t,j,j =tjj’ DOB(S). Thus[(t, g,)] = [(t, g)]. Similarly, [(t, g,)] =[(t, g)], so that
[(t,, 9] = [(t,, 9))]. Thus 6, , iswell-defined. Dually, we have awell-defined mapping

n="nygy: IMme(=Y) - lim€(X, -)
S« s

which associates with each [(t, g)] the equivalence class of (f, 9 such that ft = sg. It is
obviousthat ),  istheinverse of 6, ..

Remark 8.1. For [(f, 9] O lim “€(X, —) and [(t, g)] O lim (-, Y) the following are
sY Sx
equivalent.

(1) & (I(f, 9]) = [(t 9.
(2 Q9 QM) = AYQM ™.

Remark 8.2. Let X, Y, Z [ Ob(6). Define alaw of composition

lim€(—Y) x lim€(— 2 - lim<%(- 2
S« S S«

as follows: with each pair ([(s, f)], [(t, 9)]), sSince by (FR2) there exist t' O Swith sink(t’) =
source(s) and f' [0 G(source(t’), source(t)) such that tf' = ft’, we associate the equivaence
class [(st', gf')]. Then the isomorphism in Proposition 8.15 is compatible with the law of
composition.



Lemma 8.16 (Dual of Lemma8.5). Q:% — S '€ takesinitial objectsto initial objects.

Proposition 8.17. Let % be a full subcategory of 6. Assume S n % isa multiplicative
systemin % and one of the following conditions is satisfied:

(1) For any s Ob(S") with Y 0 Ob(%), there exists f 0 €(sink(s), Y') with Y’ I Ob(%)
suchthat fs0 S

(2) For any t O Ob(S)) with X O Ob(%), there exists g [1 € (X’, source(t)) with X' T Ob(®)
suchthattg O S.

Then the canonical functor (Sn %) '% - S 6 isfully faithful, so that (S n %) '% can

be considered as a fullsubcategory of S 6.
Proof. Straightforward.

Proposition 8.18. Assume % is an additive category. Then S 6 is an additive category
and Q: € - S 6 isan addtive functor.

Proof. We divide the proof into several steps.

Claim1: Q: 6 - S takes zero objects to zero objects.

Proof. By Lemmas 8.5 and 8.16.

Let X, Y O Ob(S “6¢). We now define an addition on S “€¢(X, Y). For each pair of

morphisms [(f,, )], [(f,, S,)] O S™€(X, Y), since by Corollary 8.2 there exist s [1 Ob(S’) and
g, 0 S(s, ), 9,0 S(s, s), we can define the sum of them as follows

[(f, s)] + [(f )] = [(@,f, + gf,, S)].
Claim 2: The addition above is well-defined.

Proof. Let [(f, s)] = [(f;, s/)] and [(f,, S)] = [(f,’, S,)]. According to Corollary 8.2, we
may assumes, =s, =sand s’ =s, =s. Weclam[(f, +1,, 9] =[(f, +f,,S)]. By (L1) and
(L3) thereexistt 0 Ob(S) and g, 0 S'(s,t), g’ O S(s,t) such that gf = g’'f’ fori=1, 2,
then by (L1) there exist t' 0 Ob(S’) and h, O S'(t,, t'), h, O S'(t,, t') such that h,g, = h,g,, and
then by (L2) thereexist t” 0 Ob(S") andj O S'(t', t") such that jh,g,’ = jh,g,’. Thuswe get

[(f, + £, 9] = [(hgy(f; +1,), t")]
=[(jh,gf; +jhgf,, t7)]
=[(jh,g,f; +jh,af,, t7)]



=[(hg/f, +jhgf,, t")]
=[(hg/f, +jhg/f,, t")]
=[(hg/ (" + ), )]

= [ +f,, s)].

Claim 3: S %6(X, Y) is an additive group with 0 = [(0, id,)] and Q : ¢ - S '€ induces a
homomorphism of additive groupsé(X,Y) - S'6(X, V).

Proof. By definition, [(f, id,)] + [(g, id)] = [(f + g, id,)] for all f, g O 6(X, Y). Next, for
any [(f, 9] O S*6(X, Y), since[(0, id,)] = [(O, s)], we have

[(f, 9] + [0, id)] = [(f, 5)] +[(0, 9)]
=[(f, s)],

so that [(0, id,)] isthe zero element of S ™6 (X, Y). Also, for any [(f, s)] T S 6(X, Y), since

[(f, )] + [, 9] =[(0,9)]
=[(0,id)],

we have — [(f! S)] = [(_f1 S)]
Claim4: The law of composition is bilinear.
Proof. Straightforward.

Remark 8.3. Assume 6 isan additive category. Let X, Y [0 Ob(€). Define an addition on

lim (-, Y) as follows: for each pair of [(t,, 9,)], [(t,, g,)] T lim €(—, Y), since by Corollary
Sx Sx
8.13thereexistt' 0 Ob(S) and f, 0 S(t', t,), f,0 S(t',t), weset

[(t, 9] + [(t, @] = [(F, 9uf; + gl
Then the isomorphism in Proposition 8.15 is compatible with the addtion.

Proposition 8.19. Assume 6 is an additive category. Then for f 0 6(X, Y) the following
are equivalent.

(1) Q) =0.

(2) There exists s [0 Ob(S" such that sf = 0.

(3) Thereexistst [J Ob(S,) such that ft = 0.



Proof. By Proposition 8.6.

Corollary 8.20. Assume 6 is an additive category. Then for X [1 Ob(%6) the following are
equivalent.

(1) Q(X) =0.

(2) idy = Q(idy) =0.

(3) S* contains a zero morphism.

(4) S, contains a zero morphism.

Proposition 8.21. Assume % is an additive category. Let % be another additive category
and F: € - 9 an additive functor such that F(s) isan isomorphismfor all s[(1 S Then there
exists a unique additive functor F’ : S*6 — % such that F = QF’.

Proof. By Proposition 8.10 there exists a unique functor F' : S ¢ — % such that F =
QF’. It follows by the definition of addition in S '€ that F’ is additive.



89. Quotient categories of triangulated categories

Throughout this section, ¥ is a triangulated category, 9 is an épaisse subcategory of I
and S = ®(U) isthe collection of morphismsu in J{ with C(u) O AU. Unless otherwise stated,
functors are covariant functors.

Lemma 9.1. Sisa saturated multiplicative systemin K compatible with the triangulation.
Proof. By Proposition 7.6.

Definition 9.1. We denote by 3/ the quotient category S '} and by Q : % — J{/U the
canonical functor.

Lemma9.2. K/ isan additive category and Q: I — H/U is an additive functor.
Proof. By Proposition 8.18.

Proposition 9.3. (1) For a morphismuin X, Q(u) isanisomorphismifand only ifuJ S
(2) For amorphismu in X, Q(u) = 0 if and only if u factors through (an object of) L.
() U =Ker Q, i.e., U consists of the objects X [1 Ob(¥) with QX = 0.

Proof. (1) By Proposition 7.6 and Corollary 8.9(1).

“Only if” part of (2). Let X = source(u). By Proposition 8.19 there exist t [ Ob(S,) such
that ut = 0. Then by Proposition 6.5 u factors through C(t) O Ob(U).

(3) Let X J Ob(U) and O, : 0 — Xthe zero morphism. Since C(0,) = X [ Ob(w), 0, O
Ob(S,). Thus by Proposition 8.7(1) Q(0,) is an isomorphism and 0 = QX. Conversely, let X
O Ob(J) with QX = 0. Since Q(id,) = 0, by the “only if” part of (1) id, factors through (an
object of) U. Also, by (TR1) C(id,) =0 0 Ob(U). Thus X I Ob(W).

“If” part of (2). Assume u factors through Z [0 Ob(°U). Then by the part (2) Q(u) factors
through QZ = 0, so that Q(u) = 0.

Proposition 9.4. For any u O J/U(X, Y) the following are equivalent.
(1) uisan isomorphism.

(2) u= Q) 'QYf) withs, fO S

(3) u= QAYQM) " withg, tO S

Proof. By Lemma9.1 and Corollary 8.9.

Lemma 9.5. Thetrndation T : H — ¥ induces an autofunctor X /U — JH/U, which we



denotealso by T.
Proof. By (FR4) and Proposition 8.10.

Remark 9.1. The canonical functor Q : % — J{/°U commutes with the translation T, so
that Q takes cylindersinto cylinders.

Lemma9.6. Let (X, Y, Z u, [1Dland (X', Y, Z, u, [1Jbetrianglesin % and let f O
H(X, X'), g OHY, Y) with Q(g)Q(u) = Q(u)Q(f). Then there exists ¢ O I /U(Z, Z') which
makes the following diagram in /U commute

Q(u)
QX M- QY M- QZ - TOX

Qn | L Qo) Lo I TQf)
Q(u")
QX - QY M- QZ [ - TQX.

Proof. Since Q(u'f — gu) = 0, by Proposition 9.3(2) u'f — gu factors through some W [
Ob(W). LetvOIHX, W), w OX(W,Y)withuf—gu=wv. Setd=Tu v]: X > YOW, g
=[gwW:YOW- Yands=[10:YOW - Y. Thensi =uand gi =uf. Thusby
(TR3) we get homomorphisms of trianglesin K

fl L g lh L Tf

X - Y - Z 5 TX.

Furthermore, by (FR5) we may assumet [1 S Thus, since by Proposition 9.3(3) Q() = id,
and Q(9) = Q(g), it follows that = Q(h)Q(t) *is a desired morphism.

Lemma9.7. Let

Q(u)
QX M- QY

o ]

Q(u")
QX - QY

be a commutative diagramin J/U. Let = Q(s) 'Q(f) and X’ = sink(s). Then there exist u”



OFHX", YY), tOH(Y,Y") n Sand g OF(Y, Y ) such that
(D u's=tu,
(2) = Q) 'Qg), and
(3) QAQ) = QU")Q(H).

Proof. Let /= Q(t')"'Q(g’) with Z=sink(t"). By (FR2) there exist v 0 (X", Z') and S
OJH(Y,Z) n Ssuchthat vs= su’ . Then again by (FR2) thereexist " 0K (Z', Y') and t”
OH(Z,Y')n Ssuchthatt’'t =s’s. Putt=t"t',g=t"g  andu” =s’v. Thenby (FR1) t
Sand we have

(1) tw=t"tu
=s'su
=s’vs
=u S,

2 Q) "Q(g) = Q") Q" g')
= Q) Q") Q"))
= Q') Q(g)
=y

and

3) Q(9)Q(u) = Q(t" )9 )Q(u)
= Q")Q(t) YQ(u)
= Q")Q(t') Q(U')¢e
= Q(t")Q(t")Q(U)Q(9'Q(f)
= Q(t")Q(t)Q(s)"QW)Q(M
=Q(t")Q(t")'QXs" )V
= QU™ )Q(f).

Definition 9.2. A cylinder (QX', QY', QZ', A, i, v) in I/ is called a triangle if there
exists atriangle (X, Y, Z, u, v, w) in 3 such that (QX', QY’, QZ', A, u, V) isisomorphic to
(QX, QY, QZ, Qu, Qv, Qw).

Proposition 9.8. K/ isatriangulated category and Q : % — K /U isa d-functor.

Proof. It remainsto check that K /U satisfies the axioms (TR1)-(TR4).

(TR1) Let A O H/UCX, Y). Let A =Q(9 'Q(u) with sink(u) =Y and embed uin atriangle

3



(X, Y, Z,u, LIDlinJ. Then we have an isomorphism of cylinders

OX M- QY M- QZ m - TOX

1 L Qo) I I
Q(u)
QX M- QY M- QZ M- TOX.

Also, for any X [0 Ob(Jt/U), since Q(id,) = id., (QX, QX 0, idy,, 0, 0) isatriangle in J/U.
(TR2) By the fact that QT = TQ.

(TR3) Let (X, Y, Z,u, LIDL (X', Y,Z,u, L1Dbetriangles in % and a O Jt/u(X, X'), B O
JEu(Y, Y') with fQ(U) = QU)a. Let a = Q(9'Q(f) with sink(s) = X . Then by Lemma 9.7
thereexist u” DK (X", Y’), tOH(Y,Y' ) n Sandg O H(Y, Y') such that u"s=tu, =
Q(t)*Q(g) and XQ)Q(U) = QU")Q(f). Let(X’,Y',Z",u", [J1Dbeatrianglein ¥. Then by
Lemma 9.6 we have a commutative diagram

Q(u)
QX M- QY M- QZ M- TQX
o | | Qo) Lo 1 Q0
Q(u")
QX' M- QY M- QZ - TQX".

Also, by (FR5) we have a commutative diagram

X - Y - 7 oI

st

—

t 149 T Ts

C~

X - Y - Z 5 TX.
Thus, setting y= Q(q) ¢ we get acommutative diagram
Q(u)
QX M - QY M- QZ MM - TOX

al I B by | Ta

Q(u")
QX M- QY M- QZ M - TQX .

(TR4) Let @: QX - QY, ¢: QY - QZ be consecutive morphisms in J/U. Let ¢=
Q(U)Q(s)* with source(s) = X' and ¢ = Q(t)” 'Q(v) with sink(t) = Z'. Then we have a
commutative diagram



7
OX M- QY M- QZ
Q9 | Il L Q)
Q(u) Q(v)
oxX M- Qv M- QZ,

so that we may assume @= Q(u) and ¢y= Q(v). Thus, since X satisfies (TR4), so doesF{/U.

Proposition 9.9. Let o be an abelian category and H : 3 - s{ a cohomological functor
vanishing on U, i.e., HX = O for all X O Ob(U). Then there exists a unique cohomological
functor H: J/U - s« suchthat H= HQ.

Proof. Lets S We claim that H(9 is an isomorphism. Put X = source(s) and Y =
sink(s). Since C(s) 0 Ob(U), H(T"(C(9)) = 0 for all n O Z. Thus, since we have an exact
sequence

HT{C(s) M - HX T & HY [ - H(T(C(S)),

H(s) is an isomorphism. Hence by Proposition 8.21 there exists a unique additive functor H :
HIu - sdsuchthat H=HQ. Itisobviousthat H: /U - A isacohomological functor.

Proposition 9.10. Let 3 be another triangulated categoryand F = (F, 6) : % - ¥ a
o-functor vanishing on U, i.e.,, FX = 0 for all X [0 Ob(W). Then there exists a unique
0-functor F = (F, B) : 3{/U - ¥ suchthat F = FQ and 6= 1,

Proof. Let s S We claim that F(9 is an isomorphism. Put X = source(s) and Y =
sink(s). Since C(s) 0 Ob(u), F(C(s)) = 0. Thus (FX, FY, 0, F(9, 0, 0) isatriangle and by
Lemma 6.9 F(s) is an isomorphism. Hence by Proposition 8.21 there exists a unique additive
functor F : /U - ¥ suchthat F = FQ. Since QT = TQ, we have an isomorphism 6 : FQT =
FTQ = TFQ. Thusby Proposition 8.11 we have an isomorphism 8: FT = TF such that 8=
B,. Itisobviousthat F = (F, B): J{/U — ¥ isad-functor.

Proposition 9.11. Let 7€ be another triangulated category and F = (F, 6), G = (G, n) :
JH/u - ¥ o-functors. Then we have a bijective correspondence

Hom (F, G) = Hom (FQ, GQ), { (.
Proof. For any { [1Hom (F, G), since

Nge° (ZQ)T =Nge ZQT

5



=Ngo ZTQ
=(ne ZT)Q
=(T{ > )
=T(¢) * 6,

we have {, 00 Hom (FQ, GQ). Conversely, let ¢ 00 Hom (FQ, GQ). Then by Proposition
8.11 there exists aunique { 0 Hom(F, G) such that ¢ = {,. Weclaim { 0 Hom (F, G). Since

(Me{)g=MNg° {rg
=g ° or
=Ng° &
=T¢- 6,
= T(Z) = 6,
=(T{ > O)q,

by Proposition8.111n o {;=T{ - 8 and { 0 Hom (F, G).
Definition 9.3. An object Y I Ob(%) iscaledU-local if H(—, Y) vanishesonAl.

Proposition 9.12. The collection of qU-local objects forms an épaisse subcategory and is
closed under direct products, i.e., for a family of AU-local objects {Y,}, ; » if the direct
product [ Y, existsin J{, then [ Y, isAU-local.

Proof. By Corollary 7.8 the first assertion follows. Let{Y,}, . be afamily of AU-loca
objectssuch that [ Y, existsin 3. Then X(X, [1Y,) = [1 H(X,Y,) =0for al X Ob(U) and
1Y,isU-local.

Proposition 9.13. For any U-local object Y [0 Ob(¥) the following hold.

(1) Foranyt O H(X', X) n S H(t, Y) isan isomorphism. In particular, if Y [0 Ob() is
another A-local object, then everys O H (Y, Y') n Sisan isomorphism.

(2) The canonical functor Q : K — J{/U induces an isomor phism of functors on %

(= Y) = KU QY) o Q.

Proof. (1) Embedtinatriangle (X', X, Z, t, [LIw) in¥. Since Z, T~'Z O Ob(W), it follows
by Proposition 6.5(2) that J(t, Y) is an isomorphism. Next, let sO (Y, Y') n Swith Y O
Ob(K) U-local. Then by the above there exists s O K (Y, Y) such that s's = id,. It then
followsby Lemma9.1that s [0 S Thus, again by the above, there existss” [ J{(Y, Y’) such
thats’s = id,.. Hences’ =s’ss=sands =s .



(2) Let X O Ob(). Letf O H(CX Y) with Q(f) =0. Then by Proposition 9.3(2) f factors
through some Z [0 Ob(°U) and f = 0. Conversely, let u= Q(g) o Q(t)"* O I/ U(QX, QY) witht
O (X', X) n S Then by the part (1) there existsf [0 K (X, Y) such that g = ft. It follows that

u= Q).

Proposition 9.14. Assume U is closed under direct products, i.e., for a family of objects
{Z}, AN, if thedirect product [] Z, existsin X, then [ Z, O Ob(W). Then the canonical
functor Q : K — JH/U preserves direct products. In particular, if 3 has arbitrary direct
products, so does H/U.

Proof. Let {X,}, , beafamily of objectsinJ{ and assume the direct product [] X, exists
inJ{. For each u 00 A wedenoteby p,: [1X, - X, the projection. We claim that for any Y
[0 Ob(F /) the canonical homomorphism

Sy ALY, QM X)) — TTIHAULY, QX))), u (Q(p)) ° U)
is an isomorphism.
Claim 1: &, isan epimorphism.
Proof. Let (u,) O [ J/U(Y, Q(X,)). Foreachu O A, letu, = Q(s“)‘l o (f,) with's, [

H(X, X,) n Sand embed s, in atriangle (X, X,', Z,, s,, L1DlinX. Then by Proposition
6.10 the direct product

(MX' N X, N2z, Ns, LD

isatrianglein K. Also, since Z, 0 Ob(U) for al u O A, [1Z,0 Ob(u) and [1s, 0 S For
each u O A, we denote by p,/ : 1 X,” - X the projection. There exists f U F(Y, [1 X;’)
suchthatf, =p, offoral uOA. Setu=Q([] s) "o Q(f). Then for any u O A we have

Q(p,) o u=Q(p) > AM s)™* = QM
=Q(s,) " o Qp,) ° QM
=Q(s) " o QAf)

=u,
Claim 2: &, isamonomorphism.

Proof. Letu O H/UCY, [T X)) withQ(p,) cu=0foral uOA. Letu=Q(Q) o Q(t)*
witht OJ(Y,Y) n S WeclamQ(g) =0. Forany A O A, since Q(p, ° g) c Q) * =0, we



have Q(p, o g) = 0 and by Proposition 9.3(2) p, o g factors through some Z, [0 Ob(°W). It
follows that g factors through [] Z, 0 Ob(°W). Thus again by Proposition 9.3(2) Q(g) = 0.

Remark 9.2. Let o be an abelian category satisfying the condition Ab4" and U the
épai sse subcategory of K(«4) consisting of acyclic complexes. Then K(s4) has arbitrary direct
products and AU is closed under direct products.

Definition 9.4. An object X [0 Ob(J{) is calledU-colocal if (X, —) vanishesonl.

Proposition 9.15 (Dual of Proposition 9.12). The collection of Al-colocal objects forms
an épaisse subcategory which is closed under direct sums, i.e., for a family of al-colocal
objects{ X}, A, if thedirect sum X, existsin I, then O X, is-colocal .

Proposition 9.16 (Dual of Proposition 9.13). For any Al-colocal object X [0 Ob(K) the
following hold.

(1) For any sO H(Y,Y) n S I (X, s) isanisomorphism. In particular, if X' [0 Ob(¥) is
another AL-colocal object, then every t 0 J{ (X', X) n Sisan isomorphism.

(2) For any U-colocal object X [0 Ob(¥) the canonical functor Q : X — J{/U induces an
isomor phism of functors on 3

(X, ) = HUQX, ) o Q.

Proposition 9.17 (Dual of Proposition 9.14). Assume U is closed under direct sums, i.e.,
for a family of objects{Z,} , ;, inU, if the direct sum O Z, existsin X, then O Z, O Ob(W).
Then the canonical functor Q : % — H/U preserves direct sums. In particular, if X has
arbitrary direct products, so does J/U.

Remark 9.3. Let o be an abelian category satisfying the condition Ab4 and AU the épaisse
subcategory of K(s{) consisting of acyclic complexes. Then K(«{) has arbitrary direct sums
and AU is closed under direct sums.



810. Derived categories

Throughout this section, & is an abelian category, $ (resp. %) isthe collection of injective
(resp. projective) objects of s and AU is the full subcategory of K(s4) consisting of acyclic
complexes, i.e., U = Ker H".

Lemma 10.1. For * =+, — b, (+, b), ( b) or nothing, the following hold.
(1) U n K'(«A) isan épaisse subcategory of K'(s4).

(2) (U n K'(s4)) consists of the quasi-isomorphismsin K'(s4).

(3) P(U n K () = PU) N K'(A).

Proof. By Propositions5.2 and 7.7.

Definition 10.1. For * =+, — b, (+, b), (—, b) or nothing, according to Lemma 10.1(1), we
have a quotient category

D*(s4) = K'(s4)/U n K'(s),
called the derived category of s{. We denote by Q : K'(s4) — D' (s4) the canonical functor.

Proposition 10.2. For a morphismf [0 K(s4)( X, Y") the following are equivalent.
(1) QM =0.

(2) There exists a quasi-isomorphism s K(s4)(Y", Y'") such that sf = 0.

(3) There exists a quasi-isomorphismt [ K(s)( X', X*) such that ft = 0.

(4) f factors through an acyclic complex.

Proof. By Propositions 8.6 and 9.3(2).

Remark 10.1. For X" O Ob(D(s)), sincel = Ker H", by Proposition 9.3(3) H*(X') =0
if and only if X" =0. However, for u [0 D(s4)( X", Y"), H"(u) = O does not necessarily imply
u=0,i.e, forfK()( X", Y'), H (f) = 0 does not necessarily imply Q(f) =0. Consider for
example the following homomorphismf: X* - Y in C(Mod Z):

dy

l 0l L oft !

- 0 - 7 S 7T L 0 o e

where dJ(n) = 2n, d’(n) = n mod 3, f°%(n) = n, and f*(n) = 2n mod 3 for n 0 Z. Then we



have H'(f) = 0. Lett: X" - X beaquasi-isomorphism. Letx 0Z* X'") such that t'(x) O
BY(X') =2Z. Sincet(2x) = 2t'(x) O BY(X’), 2x O B*(X"") and there existsx' 0 X' ° such
that 2x = d2 (X'). Then 2t%x') = d2(€(x)) = tX(d2 (X)) = t}(2X) = 2t{(x), so that £°(x) = t(x).
Leth?: X't - YO =Z. 1f0=f0t°=ho d?, then t'(x) = t°(x') = h(d2 (X)) = h(2X) = 2h°(X)
0 BY(X"). Consequently, there can not exist h: ft = 0.

Proposition 10.3. For a morphismf [0 K(s4)( X", Y") the following are equivalent.
(1) Q(f) is an isomorphism.
(2) f isa quasi-isomor phism.

Proof. By Proposition 9.3(1).

Proposition 10.4. For a morphismu [ D(s4)( X", Y*) the following are equivalent.
(1) uisan isomorphism.

(2) u= Q) 'Q(f) withs, f O d(W).

(3) u= QAQQ) " with g, t O d(W).

(4) H(u) isan isomorphism.

Proof. (1) = (2) = (3). By Proposition 9.4.

(1) O (4). Obvious.

(4) O (1). Embed uinatriangle (X", Y*, Z", u, [JDl For any n Z, since we have an
exact sequence

H'(X) 5 HY(Y') - H'(Z') > H" (X)) S H™ YY),

H"(Z) =0. Thus Z" isacyclic, sothat Z° = 0inD(). It followsby Lemma 6.9 that u is
an isomorphism.

Definition 10.2. For eachn [0 Z, we define truncation functors o, ,, 0, : C(sd) —» C(sA) as
follows:

O X (i>n) o o (i>n)
0. (XY= B(X) (=n), o (X)=Z(X) (=n)
H o (<n H X (i<n)

for X' 0 Ob(C(s4)). Weseto, ,=0,, ;and o_,=0 ,_,.

Lemma 10.5. For anyn [0 Z and X" [0 Ob(C(s4)) the following hold.
(1) There exists a natural exact sequence0 - o (X') - X' - o, (X)) - 0.
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Proof. Straightforward.

Lemma 10.6. For anyn [0 Z and X' [0 Ob(C(s{)) the following are equivalent.
(1) The canonical epimorphism X* - o, ( X") isa quasi-isomor phism.

(2) o (X")isacyclic.

(QH (X )=0fori<n.

Proof. (1) <= (2). By Lemma10.5(1) and Proposition 4.3(1).
(2) = (3). By Lemma10.5(3).

Lemma 10.7 (Dua of Lemma 10.6). For anyn O Z and X" 0 Ob(C({)) the following
are equivalent.

(1) The canonical monomorphismo (X') — X' isa quasi-isomor phism.

(2) o, (X") isacyclic.

(3 H' (X )=0fori>n.

Lemma 10.8. For any n [J Z we have well-defined truncation functors

o..:D(sd) —» D'(d) and o, :D(s) — D(sd).
Proof. Letn0Z. Forany X' [0 Ob(C(s{)) we denote by

XL BY(X) and pl i B(X) - Xt

the canonical epimorphism and the inclusion, respectively. Let u O Htp( X", Y*) and h O
AHTX, Y)withh:u=0. Defineh O4%(T(0., (X)), o. (Y")) asfollows:

0 H (i >n)
W= g oh ol (i=n).
H o (i<n)

Then it is easy to check that ' : o, (u) = 0. Thus we get a well-defined functor o, : K(sA)
~ K'(s4). Next, for any quasi-isomorphismu 0 C(s4)( X", Y*), by Lemma 10.5(2) o, (u) is



also a quasi-isomorphism. Thus by Proposition 8.10 we get a well-defined functor o,
D(s4) — D*(s4). Similarly, we get awell-defined functor o, : D(s4) — D(sA).

Proposition 10.9. The canonical functor D*(s) — D(s) is fully faithful, so that D*(s4)
can be identified with the full triangulated subcategory of D(s4) consisting of X™ [0 Ob(D(4))
with bounded below cohomology, i.e., H( X") =0 for n« 0.

Proof. For any quasi-isomorphism Y' = Y inK(s4) with Y* O Ob(K*(s4)), by Lemma
10.6 we have a quasi-isomorphism Y - g, (Y'") with g, (Y'") O Ob(K"(s4)) for some n [
Z. Thus Proposition 8.17(1) applies.

Proposition 10.10 (Dual of Proposition 10.9). The canonical functor D () — D(«A) is
fully faithful, so that D™(s4) can be identified with the full triangulated subcategory of D(«{)
consisting of X" [ Ob(D(«4)) with bounded above cohomology, i.e., H'( X*) = 0for n» 0.

Proposition 10.11. For * =+ or —, the following hold.

(1) The canonical functor D™ °(sd) — D" (s{) is fully faithful.

(2) The canonical functor Db(&d) - D*'b(&d) is an equivalence.

Proof. Similar to Propositions 10.9 and 10.10.

Definition 10.4. According to Proposition 10.11, we identify each of Db(&d), D" b(&d) and
D™ b(sﬂ) with the full triangulated subcategory of D(s4) consisting of complexes with bounded
cohomology.

Proposition 10.12. The canonical functor K(«{) — D(s4) induces an isomorphism

K(s)(X', 17) 5 D)X, 1)
for all X* 0 Ob(K(s4)) and |I° O Ob(K*(%)).

Proof. By Lemma4.4 and Proposition 9.13(2).

Proposition 10.13. Assume s has enough injectives. Then the following hold.

(1) K* (), K"(9) arefull triangulated subcategories of K*(s4).

(2) The canonical functor K'($) — D*(s{) isan equivalence of triangulated categories.

(3) The canonical functor K™ b(56) -~ D" b(&d) is an equivalence of triangulated categories

Proof. (1) By Proposition 6.1(2).



(2) The canonical functor K'($) — D" () is fully faithful by Proposition 10.12 and dense
by Proposition 4.7.
(3) Similar to (2).

Proposition 10.14 (Dual of Proposition 10.12). The canonical functor K(s4) — D(s{)
induces an isomorphism

K(A)(P', Y') = D()(P', Y°)
for all P* 0 Ob(K (%)) and Y* 0 Ob(K(s4)).

Proposition 10.15 (Dual of Proposition 10.13). Assume & has enough projectives. Then
the following hold.

(1) K(P), K™ b(9]’) are full triangulated subcategories of K(A).

(2) The canonical functor K(?) — D™ () isan equivalence of triangulated categories.

(2) The canonical functor K™ b(@))) - D" b(&d) is an equivalence of triangulated categories.

Definition 10.4. A thick subcategory s’ of o is an abelian exact full subcategory of
which is closed under extensions.

Remark 10.2. For aring A the following hold.

(1) The coherent left A-modules form a thick subcategory of Mod A. In case A is left
coherent (resp. left noetherian), a left A-module X is coherent if and only if it is finitely
presented (resp. finitely generated).

(2) For any two-sided ideal a of A,

U,., Mod A/a" ={X O Mod A|a"X =0 for somen =1}

isathick subcategory of Mod A.
(3) For atwo-sided ideal a of A,

Mod Ala = {X OMod A| aX = 0}

isathick subcategory of Mod A if and only if aisidempotent, i.e., a®= a.
(4) For each X [0 Mod A we set

r(X) ={x 0 X | Ax has finite length} .

Thenr : Mod A - Mod A is a subfunctor of the identity functor 1,,,, In case A is left



noetherian, the modules X [0 Mod A with X =r(X) form athick subcategory of Mod A.

Definition 10.5. Let o’ be a thick subcategory of s{. For * =+, — b or nothing, we
denote by K, (s4) the full subcategory of K'(s4) consisting of X* 0 Ob(K'(s4)) with H"(X")
[0 Ob(«4’) foral n Z.

Remark 10.3. (1) Incase 4’ =, we have K, () = K'().
(2) Incase s’ ={0}, wehave K, () =U n K'(s4).

Lemma 10.16. Let 0’ be a thick subcategory of sf. Then, for * =+, — b or nothing, the
following hold.

(1) KK;,(&Q) isa full triangulated subcategory of K (s4).

(2) U n K" (s4) is an épaisse subcategory of K, (s4).

(3 Ifu: X - Y isaquasi-isomorphismin K (s), then X" O Ob( K‘;,(&d)) if and only
if Y° OOb(K_,.(4)).

Proof. (1) Letu: X' — Y with X', Y O Ob( K.;,(&Q)). Then, for any n [J Z, since by
Proposition 2.4 we have an exact sequence of the form

0 - Cok H"(u) - H(C(u)) — KerH"*}u) - 0,
it follows that H"(C(u)) 0 Ob( K, ().
(2) Itisobviousthat U n K" () C K. (). Thusby Lemma10.1(1) U n K" () isan

épai sse subcategory of K, ().
(3) Obvious.

Definition 10.6. Let «’ be athick subcategory of s4. For * = +, — b or nothing, according
to Lemma 10.16, we have a derived category

D, (d) = K.(4)U n K ().

Proposition 10.17. Let 0’ be a thick subcategory of «. For * =+, — b or nothing, the
canonical functor D;,(&Q) - D'(A) is fully faithful, so that D;,(s,zd) can be identified with
the full triangulated subcategory of D'(sf) consisting of X' 0 Ob(D (s4)) with H'(X") O
Ob(«’) forallnd Z.

Proof By Lemma 10.16(3) and Proposition 8.17.

Definition 10.7. Let o’ be athick subcategory of sf. We denote by s’ n ¢ the collection



of objects Ob(«4’) n $. Then o’ is said to have enough s{-injectives if every X 0 Ob(«{’)
can be embedded insomel O A’ n 9.

Lemma 10.18. Let o’ be a thick subcategory of of. Assumesd’ has enough s{-injectives.
Then for any X' O Ob(K . (s4)) there exists a quasi-isomorphismu : X" - " with I' O
Ob(K*(s4’ n 9)).

Proof. Wemay assume X" =0forn<0. PutZ°=Z%X)=HYX") OOb(«’) and let v°:
Z(X') - Z° betheidentity. The following Claim enables us to make use of induction to
construct adesired morphismu: X* - |,

Claim Letn=0and V': Z'( X") - Z'withZ" [0 Ob(s{4’). Then there exists acommutative
diagram with exact rows

0 - Z(X) - X 5 Z{X) - H"YX) - 0
V' Lo VA Il

0 - Z° - 1" o Z"' L H™YX) . 0
with1"O o’ n $ and Z"** O Ob(sAt’).

Proof. Since Z"embedsinsomel” O o’ n %, we get a commutative diagram with exact
rows

0 - Z2(X) - X' o BYX)- 0
V'l TS Lwtt

o - 2 - " - Bt - 0,
with which splice the following push-out diagram

0- B""Y(X) - ZWY(X) - H"YX) > 0
Wt PO TVAS |

0 - B - Z"' L H"(X)- 0.

Proposition 10.19. Let o’ be a thick subcategory of «{. Assume 4’ has enough
s-injectives. ThenK*(s4” n $) isa full triangulated subcategory of K (s1) and the canonical
functor K*(s’ n 9) - D, (s4) is an equivalence.



Proof. By Proposition 6.1(2) K'(s4' n $) is afull triangulated subcategory of K ().
The canonical functor K’ (4’ n §) - K. () isfully faithful by Proposition 10.12 and dense
by Lemma 10.18.

Definition 10.8. Let «’ be a thick subcategory of . We denote by s{’ n P the
collection of objects Ob(s4’) N %. Then A’ is said to have enough s{-projectives if every X
[J Ob(s4") isan epimorph of some P 0 o’ n P.

Lemma 10.20 (Dual of Lemma 10.18). Let 4’ be a thick subcategory of sd. Assume {’
has enough s{-projectives. Then, for any X" [ Ob(K (s )), there exists a quasi-isomor phism
u: P" - X with P° OOb(K (4’ n P)).

Proposition 10.21 (Dual of Proposition 10.19). Let 4’ be a thick subcategory of .
Assume o’ has enough s{-projectives. Then K'(«d’ n %) is a full triangulated subcategory
of K. (s) and the canonical functor K'(«4’ n ) - D_.(s{) isan equivalence.

Proposition 10.22. Assume o satisfies the condition Ab4". Then the canonical functors
C(d) - K(o) and K(sd) — D(A) preserve direct products. In particular, both K(s{) and
D(s) have arbitrary direct productswhich are direct products of complexes.

Proof. By Propositions 1.11(2), 3.4(2) and 9.14.
Proposition 10.23 (Dual of Proposition 10.22). Assume ¢ satisfies the condition Ab4.

Then the canonical functors C(#d) - K(sd) and K(«d) — D(s) preserve direct sums. In
particular, both K(s4) and D(s4) have arbitrary direct sums which are direct sums of complexes.



811. Hyper Ext

Throughout this section, & is an abelian category, $ (resp. %) isthe collection of injective
(resp. projective) objects of 4 and U is the épaisse subcategory of K(s{) consisting of acyclic
complexes.

Definition 11.1. For X", Y" [ Ob(D(s{)) andn 0 Z, we set
Ext" (X", Y') =D(«A)( X", T"Y"),
which is called the n™ hyper Ext.

Proposition 11.1. Let 0 -~ X S Yy Lz . Obeanexact sequence in C(«{) and put €
=[10]:Cu) - TX,0=Tu 0: X - T 'CvandVv=[0 V]:C(u) - Z. Thenthe
following hold.

(DQ(O): X* S T7'C(v) and Q(V):C(u) = Z areisomorphismsin D(s).

(2 (X, Y, Z',u,v,w) isatrianglein D(s), wherew = Q(€) o Q(V) ™%

(3) For any W* [ Ob(C(«4)) we have long exact sequences

o Ext(W, X)) - Ex(W, YT) - Ext(W, Z°) — Ext"" Y (W, X°) - -,
- o Ext(ZT, W) - Ext(Y, W) - Ext(X', W) - Ext"*Y(Z, W) - -
Proof. (1) By Proposition 4.3.

(2) By the part (1) and Proposition 2.5.
(3) By the part (2) and Proposition 6.5.

Definition 11.2. For each n 1 Z, we define truncation functors o.,,, ., : C(sd) - C(d)
asfollows:

o X (i >n) O 0 (i>n)
oL (X) = (X)) (i=n), ol(X)=B(X) (i=n)
H o (i<n H X  (i<n)

fOr X. D C(‘Sﬂ) Weset O-;n = O-;n+1 and O-;n = O-’<n+1'

Lemma 11.2 (cf. Lemma10.5). For anyn [0 Z and X" [ Ob(C(s{)) the following hold.
(1) There exists a natural exact sequence0 - o.,(X) - X' - o, (X) - 0.
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Lemma 11.3 (cf. Lemma 10.6). For anyn 0 Z and X" [ Ob(C(s)) the following are
equivalent.

(1) The canonical epimorphism X - o, (X") isa quasi-isomorphism.

(2) o.,(X")isacyclic.

(B H' (X )=0fori<n.

Lemma 11.4 (cf. Lemma 10.7). For anyn O Z and X" [ Ob(C(s)) the following are
equivalent.

(1) The canonical monomorphism o.,(X") - X' isa quasi-isomorphism.

(2) g.,(X")isacyclic.

(B H (X )=0foriz=n.

Lemma 11.5 (cf. Lemma10.8). For any n [l Z we have truncation functors
o.,:D(A) - D'(sd), o, :D(sA) — D(sA).

Lemma11.6. For X" O Ob(D(s{)) the following hold.
(1) Let n O Z and assume H(X') = 0 for i n. Then there exist sequences of
guasi-isomor phisms

X« 0 (X) - 0,0 (X)) - T(H(X)),
X' = 0,,(X) « 04,(05,(X)) « THHY(X)).

(2) Let n, mO Z with n> mand assume H'(X’) =0 for i > nand i < m. Then there exist
sequences of quasi-isomor phisms

X« 0 (X)) » gn(0 (X)),
X' = 0,n(X) « 0 (0,,(X)).

Proof. (1) By Lemmas 10.5, 10.6 and 10.7 we get the first sequence. Also, by Lemmas
11.2,11.3 and 11.4 we get the last sequence.

(2) By Lemmas 10.5, 10.7 and 11.4 we get the first sequence. Also, by Lemmas 11.2,
11.3 and 10.7 we get the last sequence.



Proposition 11.7. The canonical functor § — D(s4) induces an equivalence between
and the full subcategory of D(s{) consisting of X™ with H'( X) =0fori O.

Proof. Let X, YO Ob(s4). LetJ: sl — D(s4) denote the canonical functor. ThenH® o J=
1,andH%: D(A)(X, Y) —» AX Y)isepic. Let ul D(sA)(X,Y)with H%u) =0. Weclamu
= 0. Letu=Q(9 'Q(f) withs:Y - Y aquasi-isomorphism. By Lemma 11.3(1) the
canonical epimorphismt : Y* - o.,(Y") isaquasi-isomorphism. Also, since Q(f) = Q(9u,
H°f =H%s) o H%U)=0. Thusf: X - Y°factorsthrough B°(Y") and tf= 0. It follows that
u=Q(s)'Q(f) = Qts) *Q(tf) = 0. Hence H? : D(A)(X, V) — SA(X, Y) is an isomorphism, so
isJ: AKX Y) - D(A)(X Y). Thelast assertion follows by Lemma 11.6(1).

Definition 11.3. Let X, Y O Ob(s4) and n=> 1. An n-extension of X by Y is an exact
sequencein o of the form

E:O—»Y—»E_n+l—>"'—>EO—>X—>O.

For two n-extensions E and E’', we define a homomorphismf : E - E’ as a family of
morphismsf : E - E'(—n+1<i<0)in which make the following diagram commute

E:0 - Y - E" - ... o E° o X 450
I Lfnet Lfe I

E:0 - Y - E"™ L ... JF° L X 50
and denote by Hom(E, E’) the set of homomorphisms from Eto E’. An equivalence relation
~ on the collection of n-extensions is defined as follws: E ~ E’ if and only if there exists a
sequence of n-extensions E, =E, -+, E = E’ such that Hom(E, E ,,) 0 Hom(E,, , E) 9for
al 0<i<k—-1. Wedenote by [E] the equivalence class of an n-extension E and by Ext (X,

Y) the collection of equivalence classes.
Definition 11.4. Let X, YO Ob(s4) andn = 1. For each n-extension
u £
E:0-Y_E™', ... JE°S XS0,
we denote by E’ the complex

"—>0—>E_n+l—>"'—>E0—>0—>"'



Then we have homomorphisms of complexes i : T""'Y - E’, €: E° - X. The mapping
cone C() is of theform

u
'—>O—>Y—> E_n+l—>"'—>E0—>O—>"'

and we have a quasi-isomorphism € = [0 & : C(u) - X. Thus we get a commutative
diagram in D(A4)

- H . a B
| I L e I
n-1 H .

™Y - E 5 X - TY

™

c
=~

m
—

with the top row atriangle, where a="[0 1] and 3=[1 0]. Hencethe bottom row isaso a
triangle.

Definition 11.5. Let X, Y [0 Ob(s4) and n> 1. Embed each u [0 D(4)(X, T"Y) in atriangle
(T"1Y, E°, X, [ILJu). Incasen =1, the long exact sequence

o HYX) - HAY) - HY(E) - HYY) - HY(X) - -
yields a 1-extension
E(U): 0-Y- HO(E‘)—»X—>0,

andincasen= 2, since

X (i=0)
H(E)= o (i=-n+1),
HO otherwise

we get an n-extension
E(U): O—)Y—)Z’_n+1(E.)—> E_n+2 - ' - E_1—>ZO(E') —>X—>O-
Proposition 11.8. For anyn =1 and X, Y J Ob(s4) we have a natural isomorphism

@: Ext"(X,Y) 5 D(st)(X, T'Y), [E] > u(E),



whose inverseis given by
Wi D(A)X, TY) 5 Ext] (X, Y), u [E(u)].
Proof. We divide the proof into several steps.
Claim 1. giswell defined.

Proof. Let

™

u
E:0 -~ Y - E™ L ... L E> L X -0
I }fnet Lfe I

M &'
E’: 0 — Y — E,_n+1 - > E1O — X — 0

be a homomorphism of n-extensions. Denote by f: C(y) - C(u') the homomorphism of

complexes

u
— O — Y — E_n+1 — — EO — O — e

l | Lfonet LEe
W 3 +1 y 0
d O el Y - E_n — e e E — O — e

Then we have a commutative diagram

X < E - TY
| Lot |
X < E° - TV.

™

It followsthat u(E) = u(E’).
Claim2: @ iswell defined.
Proof. Let uD(«)(X, T). Embed uin triangles

(MY, E, X, Q0u) and (T, E”, X, LIG).

Then we have an isomorphism of triangles



™Y - E - X 5 TY

| L | |
™Y - E° - X o TV.

In case n = 1, we get an isomorphism of 1-extensions

0 -~ Y - HYE) = X - 0

[ L HoM [
0 - Y - HYE") = X - o0,

and in casen = 2, we get an isomorphism of n-extensions

0-Y - Z™YE) > E"?5 . 5 E* o ZYE) - X -0
II Lz L 2 Lft Lz |

O-Y - Z"YE)-FE™2,... B 5 ZYE") - X - 0.
Claim3: o @=id.
Proof. Let
U £
E:0_-Y_E™',..._E°- X0

be an n-extension. Let (T"°YY, E’, X, 1 & u(E)) be atriangle associated with E. Then, since
o._ (o (EY)) = FE,itfollowsthat E(u(E)) = E.

Claim4: go ¢=id.

Proof. Letu O D(s4)(X, T"Y) and embed it in atriangle (T""'Y, E°, X, [J [Ju). Consider
first the case n = 1. Then the corresponding 1-extension is of the form

EW: 0-Y 5 HYE) > X-0
and by Lemma 11.6 we have a sequence of quasi-isomorphisms

E' « 0o(X) = 0,(0,(X)) -~ HYE).



Also, we have a commutative diagram

Y - o, X) - X S TY
I ! I [
Y o o0, (X))~ X o TY

| ! I I
u £
Y L HYE) 5 X

!
2

Thus the bottom row is a triangle and u = u(E(u)). Next, let n > 2. Then the corresponding
n-extension is of the form

u £
EW:0-Y > Z ™YE)-E"™2, ... ,E*LZE) - X 0.

Note that E(u)’ = o._,(0,(X")). Thus by Lemma 11.6 we have a sequence of quasi-
isomorphisms E" — 0,(X’) - E(u)". Since we have acommutative diagram

u

™Y - E - X - TY

I 1 I I
T o g,(X) - X - TY

[ ! [ [
u £
™Y 5 Eu - X - TV,

the bottom row is atriangle and u = u(E(u)).
Claim5: gisnatural.

Proof. Let
U £
E:0-Y - E_n+l—>"'—>EO—>X—>O,

be an n-extension and f [0 A(X, X), g O (Y, Y'). Take a pull-back and a push-out
successively



E:0 o Y &5 E™Y L E™2, ... L E'_LE"S X o0

I I I I 1 PB 1 f

E:0 o Y 5 E™! L E"™2, ... LELLFEOL X L0
gl PO gm? [ I I I

En 0 N Yr i Ei—n+l R E—n+2 R R E—l R E’O i X1 N 0

Denote by f:E - E" and g: E” - E" the homomorphisms of complexes

-~ 0 E™' L B2, 0 L EP L EY S 0 o
! | | [ A

-~ 0 E™ L E"2L 0 L EPLEYS 0 o

-~ 0 E™ L E"2L 0 L ETLES 0 o o
N A | | | !

- 0B, B2, o L EPLESS 0 o,

respectively. Then we have homomorphisms of triangles

£ u(E)

n—lu .
™Y - E - X S TY

| T f 1 f |
u(E")

n—1 H [Ad 1
™Y - E - X - TY

™

™ %g) | L3 I L T
u(e”)

n—1 M "ne 1
™Y - E - X - TY .

™

Hence ¢ Ext , (f, 9)([E)) = D(s4)(f, T(@)(ALED).
Proposition 11.9. Forany X, Y [0 Ob(s{) the following hold.
(1) If Y hasaninjective resolution Y — 1., then Ext'(X, Y) = H(#A(X, 1)) for all i O Z.
(2) If X has a projective resolution P, — X, then Ext(X,Y) = H'(«(P;,Y)) for all i O Z.

Proof. (1) For any i [0 Z, by Propositions 10.12 and 3.8 we have

Ext'(X, Y) = D(s4)(X, T(Y))
= D(s)(X, T(15))



= K()(X, T(13))
= H'(4(X, 13)).

(2) Dud of (1).

Definition 11.6. A complex X' [0 Ob(K(s{)) is said to have finite injective dimension if
Ext'(—, X") vanisheson s for i » 0. For * =+, —, b or nothing, we denote by K’ (s4),,, the full
subcategory of K'(s4) consisting of X' 00 Ob(K(s4)) which have finite injective dimension.

Lemma 11.10. For * =+, — b or nothing, the following hold.
(1) K'(sA),,4 isafull triangulated subcategory of K'(s4).
(2) U n K'(sA),,4is an épaisse subcategory of K'(s4);,-

Proof. (1) For any X' 0 Ob(K'(s4),,) andj O Z, since Ext(-, T(X")) = Ext' *I(-, X')

vanishes on o for i » 0, T(X') O Ob(K(sd),,). Also, for any u 0 K()( X", Y') with X',
Y* 0 Ob(K'(A),,), since by Proposition 6.5 we have along exact sequence

L BXt(S YY) - Bxt(= ) - Bxt T X)) - e

Ext'(-, C(u)) vanishes on s for i » 0 and C(u) 0 Ob(K'(sd);,)-
(2) By Proposition 7.7.

Definition 11.7. For * =+, — b or nothing, according to Lemma 11.10, we have a derived
category

D(A)sq = K' (g /U 0 K (A)fige

Lemma11.11. For * =+, — b or nothing, the canonical functor D (4),,, — D’(«4) isfully
faithful .

Proof. It is obvious that K'(sf),, is closed under quasi-isomorphism classes in K'(sA).
Thus by Proposition 8.17 the canonica functor D' (), — D" () isfully faithful.

Proposition 11.12. Assume & has enough injectives. Then for X' 0 Ob(K'(s4)) the
following are equivalent.

(1) X 0 Ob(K"(s4)y9).

(2) There exists a quasi-isomorphism X° — | with |" [ Ob(Kb(&B)).

Proof. (1) O (2). Let n O Z and assume Ext'(-, X") vanishes on & for i > n. By



Proposition 4.7 there exists a quasi-isomorphisms: X — |" with I" 0 Ob(K"($)). Leti >
n. Letj: Z(1") - I' denotetheinclusion. Since by Proposition 10.12 we have

K(s)(T(Z(17)), 1) = K(0)(Z(17), TI(17))
= D(sA)(Z(1"), TI(1"))
= Ext(Z(1°), 1)
= 0,

there existsh : Z'(1") - I'"*suchthatj = d/™ o h. ThusB(I") =Z(1") and the canonical
epimorphism I'-* - B(1") splits. Consequently, H(1')=0andZ' ~*(1") O $ for al i > n.
Thuso (1) 0 Ob(Kb(ﬁ)) and by Lemma 10.7 the canonical monomorphism f o (1) -
I” is aquasi-isomorphism. Then by Corollary 4.6 f o (1I') - I isanisomorphism in
K(s4) and we get aquasi-isomorphism jos: X' - o (I°).

(2)0 (2). Leti OZ with1'=0. Then for any Y 0 Ob(s4) by Propositions 10.12 and 3.8
we have

Ext'(Y, X*) = Ext'(Y, 1)
= D(A)(Y, T'(17))
= K(A)(Y, T(1))
= H'(sd(Y, 1))
=0.

Proposition 11.13. Assume s has enough injectives. Then the following hold.

(1) K(9) C K (sh)q C K™ "(s).

(2) K°($) isa full triangulated subcategory of K* (A)fiq-

(3) The canonical functor K*(sf),, — D(s4),, induces an equivalence K°($) = D*(sf);.

Proof. (1) By Proposition 11.12.

(2) By Proposition 6.1(2).

(3) The canonical functor Kb(ﬁ) — D*(sA),, isfully faithful by Corollary 4.6 and dense by
Proposition 11.12.

Definition 11.8. A complex X' [0 Ob(K(s4)) is said to have finite projective dimension if
Ext'( X", -) vanisheson s for i »» 0. For * =+, — b or nothing, we denote by K*(&i)fpd the full
subcategory of K'(s4) consisting of X' [ Ob(K(s4)) which have finite projective dimension.

Lemma 11.14 (Dual of Lemma11.10). For * =+, — b or nothing, the following hold.
(1) K'(4);,q isafull triangulated subcategory of K™ (s4).
(2) U n K (A);,q IS an épaisse subcategory of K'(s4);,.

10



Definition 11.9. For * =+, — b or nothing, according to Lemma 11.14, we have a derived
category

D*(&g)fpd =K () gpalU N K’ (A) 1o

Lemma 11.15 (Dual of Lemma 11.11). For * =+, — b or nothing, the canonical functor
D(sd);,g — D'(s4) isfully faithful.

Proposition 11.16 (Dual of Proposition 11.12). Assume #{ has enough projectives. Then
for X [0 Ob(K™(s4)) the following are equivalent.

(1) X' O Ob(K(s4)0)-

(2) There exists a quasi-isomorphism P° - X" with P* [0 Ob(Kb(Q?)).

Proposition 11.17 (Dual of Proposition 11.13). Assume s has enough injectives. Then
the following hold.

(1) KUP) C K (s)g C K™ (sA).

(2 Kb(@) isafull triangulated subcategory of K™ (),

(3) The canonical functor K™(s4),,y - D (s4);,, induces an equivalence Kb(@) 5 D (A

Proposition 11.18. Assume s has enough injectives and satisfies the condition Ab4 .
Then the canonical functors D*(s4) — D(sd), D*(s4),, — D' (s4) preserve direct products.

Proof. Let { X}},, be afamily of objects of D*(s4) which has a direct product X' in
D*(s4). Note that by Proposition 10.11 the direct product [] X; existsin D(s4). We claim
M X; O Ob(D"(s4)). By Proposition 4.7 we may assumethe X; and X' are objects of K'(¥).
Takeb O Z suchthat X =0fori<b. Let A DA and put m=min{i O Z | H'(X;) 0}. Then
by Lemma 11.3 we have a quasi-isomorphisms: X, - o (X]). Also, thereexistsu : T
"H"(X})) - 0., (X}) such that H"(u) = ide(x;)' Thus we get a nonzero morphism Q(9)™*
o Q(u) O D(A)(T-"(H™( X;)), X;) and by Proposition 10.12 we get

K()(T(H™(X})), X7) = D()(T(H"(X})), X)
+ 0.

Hence m= b and H'( X;) = 0 for i < b. Since we have an exact sequence
o XIS XY - Z%(X;) - 0,
X; 0 Ob(K*(#)) impliesZ°(X;) O $ and o2, (X;) O Ob(K'($)). Thuswe may assume X;

11



=0forali<bandA DA . Then[] X; O Ob(K'($)) and[] X; = X'.

Next, let { X}}, -, be afamily of objects of D"(s4),,, Which has a direct product X" in
D*(s4)4- Weclam 1 X; O Ob(D"(s4),,)- By Proposition 11.12 we may assume the X; and
X' are objects of Kb(fﬁ). Takea, b 0Z suchthat X =0fori>aandi<b. Asabove, we
may assume X; =0forali<bandA O\ . Let ADA andputn=max{i O Z |H(X;) O}.
By Lemma 10.6 we have a quasi-isomorphismt : o (X;) - X,. Also, there exists a
morphismv : T (Z'(X])) - o (X;) such that H(v) : Z'(X]) - H"(X;) is the canonical
epimorphism. Thus we have a nonzero morphism Q(tv) O D(«4)(T "(Z( X;)), X;). Also,
since Z'( X;) admits an injective resolution

0 Z(X;) - XJ - X" o -,

X: 0 Ob(K®(#)) implies T-"(Z'( X;)) O Ob(D*(s4),). ThusD(A)(T"(Z'(X;)), X') Oand n
<a. Next, since D(4)(T-®* (B % X;)), X*) =0, by Proposition 10.12 we have

KT B(X})), X;) = D)(T 2B X)), X))
—0

and the canonical exact sequence 0 - ZX( X;) - X; - B'Y X;) - 0 splits. Thuswe havea
quasi-isomorphism g (X;) - X, with o (X]) O Ob(Kb(&B)). Consequently, we may
assume X, =0forali>aandA O\ . Then[] X; O Ob(K®($)) and X = X.

Proposition 11.19 (Dual of Proposition 11.18). Assume & has enough projectives and
satisfies the condition Ab4. Then the canonical functorsD () — D(s4), D (A)y,q — D (sA4)
preserve direct sums.

Proposition 11.20. Let 0 - X S Y L Z - 0bean exact sequence in C(A).
Assume Y' = 0in K(«), thisisthe caseif Y iseither injective or projective in C(sf). Then
the following hold.

(1) Thereexistsh:u=0andvh: TX" - Z' isaquas-isomorphismfor all h:u= 0.

(2) Thereexistsh:v=0and T"*(h)u: X' - T 'Z isaquasi-isomorphismfor all h:v =

Proof. It follows by Propositions 3.5 and 3.6 that Y' = 0in K(«) if Y iseither injective
or projective in C().

(1) Sinceu=0inK(sA), thereexists h: u= 0. Next, take an arbitrary h: u = 0 and put h
=1 —h] : TX" - C(u). Then,sinceu=hod, +TYd,oh), dg, > h=Thod,and hisa
morphism in C(sf). Put v =[0 V] : C(u) - Z'. Then by Proposition 11.1(1) Q(V) is an
isomorphism in D(sf). Let e=[1 0] : C(u) - TX and w=Q(€) - Q(V)"*. Then, since by

12



Proposition 11.1(2) (X", Y, Z', u, v, w) isatrianglein D(«), and since Y' = 0inD(«), by
Lemma 6.9 wis an isomorphismin D(s). Thus Q(¢) isan isomorphism, sois Q(ﬁ) because
go h = id.. Hence Q(Vh) is an isomorphism and by Proposition 10 3vh = — Vh is a
guasi-isomorphism.

(2) Dud of ().
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812. Localization in triangul ated categories

Throughout this section, K and 7€ are triangulated categories. Also, « is an abelian
category, U is the épaisse subcategory of K(s4) consisting of acyclic complexes and ¢ (resp.
%) is the collection of injective (resp. projective) objects of «. Unless otherwise stated,
functors are covariant functors.

Proposition 12.1. Let F = (F, 6) : i - 7€ be a 0-functor. Assume F hasa right adjoint G
H - K. Lete: 1, - GF, 0: FG - 1, bethe unit and the counit, respectively, and put ) =
GTd0 GO, 0 &5 : TG -~ GT. Then the following hold.

(1) nisanisomorphismand G = (G, n™*) is a d-functor.

(2) Both € and 0 are homomor phisms of 0-functors.

Proof. We divide the proof into several steps. Notefirst that G is additive.
Claim1: n isan isomorphism.

Proof. Let M O Ob(%) and X O Ob(%). For any h O #(FT 'X, M), since we have a
commutative diagram

Te 1y TGh
X 0od- TGFT X 0d- TGM
& 4 L&y ! &rem
GFTe _;, GFTGh

GFX 00~ GFTGFTX 0O00- GFTGM

G, | | Go | GOy

GFT™'X
GTFe _1, GTFGh

GTFT'X 00 - GIFGFT'X 000- GTFGM

! GT5FT,1 I GToy

X
GTh

GTFT X (. GTM,
we have

G(T(ho T‘leT,lx)) o & =GTho GO__,, o &
=GThoid_ ., o GO, °&
=GTho (GTO_ ., o GTFe ., ) 0 GO__,, o &

= GT4, o GOy 0 Ergyo TGho Te__,

=1y TGho Te__,

=Ny T(Gho e, ).



Thus the following diagram commutes

~ ~

T X M) > JH(TX GM) > J(X, TGM)

H(T6_,,idy) | L H(idx, nw)

~ ~

HTFXM) S HEXTM) S (X, GTM).

Since %(T‘leT_lx, id,,) isan isomorphism, so is J{(id,, n,,). It follows by Y onedalemma that
n,, is an isomorphism.

Clam2: G=(G,n " : % - ¥ isad-functor.

Proof. Let (L, M, N, a, b, c) beatrianglein 7. Since by (TR1) we have atrianglein X of
theform (GL, GM, Z, Ga, v, w), we have atrianglein #

(FGL, FGM, FZ, FGa, Fv, 6, o Fw).

Thus by (TR3) there exists h 0 #(FZ, N) which makes the following diagram commute

FGa Og o Fw

Fv
FGL M- FGM I - FzZ I - TFGL

q ! Loy L h LT
L M - M M - N M-  TL.

Then we have

Ghog,ov=Gho GFvo g,
=G(ho Fv) o &,
=G(bo 9y) ° &gy
=Gbo G4, o £y
=Gbo (Gdo &),
= Gbe (idg)y,
= Gb,

GcoGhog, =G(Coh) o g,
=G(Td o 6, o Fw) o g
=GTY - GO, -GFwo g,
=GTY 0 GOy 0 &g oW



=M e W.

Thus the following diagram commutes

\ w

Ga
GL M- GM - Z M- TGL

I I | Ghog, I
Gb UL_l"GC

Ga
GH M- GM M- GN M- TGL.

We claim that Gh o &, isan isomorphism. Let X[ Ob(X). We have the following commutative
diagram with the top and the bottom rows exact

X, GL) - HX,GM) — H(X,GN) - (X, TGL) — (X, TGM)
Il I L %X Ghog) || Il
HX, GL) - H(X,GM) — H(X,GN) - (X, TGL) — (X, TGM)

[ I Il LK ) LK )

X, GL) - HX,GM) — H(X,GN) - H(X,GTL) — H(X,GTM)

(o Y NN L oen L@t
#H(FX, L) - HFX,M) - FHEFEX,N) - HFXTL) - FH(FX, TM),

where @: J(—, G-) 5 %/(F—,-) isanisomorphism of bifunctors. Since #(X, n,), %(X, n,,)
areisomorphisms, the second row isexact. Thus by five-lemmaJ{ (X, Ghe &,) isan isomorphism,
s0isGheo g, by Yonedalemma

Claim3: €: (1,,id) - (GF, n. ' - G6)is ahomomorphism of d-functors.
Proof. By Proposition 7.10(4), GF = (GF, n. * o G6) isad-functor. We have

Ne o TE=GTO 0 GO, 0 g0 TE
=GTd. 0 GO, o GFTeo &
=G(TO:0 B oFTe) 0 &
=G(To-o TFeo B) o &
= GT(0- o Fg) o GOo &
= GT(id;) - GO0 &
=GO o &;.

ThusTe=(ng o GO) o &..



Claim4: d: (FG, 6,- Fn™ - (1,,id) isahomomorphism of o-functors.
Proof. By Proposition 7.10(4), FG = (FG, 6, - Fn ') isad-functor. We have

0,0 Fn=20,0FGTd0 FGE, o Fe,¢
=Tdo &g o FGE; o Ferg
=Tdo (O o FGO)g o Férg
=Tdo (80 O)g o Ferg
=Tdo 9(3 °© (5F °© FE)TG
=Tdo 9(3 °© (idF)TG
=Tdo 6;.

Thus 8, =Tdo (6, Fn™Y.

Proposition 12.2 (Dual of Proposition 12.1). Let F = (F, 6) : % - % be a o-functor.
Assume F hasaright adjointG: # — ¥. Lete: 1, - FG, d: GF - 1, bethe unit and the
counit, respectively, and put n = &,;0 G, o GTe : TG - GT. Then the following hold.

(1) nisanisomorphismand G = (G, n™) isa d-functor.

(2) Both € and d are homomor phisms of 0-functors.

Proposition 12.3. Let F: X — 7€ be a d-functor with a fully faithful right adjoint G : 7€
- Handlete: 1, - GF, 0: FG - 1, be the unit and the counit, respectively. Then the
following hold.

(1) 6: FG - 1, isan isomorphism.

(2) Ker F is an épaisse subcategory of ¥ .

(3) &, U d(KerF) for all X I Ob(X).

(4) Theinduced functor F : J{/Ker F - % is an equivalence of triangulated categories.

Proof. (1) Well-known.

(2) By Proposition 7.12(1).

(3) Since & - Fe=id., by the part (1) Fe is an isomorphism. Thus, for any X O Ob(J{),
Fe, isan isomorphism and by Proposition 7.12(2) we have g, [ ®(Ker F).

(4) Let Q: K - J/Ker F be the canonical functor. Then by Proposition 9.10 there exists
aunique o0-functor F: J{/Ker F - 9 suchthat F = FQ. Weclamthat QG : # - J/Ker Fis
a quasi-inverse of F. By the part (3) and Corollary 8.9 Qe : Q - QGF = QGFQ is an
isomorphism. Thus by Proposition 8.11 there exists an isomorphism 7 : 1, — QGF such
that Qe = 15,



Definition 12.1. A o-functor F = (F, 6) : 5 — 7 iscalled alocalization if it has a fully
faithful right adjoint, i.e., F hasaright adjoint G: # — K suchthat thecounitd: FG - 1, is
an isomorphism. If thisisthe case, GF : i —  iscalled alocalization functor.

Proposition 12.4. Assume s has enough injectives. Then the following hold.
(1) The canonical functor Q : K'(s4) — D*(s4) isa localization.

(2) The canonical functor Q : K™°(sf) — D™ °(s4) isa localization.

(3) The canonical functor Q : K'(s4),, — D*(s4),, isalocalization.

Proof. (1) LetJ: K'($) - K'(s4) betheinclusion. Then by Proposition 10.13 QJ : K* (%)
~ D*(«A) isan equivalence. Let P: D*(s4) — K'($) be aquasi-inverse of QJ. It follows by
Proposition 10.12 that JP isaright adjoint of Q. Since Pisfully faithful, sois JP.

(2) Replace K*($) with K™ °($) in the proof of (1).

(3) Let J: Kb(ﬁ) ~ K'(s4),,, be theinclusion. Then by Proposition 11.13 QJ : Kb(SB) -
D*(sd),, is an equivalence. Let P : D*(sd),, » K°(%) be aquasi-inverse of QJ. Then, asin
the part (1), JP isafully faithful right adjoint of Q.

Proposition 12.5. Let s{' be a thick subcategory of s¢ with enough s{-injectives. Then
the canonical functor Q: K (s1) - D, (s4) isalocalization.

Proof. LetJ: K'(«d' n $) - K. (s4) be the inclusion. Then by Proposition 10.19 QJ :
K'(s4' n $) - D} (o) isan equivalence. LetP: D () — K'(sd' n ) beaquasi-inverse
of QJ. Then, asin Proposition 12.4, JP isafully faithful right adjoint of Q.

Proposition 12.6 (Dual of Proposition 12.3). Let F : % - % be a 0-functor with a fully
faithful left adjoint G : # — X andlete: 1, - FG, d: GF - 1, bethe unit and the counit,
respectively. Then the following hold.

(1) €: 1, —» FGisan isomorphism.

(2) Ker F is an épaisse subcategory of ¥ .

(3) & O d(KerF) for all X O Ob().

(4) Theinduced functor F : J{/Ker F - % isan equivalence of triangulated categories.

Definition 12.2. A o-functor F = (F, 6) : ¥ — 3 iscaled acolocalization if it has afully
faithful left adjoint, i.e., F has aleft adjoint G : % — X such that theunit e: 1, — FGisan
isomorphism. If thisisthe case, GF : { - J{ iscalled a colocalization functor.

Proposition 12.7 (Dual of Proposition 12.4). Assume «{ has enough projectives Then the
following hold.
(1) The canonical functor Q : K'(4) - D () isa colocalization.



(2) The canonical functor Q : K™°(sd) — D™ "(s4) isa colocalization.
(3) The canonical functor Q : K'(sf);y - D (d);,, isa colocalization.

Proposition 12.8 (Dual of Proposition 12.5). Let o4’ be a thick subcategory of s with
enough s{-projectives. Then the canonical functor Q : K () - D_. () isa colocalization.

Proposition 12.9. Let B be another abelian category and F : s¢ — 9 an additive functor.
Assume F has a fully faithful right (resp. left) adjoint. Then the extended d-functor F : K({)
- K(%B) isalocalization (resp. colocalization).

Proof. By Proposition 3.10.

Corollary 12.10. Let ¢ : A - B bearing epimorphism. Then the following hold.
(1)BO,—:K(Mod A) - K(Mod B) isalocalization.
(2) Hom,(,Bg, -) : K(Mod A) - K(Mod B) isa colocalization.

Proof. Let U: Mod B - Mod A be the canonical functor induced by ¢ : A — B. Then U

isaright adjoint of B 1, —and aleft adjoint of Hom,(,B;, —). Also, by assumption, U isfully
faithful.

Corollary 12.11. Let Abearing and e 0 A an idempotent. Then
eA [, —= Hom,(Ae, -) : K(Mod A) - K(Mod eAe)
isa bilocalization, i.e., both a localization and a colocalization, simultaneously.

Proof. Itisobviousthat eA O, — = Hom,(Ae -). Also, eA [0, —has afully faithful right
adjoint Hom,,.(.,2A,, —) and Hom,(Ae, -) has afully faithful left adjoint Ae O _,.—.

Definition 12.3. Let 6 be a category and A a small (connected) category. We denote by
%" the category of functors from A to €: an object F 0 Ob(%¢") is apair ({F,}, {F_}) of a
family of objects {F,}, ; oy IN € and afamily of morphisms {F} , ;o IN €, where F, [
©(F,, F) for a O A(A, p); and amorphismh: ({F.}, {F,}) - ({G,}, {G,}) isafamily of
morphisms {h,}, ; gy IN 6 such that G, o h, = h o F_ for al morphisms a O A(A, p). The
constant functor

P: 6 - ¢

associates with each X [0 Ob(€) apair ({F,}, {F,}) such that F, = Xfor al A 0 Ob(A) and F,



=idyfor al a OMor(A).

Definition 12.4. Let 6 be a category and A a small (connected) category. A limit of F [0
ODb(¢"), denoted by lim F, is defined as aterminal object in the following category: an object
is a morphism in 6" E)f the form f : PX - F with X O Ob(6), i.e., a pair (X, {f,}) of X O
Ob(6) and afamily of morphismsf, [ 6(X, F,) with f, = F, o f, for all morphisms a 00 A(A,
w); amorphismh: (X {f,}) - (Y,{g,}) isamorphismh O €(X, Y) withf, =g, o hforal A
Ob(A).

Remark 12.1. Assume every F [0 Ob(%€¢") has alimit lim F = (lim F, {p,}). Then lim :
%" - % isafunctor and is aright adjoint of the constant fIJI’]CtOI’ P 'h<€ @M. Furtherm;Jre,
the morphisms p: = {p,} : P(Ilm F) — F give rise to the counit P o I|m - 1,. In
particular, if € is abelian, then lim isleft exact. Conversely, assume the constant functor P:
% - %" has aright adjoint lim @M L € and let p:Polim — 1, bethe counit. Then
every F 0 Ob(6") hasalimit lim F=(lim F, p.).

Definition 12.5. We denote by N the totally ordered set of non-negative integers. In this
case, afunctor N* —, <€ is given by a sequence of objects and morphismsin €

n+1

e Ky Xy %

and its limit is denoted by lim X.. In case € has countable direct products, there exists a
unique morphismin €

shift: [1 X - 1 X,
such that p,, o (shift) =1, ° p,., foral mON, wherethep, : ] X, - X, are projections.

Lemma 12.12. Each complex X' [J Ob(C(s)) defines a sequence of truncated complexes
and canonical homomor phisms

= 0L (e (XT) = 0L (X)) - - = 0L (XT)
suchthat X* 5 limag._, (X") canonically.
Proof. Straightforward.

Lemma 12.13. Assume o satisfies the condition Ab3". Then for any sequence



o X e XS L X

of objects and morphismsin s{ we have an exact sequencein s{

1-—shift

0 IlimX, - X 0O []X.
Proof. Straightforward.

Definition 12.6. Let I be atriangulated category with countable direct products. Then
for a sequence of objects and morphisms

e Ky Xy X,

its homotopy limit, denoted by hlim X, is defined by atriangle

1-shift

TN X) m - than M- M1 X, M- []X,

Definition 12.7. For * = — or nothing, we denote by K" (), the full subcategory of K'(+)
consisting of U-local complexes |I° [0 Ob(K" (£)).

Remark 12.2. It follows by Lemma 4.4 that Kb(fﬁ) C K'($) C K(9),.

Lemma 12.14. K(9¥), is a full triangulated subcategory of K(s{) closed under direct
productsand U n K($), ={0}.

Proof. Thefirst assertionisobvious. For any 1" [0 Ob(U n K($),), since K(A)(1", 1") =
0, by Proposition 3.5 1" =0in K(«).

Proposition 12.15. Assume s has enough injectives and satisfies the condition Ab4 .
Then the following hold.

(1) For any X* [0 Ob(K(«)) there exists a quasi-isomorphism X - [|° with I" O
Ob(K($),)-

(2) For any X' [0 Ob(K(s),,) there exists a quasi-isomorphism X* - " with |° O
Ob(K(%),).

Proof. (1) Let X' 0 Ob(C(s4)) and put X, = o”,__(X') for mON.



Claim 1: There exists aquasi-isomorphism ¢: X" - hlim X.

Proof. By Lemmas 12.12 and 12.13 we have an exact sequence in C(s)

1—shift

0M- X M- X, I X,

Thus by Proposition 6.5(1) we have a commutative diagram in K(s{)

1-—shift

X M- [OX, M- X,

¢! | |
1—shift

hiim X, @~ [1 X, - ] X..

We claim that ¢is a quasi-isomorphism. It suffices to show that H"(¢) is an isomorphis for
alnZ. LetnOZ. We have a sequence of objects and morphismsin s

o HY(X,,) — HOG) = HI(X)

such that H( X") = H( X;)) for —m< nand H'(X’) = 0 for — m> n. Thus we have an exact
sequence

1—shif
0 M - HY(X) 0~ [TH(X,) [ - [H(X,) 0 - 0.

Note that H"([T X;) = [1 H'(X;). Thus, H"(1 — shift) is epic and we get a commutative
diagram with exact rows

0 M- HYX) M- HY]X,) - H(] X,) - 0
HY(g) | I I

0 — HYhlim X}) ~ HY[ X;) 0~ H( X;) 0~ 0.

Claim 2: For each m [0 N there exists a quasi-isomorphism ¢, : X, - |, with O
Ob(K"(¥)).

Proof. By Proposition 4.7.

Claim 3: For each m [0 N there exists a morphism I, ., - | in K(s4) which makes the
following diagram commute



X - X,
l !
ler - 1,

Proof. By Lemma 6.15(1).
Claim4: hlim ¢,: hlim X' - hlim |, isaquasi-isomorphism.

Proof. By Claim 3 we have a homomorphism of trianglesin K(s{)

1-shift

TN X) M- hlim X, M- X, M- X,

i i i i
1 shift

T 1) @~ hlim 5 @~ [0, @ 1.

Since HY([7 ¢,) = 1 H"(¢,) isanisomorphism for all nO Z, [ Y, is a quasi-isomorphism,
sois hlim ¢, : hlim X - hlim I .

Claim5: hlim I isU-local.

Proof. By Lemmad4.4 every | is9U-local. Thusby Proposition 9.12[] I, isU-local, so
is hlim 1.

(2) Let n 0 Z and assume Ext'(—, X*) vanisheson & fori > n. By the part (1) there exists
aquasi-isomorphisms: X - 1" with I" 0 Ob(K($),). Leti >nandj:Z(1") - I'the
inclusion. Since by Proposition 9.13(2) we have

K(s)(T'(Z(17), 1") = K(s)(Z'(17), T(17))
= D(s4)(Z(1), T(1))
= Ext(Z(1°), I")
=0,
there existsf : Z'(1°) - I'"*suchthatj = d ™" of. ThusB(1") = Z((1") and the canonical
epimorphism I'"* . B(1") splits. Consequently, H'(1') =0andZ~*(1") O 9 for adl i > n.
Thus o (17) O Ob(K™($)) and by Lemma 10.7 the canonical monomorphismo (1) - I’

is a quasi-isomorphism.

Claim6: o (1") O Ob(K™(#),) and we have a quasi-isomorphism X" - o (I°).
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Proof. Let Z° 0 Ob(W) and u 0 K(«A)(Z", o (1')). Weclamthat u=0in K(s{). Let]j:
Z'(1') - I" be the inclusion and I o (I") - I the canonical monomorphism. Then,
since Z'(1') O %, there existsg : 1" - Z"(I") such that gj = idz”(r)' Also, since I [
Ob(K(%),), thereexistsh : fu = 0. Defineh’ O AXT (g (1)), Z') asfollows:

00  (i>n)
hi=Hyoh® (i=n).
Hh  (<n

Thenitiseasytoseethath’ : u=0. Thuso (1") O Ob(K(¥),) and by Proposition 9.13(1)
f o (I") - 1" isanisomorphism inK(s4). Hence we get a quasi-isomorphism f‘l °0S:
X - o (IN).

Proposition 12.16. Assume s has enough injectives and satisfies the condition Ab4 .
Then the following hold.

(1) The canonical functor K(sf) — D(s) induces equivalences K($), > D(s) and
K(9), > D(sh)yq.

(2) The canonical functors K(s4) — D(sd) and K(sd),,, — D(s4);,4 are localizations.

(3) The canonical functor D(sd),,, — D(s4) preserves direct products.

Proof. (1) By Propositions 9.13(2) and 12.15.

(2) Let Q: K(A) — D(sA) be the canonical functor and J : K($), - K(s4) the inclusion.
Then by the part (1) QJ : K(¥), — D(«A) is an equivalence. Let P: D(sd) — K($), bea
quasi-inverse of QJ. Then by Proposition 9.13(2) JP isaright adjoint of Q. Since P is fully
faithful, soisJP. Similarly, K(sd)., —» D(sd);,41s alocalization.

(3) Let{ X}, beafamily of objects of D(s4),, which has adirect product X" in D(sd)y,.
Weclaim [ X; O Ob(D(s4),,). By Proposition 12.15(2) we may assume the X; and X" are
objects of K'(¥),. Takead Z suchthat X' =0fori>a. LetA O\ andputn=max{i 0 Z |
H'(X;) 0}. By Lemma 10.6 we have a quasi-isomorphism t: o (X;) » X;. Also, there
exists v : T "(Z"(X})) - o (X;) such that H(v) : Z'(X]) - H"(X;) is the canonical
epimorphism. Thus0 Q(tv) O D(«A)(T-(Z(X})), X}). Since Z'( X;) admits an injective
resolution

0-Z(X) » X! — XMoo

X; 0 Ob(K™(¢),) implies T-(Z'( X;)) 0 Ob(D(s4),,)- Hence D(A)(T"(Z'(X;)), X’) 0and
n<a. Also, since D(oA)(T" @ V(B X;)), X*) =0, by Proposition 9.13(2) we have

11



KT B(X})), X;) = D)(T 2B X)), X))
—0

and the canonical exact sequence0 - Z( X)) - X7 - B'¥(X]) - Osplits. Thuso (X;) O
Ob(K (%)) and g, ( X;) 0 Ob(K"(#)). Then, since by Lemma 4.4 K($) C K'(¥),, and since
by Proposition 11.1(3) we have atriangle of the form

(0 (X)), X5, 0..(X5), LILIDL

it follows that o (X}) O Ob(K™($),). Thus we have a quasi-isomorphism o (X)) - X
with o ,(X;) 0 Ob(K*(¥),). Consequently, we may assume X, =0 for al i >aand A DA .
Then ] X; OOb(K($))and[] X, = X'.

Definition 12.8. Let € be a category and A asmall (connected) category. A colimit of F
00 Ob(‘¢™), denoted by lim F, is defined as an initial object in the following category: an
object is amorphism in <€7‘ of theformf : F - PXwith X Ob(%€), i.e., apair ({f,}, X) of X
[J Ob(€) and a family of morphisms f, O €(X, F,) with f, o F, = f, for al a O A(A, p); a
morphism h: ({f,}, X) - ({g,}, Y) isamorphismh O €(X, Y) with g, =h o g, for al A [
Ob(N).

Remark 12.3. Assume every F 0 Ob(‘¢") hasacolimit lim F = ({i,}, lim F). Then lim :
®" - %isafunctor and is aleft adjoint of the constant functor P: € - %" Furthermore,
the morphismsic = {i,} : P(lim F) - Fgivesrisetotheunit1 , - Po Iim. In particular,
if 6 isabelian, thenis lim right exact. Conversely, assume the constant functor P : ¢ — "
has a left adjoint lim :ZGA —» % andleti: 1, - Po lim betheunit. Thenevery F [
Ob(%¢") hasacolimit lim F = (i, lim F).

Definition 12.9. A functor N — 6 is given by a sequence of objects and morphismsin

xo_,..._,xni",xml_,...

and its colimit is denoted by lim X In case € has countable direct sums, there exists a
unique morphismin €

shift: OX, - OX.
such that (shift) o i, =i

of . foral mO N, wherethei,: X, — O X, areinjections.

m+1
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Lemma 12.17 (Dual of Lemma 12.12). Each complex X' [0 Ob(C(s4)) defines a
sequence of truncated complexes and canonical homomor phisms

To(X) o 5 0 (X))o 0 (X)) >

n+1

such that limo (X") 5 X' canonically.

Lemma 12.18 (Dual of Lemma 12.13). Assume s satisfies the condition Ab3. Then for
any sequence

Xy = oo X o X o e

of objects and morphismsin s{ we have an exact sequencein o«

1—shift

OX, - OX, 00— limX, 0 0.

Definition 12.10. Let I be atriangulated category with countable direct sums. Then for
a sequence of objects and morphisms

Xy o oor o X o X e

its homotopy colimit, denoted by hlim X, isdefined by atriangle

1—shift

OX 00— OX, 00 hlimX, 00~ T(OX).

Definition 12.11. For * =+ or nothing, we denote by K" (%), the full subcategory of K'(s4)
consisting of AU-colocal complexes P* [0 Ob(K'(%)).

Remark 12.4. It follows by Lemma4.8 that K°(®) C K (P) C K(P),.

Lemma 12.19 (Dua of Lemma 12.14). K(%), isa full triangulated subcategory of K(s{)
closed under direct sumsand U n K(P), = {0}.

Proposition 12.20 (Dual of Proposition 12.15). Assume & has enough projectives and
satisfies the condition Ab4. Then the following hold.

(1) For any X' [0 Ob(K(sA)) there exists a quasi-isomorphism P° - X' with P° [0
Ob(K(%),)-

(2) For any X" [ Ob(K(s4);,,) there exists a quasi-isomorphism P* - X" with P" [

13



Ob(K*(),).

Proposition 12.21 (Dual of Proposition 12.16). Assume & has enough projectives and
satisfies the condition Ab4. Then the following hold.

(1) The canonical functor K(sf) — D(s) induces equivalences K(?), > D(s4) and
K'(@#), = D(sh) g

(2) The canonical functors K(s4) — D(s4) and K(),y - D(sd);,4 are colocalizations.

(3) The canonical functor D(d),,; — D(sd) preserves direct sums.
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813. Right derived functors

Throughout this section, 4, 9B and 6 are abelian categories and A is the épaisse
subcategory of K(s{) consisting of acyclic complexes. Unless otherwise stated, functors are
covariant functors.

Definition 13.1. A full triangulated subcategory K'(s4) of K(s{) is called a localizing
subcategory if the canonical functor

K (s0)/U n K (4) — D(sH)

is fully faithful. If K'(s4) is a localizing subcategory of K(s{), we denote by D'(s4) the
quotient category K'(0)/U n K'(s4) and by Q : K' () — D () the canonical functor.

Remark 13.1. (1) K(sd), K*(s4), K™ °(s4), K*°(s4) and K°(4) are localizing subcategories
of K(sA).

(2) If o’ is athick subcategory of s, then K (), K (s4), KJ.(s4) and K&fj,(&ﬁ) are
localizing subcategories of K(sA).

(3) If o has enough injectives, then K'(s4),,, is alocalizing subcategory of K(sA).

(4) If A has enough projectives, then K'(A),, is alocalizing subcategory of K(sd).

(5) If K'(s4) isalocalizing subcategory of K(s{), then K’ (s4)® is a localizing subcategory
of K(sA4).

(6) We have K (4)® = K*(s4%), K*(d)® = K (A%®), K°(s4)® = K°(A4™), etc..

Definition 13.2. Let K'(s{) be alocalizing subcategory of K(s{) and F : K'(sd) — K(%) a
o-functor. A right derived functor of F is an initial object of the following category: an
object is a pair (¢, G) of a 0-functor G : D' (s4) — D(®) and ¢ 0 Hom (QF, GQ); and a
morphism 1 : ({}, G)) - ({, G,) isamorphism nn 00 Hom (G,, G, with {, = n, > ¢;. The
right derived functor of F is denoted by (LIR'F) or simply by R'F. Incase K () = K(sA),
K*(s4), K°(s4), K (1), etc., R'F is written RF, R'F, R°F, R F, etc., respectively. If no
confusion can result, then R'F is simply written RF. Similarly, a right derived functor of a
d-functor F : K'(s{) — D(%) is defined.

Incase F : K'(sd) — K(B) is a contravariant 8-functor, we define aright derived functor
of F asaright derived functor of a covariant d-functor F : K’ (s4)® — K(%).

Remark 13.2. Let K'(s4) be alocalizing subcategory of K(s4) and F : K'(s4) - K(®) a
a-functor which has aright derived functor (&, R'F). Then for any n O Z the following hold,

(1) FT": K'() — K(B) has aright derived functor (&_,, RF o T").

(2) T'F: K'(d) — K(%) has aright derived functor (T"&, T" o R'F).



Proposition 13.1. Let K'(s{) be a localizing subcategory of K(sf) and F : K'(sd) — K(%)
a 0-functor. Then the following hold.

(1) QF : K'(s4) — D(%) vanishes on the acyclic complexes if and only if there exists a
d-functor F’ : D'(s4) — D(%) suchthat QF = F'Q.

(2) If there exist ad-functor F’ : D*(s4) — D(%) and anisomorphismé: QF = F'Q, then
(&, F) isaright derived functor of F.

Proof. (1) The“if” partisobvious. The“only if” part follows by Proposition 9.10.
(2) Let G: D'(«d) — D(%) bead-functor. Since we have an isomorphism

Hom (QF, GQ) 5 Hom (F'Q, GQ), {+> '~ &,

it follows by Proposition 9.11 that for any ¢ [0 Hom (QF, GQ) there exists a unique n O
Hom (F', G) such that { =g~ ¢.

Remark 13.3. Let K'(s4) be a localizing subcategory of K(s4). Then T: D'(sd) — D'(s4)
isaright derived functor of T: K'(s) - K'(sA).

Proposition 13.2. Let K'(s{) be a localizing subcategory of K(sf) and F : K'(sd) — K(%)
a0-functor. For apair (&, R'F) of a 0-functor R'F : D (s4) — D(%) and a homomor phism of
d-functors & : QF — R'F o Q, the following are equivalent.

(1) (¢, R'F) isaright derived functor of F.

(2) For any d-functor G : D'(s4) — D(), the correspondence

Hom (R'F, G) -~ Hom (QF, GQ), N Ny &
is an isomor phism.
Proof. Obvious.

Corollary 13.3. (1) Let K'(#4) be a localizing subcategory of K(s4) and F = (F, 6) : K’ ()
- K(%) a d-functor. Assume F has a right derived functor (&, R'F) and let R'F = (R'F, n).
Then TS » QB = 1, o & and, for a homomorphism of 0-functors : RF o T — To RF, the
condition T¢ o Q6 = @, o &; implies @=n.

(2) Let K'(s4) be a localizing subcategory of K(s4) and F, G : K'(#d) — K(%) d-functors.
Assume both F and G have right derived functors (¢, R'F) and ({, R'G), respectively. Then
we have a correspondence



Hom (F,G) -~ Hom (RF,R'G), ¢p— R'¢

such that { e Q= (R @), ¢&.

(3) Let K" () C K'(A) be localizing subcategories of K(s4) and F : K'(«) — K(®) a
o-functor. Assume both F and F |Km(&4) have right derived functors (&, R'F)
and (¢, R"(F | KT et) ), respectively. Then there exists a unique homomor phism of d-functors

¢: R**(F |Krr(&4)) - RF le(&ﬁ)
such that & |Km(&ﬁ) =¢y° (.

(4) Let K'() C K(sA), KT'(%B) C K(B) be localizing subcategories and let F : K' () —
K(®), G: K'(B) - K(%) be o-functors. Assume that F has a right derived functor (¢, R'F)
and R'F(D"(«)) C D'(%), that G has a right derived functor (¢, R'G), and that F(K'(s4)) C
K'(@) and GF has a right derived functor (¢, R (GF)). Then there exists a unique homomorphism
of d-functors

¢: R(GF) -~ RG-RF

suchthat R'G(&) o & = ¢ o (.

(5) Let 4’ be a thick subcategory of o4 and J: D*(s’) — D*(s4) the canonical functor.
Let F : K'(s4) — K(®) be a d-functor. Assume both F and F |+ 0 have right derived
functors (&, R'F) and (¢, R'(F | ), respectively. Then there exists a unique homomorphism
of d-functors

K™ (")

.t +
¢.R(F|KM,)) - RFoJ
suchthatE|K+(&ﬁ,) =¢y° (.

Proof. (1) Since £ 0 Hom (QF, R'F - Q), it follows by definition that T« Q8= 1, o &..
Next, let ¢ O Hom (RF o T, Te RF) with TE e Q8= @, o &. Then, since (§, RF-T)isa
right derived functor of F o T, @, o & =1, o & implies = 1.

(2) { > Qe O Hom (QF, GQ) for al ¢ Hom (F, G).

(3) 5 |Km(.9d) [J Hom (Q ° (F |K"ﬂ(w))! RF | DT(st) ° Q)

(4) R'G(&) o - 0 Hom (QGF, R'G o« RF - Q).

(5) E |K+(&4') [JHom (Q ° (F |K+(.94’))' R FolJo Q)

Definition 13.3. Let K'(s4) be alocalizing subcategory of K(s4) and F : K'() — K(®) a
d-functor. In case F hasaright derived functor R'F: D" (s4) — D(%), weset RF=H'o R'F:
D(d) — % foridZ.



Proposition 13.4. Let K'(s{) be a localizing subcategory of K(sf) and F : K'(sd) — K(%)
a 0-functor. Assume F has aright derived functor R'F : D' (s4) — D(%). Then for any exact
sequence 0 — X' - Y - Z° - 0inC(od) with X, Y*, Z" O Ob(K"(s4)) we have a long
exact sequence

- - RF(X) = RF(Y') - RF(Z) - R*'F(X’) > ---.
Proof. By Proposition 11.1(2).

Lemma 13.5. Let K'(«) be a localizing subcategory of K(s4). Assume K'(s{) has a full
triangulated subcategory &£ such that for any X* [ Ob(K'(s4)) there exists a quasi-isomorphism
X = " with I' OOb(¥). Then for any ulJ K'(«)( X", Y') and a quasi-isomorphism s:
X' - 1, with IS [0 Ob(¥) we have a commutative square

X LY
s Lot
I, - Iy
in K'(s4) such that t is a quasi-isomorphism with I, O Ob(¥). Furthermore, if u is a
quasi-isomorphism, sois U.

Proof. Lets: X* — |5 beaquasi-isomorphism with I, O Ob(¥). Form ad-square

X - Y
s It
u’ L

l, - Y

and take a quasi-isomorphismt” : Y™ - I, with I, O Ob(¥). Sinceby Lemma7.4t isa
quasi-isomorphism, soist=t"t' : Y° - |;. Incaseuisaquasi-isomorphism, since (s =tu
is aquasi-isomorphism, sois U by Proposition 4.2.

Proposition 13.6 (Existence theorem). Let K'(s4) be a localizing subcategory of K(s4)
and F : K'(sd) —» K(%) a d-functor. Assume K'(s4) has a full triangulated subcategory &£
such that

(1) for any X' 0 Ob(K"(s4)) there exists a quasi-isomorphism X° — |° with |* 0 Ob(%),
and



(2) QF |, : £ — D(%) vanishes on the acyclic complexes.

Then F has a right derived functor (&, R'F) such that & : Q(F(1")) - RF(Q(I")) isan
isomorphism for all 1° O Ob(¥). In particular, for any X' 0 Ob(K'(s4)), if we take a
quasi-isomorphism X — I with I' 0 Ob(%), then RF(Q( X)) = H(F(1")) for all i O Z.

Proof. LetJ: ¥ — K'(s4) betheinclusion. By hypothesis (1) and Proposition 8.17(1) the
canonical functor J : /U n &£ - D'(A) isan equivalence. Let P :D'(«) - £/U n £ bea
quasi-inverse of J and € : 1, ., > PJ anisomorphism. Also, by hypothesis (2) and
Proposition 9.10 we have ad-functor F’ : £/U n &£ - D(%) suchthat QFJ =F' Q. PutR'F
=FP. LetG:D () - D(%) bead-functor. By Proposition 9.11 we have an isomorphism

Hom (R'F, G) 5 Hom (QFJ, GQJ), n > (n, o F&o=Ng°F &
We need the following.
Claim: For any d-functor G : D'(s4) — D(%) we have an isomorphism
Proof. Let n 0 Hom (QF, GQ) with n,=0. Then, for any X' 0 Ob(K'(s4)), by taking a
quasi-isomorphisms: X* - 1" with I" 0 Ob(%), we get n, = G(Q(9) * o n, o YF(9) = 0.
Thus n = 0. Conversely, let 8 0 Hom (QFJ, GQJ). For X' O Ob(K'(s4)), take a quasi-
isomorphism s: X° - |I° with I" 0 Ob(%¥) and set n, = G(Q(9) ' o 6 o QF(9), which

does not depend on the choice of s To see this, take another quasi-isomorphisms : X' -
[ with I O Ob(¥). Then by Lemma 13.5 we have a commutative square

s Lt

inK'(s4) witht, t' quasi-isomorphismsand 1" 0 Ob(¥). Then we have

G(Q(s)) ™" © 60 Q(F(s)) =G(Q(9) ™" ° G(Q(')) " © 6.  QF()) ° Q(F(s))
=GQ(t'9) " o 6. o Q(F('S))
= G(Q(s)) "o G(Q(D) ™ 2 6. ° Q(F(1)) o Q(F(S))
=G(Q(s)) e 6, 0 Q(F(s)).

Notethat 6, = n, for al 1" 0 Ob(¥). Thusit only remainsto check that n [ Hom (QF, GQ).
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Let u O K'(4)( X", Y'). By Lemma 13.5 we have acommutative square

N
s It
Iy - Iy
in K'(sf) with's, t quasi-isomorphisms and 15, I, 0 Ob(¥). Since we have a commutative
diagram

. QFs . 0y . GQs~t .
QFX M- QFI, M- GQI, M- GQX
QFu | I QFG l GQl } GQu

-1

QFt 0\, GQt
QFY M- QFI, M- GQI, M- GQY,

it follows that n 0 Hom(QF, GQ). Next, let F = (F, a) and G = (G, ). Then, since QT =
TQ, by Proposition 7.10(4) QF = (QF, Qa) and GQ = (GQ, ;). Also, since JT = TJ, we
have QFJ = (QFJ, Qa)) and GQJ =(GQJ, ). Let X' [ Ob(K'(«4)) and take a quasi-
isomorphisms: X* - |I" with I" 0 Ob(¥). Since we have acommutative diagram

QFTs on GQTs*
QFTX - QFJTI" - GQJTI" M - GQTX

Qay | I Qay 1 QB L Box
76, -1

TQFs TGQs
TQF X" [ - TQFJI" I - TGQJI® I - TGQ X",
it follows that n 0 Hom (QF, GQ).
By Claim there exists £ 0 Hom (QF, RF o Q) withF' e, = &,. Then
(Ny oF q=Nyq°F &

=g ° '3
= (’75 °© E)J

for al n 0 Hom (R'F, G), so that again by Claim we get an isomorphism

Hom (R'F, G) = Hom (QF, GQ), N+ 5° &.

Since gisan isomorphism, sois &, =F'g,, forall I° 0 Ob(£). Finaly, let X 0 Ob(K(s1))
and take a quasi-isomorphism X° - |* with |" 0 Ob(¥). Then



RFE(Q(X") = H(RF(Q(X)))
= H'(R'F(Q(I"))
= H(Q(F(1")))
= H'(F(1"))

foraliO Z.

Corollary 13.7. Let F : 4 - 9% be an additive functor. Assume there exists a
subcollection $ of Ob(s4) such that

(2) for any X [0 Ob(s{) there exists a monomorphism X — | insgd with|l O %,

(2)if0 - X - Y Z - Oisan exact sequencein o with X O ¢, then Y O ¢ if and only
ifz0 $, and

3)if0 - X - Y - Z - Oisan exact sequencein o with X, Y, Z [0 .9, then the induced
sequence0 - FX - FY - FZ - 0in% isexact.

Then the extended 0-functor F : K*(sf) — K(®) has a right derived functor (& R'F) such
that & : Q(F(1°)) - R'F(Q(1")) isan isomorphismfor all I* O Ob(K'($)). In particular,
for any X 0O Ob(D'(s4)) there exists a quasi-isomorphism X' — 1° in K'(s4) with 1" O
Ob(K*($)) and RF(X") = H'(F(1")) for all i O Z.

Proof. Note that by Proposition 6.1(2) K*($) is a full triangulated subcategory of K*(s4).
The following enables us to apply Proposition 13.6 for £ =K' ($).

Claim (1) For any X" O Ob(K*(s4)) there exists a quasi-isomorphism X' — |* with I* O
Ob(K*()).
(2) QF : K*($) — D(®) vanishes on the acyclic complexes.

Proof. (1) By hypothesis (1) and Proposition 4.7.
(2) Let 1" O Ob(U n K'(¥)). By hypothesis (2) Z'(1') O $ for al i O Z. Thus by
hypothesis (3) F(1°) isacyclic.

Remark 13.4. In Corollary 13.7, the following hold.

(1) RF(X) =0for al X 0 Ob(s4) andi <O0.

(2 RF()=0foral |l O$andi O.

(3 RF : ol — B isleft exact.

(4) We have a homomorphism ¢ : F - R°F such that ¢, is an isomorphism for all | O $
andF : o - Bisleft exactif and only if ¢ isanisomorphism.

Proposition 13.8. Let K'(s4) be a localizing subcategory of K(sf) and F : K'(sd) — K(%)



a 0-functor. Assume the canonical functor Q : K'(sf) — D’(4) hasaright adjoint P : D'(s4)
- K'() and let £ : 1KW) - PQ betheunit. Then the following hold.

(1) F has aright derived functor (¢, R'F) withR'F = QFP and & = QFe.

(2) Assume P is fully faithful. Then for any X 0 Ob(D’(«)), &, is an isomorphism and
RF(X') = H(FP X") for all i 0 Z.

Proof. (1) Letd: QP - 1
define correspondences

be the counit. Let G: D'(s4) — D(%) be a d-functor and

D(s4)

as - Hom(QFP, G) —» Hom(QF, GQ), N+ g, QFe¢,
Bs : Hom(QF, GQ) - Hom(QFP, G), {+ Gd-° (.

Claim: (a) a isanisomorphism witha, = B..
(b) ag(n) OHom (QF, GQ) for dl n 0 Hom (QFP, G).
(©) Bs(Q) D Hom (QFP, G) for al ¢ 0 Hom (QF, GQ).

Proof. (a) By thefact that Pdo & =id, and &, - Qe = id,,

(b) By Proposition 12.1 € [1 Hom (1KW)’ PQ). Thus QF¢ [0 Hom (QF, QFPQ), so that
No ° QF& T Hom (QF, GQ) for dl n 0 Hom (QFP, G).

(c) By Proposition 12.1 6 [0 Hom (QP, 10”(31))' Thus G 0 Hom (GQP, G), so that GJ -
¢, 0 Hom (QFP, G) for al ¢ 0 Hom (QF, GQ.

Consequently, we get an isomorphism
Hom (QFP, G) —» Hom (QF, GQ), N+ n, > QFe

and Proposition 13.2 applies.

(2) Assume P isfully faithful. Then disanisomorphism. Thus, since P o &, =id,, & is
an isomorphism, sois&,. Finaly, for any X 0 Ob(D'(#4)) and i O Z, we have RF(X') =
H'(R'F(X")) = H(QF(P(X"))) = H(F(P(X"))).

Corollary 13.9. Let F : K'(sd) - K(®) be a 0-functor. Assume s has enough injectives
and let % be the collection of injective objects of «{. Then the following hold.

(1) F has a right derived functor (&, R'F) such that & : Q(F(1")) — R'F(Q(1")) isan
isomorphismfor all 1° 0 Ob(K'(%)).

(2) For any X' O Ob(D*(s)), there exists a quasi-isomorphism X — 1° in K*(s4) with
I* 0 Ob(K*(¥)) and RF(X") = H(F(1")) for all i OZ.

(3) If F is given by an additive functor F : s — 9, then the functor R'F |, oA - B



coincides with the usual i" right derived functor of F : o4 — % for all i > 0.

Proof. (1) and (2) By Propositions 12.4 and 13.8.
(3) Let X 0 Ob(s4) and X — |" an injective resolution of X. Then X= 1" in D*(«{) and
thus RF(X) = RF(I") fordli O Z.

Corollary 13.10. Let «’ be a thick subcategory of «{ and F : K (#) - K(®B) a
o-functor. Assumes{’ has enough sd-injectives and let $ be the collection of injective objects
of /4. Then the following hold.

(1) F hasaright derived functor (£, R}.F) such that &, : Q(F(1")) - R;.F(Q(I")) isan
isomorphismfor all 1" OK*($ n o).

(2) For any X' O Ob(D,.(s4)), there exists a quasi-isomorphism X" - 1" in K (s4)
with I" OOb(K*($ n o)) and RF(X") = H(F(1")) for all i O Z.

Proof. By Propositions 12.5 and 13.8.

Proposition 13.11. Let K™ (sd) C K'(s4) be localizing subcategories of K(s{) and F :
K'(4) — K(%) ao-functor. Assume K'(s4) has a full triangulated subcategory & such that

(1) for any X 0O Ob(K'()), there exists a quasi-isomorphism X - |° with I" O
Ob(f),

(2) for any X' 0 Ob(K™" (1)), there exists a quasi-isomorphism X* — |I" with 1" O Ob(¥
n K7 (s4)), and

(3) QF |, : &£ — D(%) vanishes on the acyclic complexes.

Then both F and F |, ,, have right derived functors (¢, R'F) and ({, R"(F |y )
respectively, and the canonical homomorphism

§:R(Fl ) ~ RF

DT(sd)

is an isomor phism.

Proof. By Proposition 13.6 both F and F |, ., have right derived functors (¢, R'F) and
(¢ R™(F | ,,))). respectively, and by Corollary 13.3(3) we have a unigue homomorphism of
o0-functors

¢ R(Fl ) = RF| DT(st)
such that & |, = @q° ¢ Forany 1" O Ob(£ n K"(s4)), by Proposition 13.6 both & and

¢, are isomorphisms, so that ¢, is an isomorphism. Thus, since by hypothesis (2) the
canonical functor Q: &£ n K™ (o) — D™ (o) isdense, ¢ isan isomorphism.



Proposition 13.12. Let K'(s4) be a localizing subcategory of K(s4) and F : K'(#) —
K(%) ao-functor. Let K'(%) be a localizing subcategory of K(®) and G : K'(®B) - K(%) a
o-functor. Assume

(1) K'(s4) has a full triangulated subcategory & for which the hypotheses (1), (2) of
Proposition 13.6 are satisfied,

(2) K'(%) has a full triangulated subcategory .l for which the hypotheses (1), (2) of
Proposition 13.6 are satisfied, and

(3) F(K'(s4)) C K'(%) and F(&) C L.

Then F, G and GF have right derived functors (¢, R'F), ({, R'G) and (¢, R (GF)),
respectively, R'F(D"(s4)) C DY(®), and the canonical homomor phism

¢:R(GF) - RG-RF
is an isomor phism.

Proof. By Proposition 13.6 F and G have right derived functors (¢, R'F) and ({, R'G),
respectively. Let X' [0 Ob(¥) be acyclic. Then, since Q(F( X")) =0, by Proposition 9.3(3)
F(X") is acyclic and Q(G(F(X"))) = 0. Thus, again by Proposition 13.6 GF has a right
derived functor (¢, R (GF)). Also, for any X' 0 Ob(D"(4)), Since we have a quasi-isomorphism
X = 1" with I' 0 Ob(%), RF(X') = RFQ(I1')) = Q(F(1')) O Ob(D(%)). Thus by
Corollary 13.3(4) we have a unique homomorphism of d-functors

¢:R(GF) = R'GoRF

such that R'G(&) o ¢ = $oo Y. Let 1" O Ob(¥). Then by Proposition 13.6 ¢, {;, and i, are
isomorphisms, so that @, is an isomorphism. Thus, since Q: &£ - D(s4) isdense, ¢ isan
isomorphism.

Proposition 13.13. Let s’ be a thick subcategory of ¢ and J : D*(s’) — D'(sd) the
canonical functor. Let F: K'(s) — K(%) be a d-functor. Assume s has enough injectives
and 4’ has enough s-injectives. Then both F and F |KW,) have right derived
functors (&, R'F) and (¢, R*(F |+ 3 ﬂ,))), respectively, and the canonical homomorphism

$:R(Fl )~ RFeJ
is an isomor phism.

Proof. By Corollary 13.9(1) both F and F | have right derived functors (¢, R'F) and

K* (')
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(¢ R'(FI,. 1)) respectively. Thus by Corollary 13.3(5) we have a unique homomorphism
of a-functors

0 R*(F|Kw)) S RFoJ

such that & |K*(&ﬁ’) = ¢, o {. Let ¥ be the collection of injective objects of A.
Let I' 0 Ob($ n A’). Then by Corollary 13.9(1) both &, and ¢, are isomorphisms, so that
¢, isanisomorphism. Thus, since by Corollary 13.9(2) Q: K'($ n s0’) — D*(s{’) isdense,
¢ is an isomorphism.

Proposition 13.14. Assume s has enough injectives Let F : 4 — 9B be a functor which
has an exact left adjoint U : 93 — <. Then the following hold.

(1) The extended d-functor F : K'(s) — K(®) has a right derived functor (&, R'F) which
satisfies R'F(D"(s4)) C D' (B).

(2) For the extended d-functor U : K'(B) — K(s4), there exists a -functor U : D*(B) -
D(s4) such that QU =TQ.

(3) U:D'(B) - D'(«A) isaleft adjoint of R'F : D(s4) — D*().

(4) If F isfully faithful, soisRF.

Proof. (1) By Corollary 13.7.

(2) Itisobviousthat QU : K'(®B) — D(sf) vanishes on the acyclic complexes.

(3) By Proposition 3.10 U : K'(®B) - K'(«) isaleft adjoint of F: K'(s4) — K'(%). Lete
1 - FU,d:UF - 1K+(&4) be the unit and the counit, respectively.

K™ (%)

Claim 1: There exists 90 Hom (U - R'F, 1_. ) suchthat Q6= 6,0 US.

D" (o)

Proof. Let $ be the collection of injective objects of si. For any X O Ob(K'(s)) there
exists a quasi-isomorphism X — 1" with I O Ob(K'($)). Also, ¢ is an isomorphism for
al 1" OOb(K'($)). For X' O Ob(K*(s4)), take a quasi-isomorphisms: X - |I" with " [
Ob(K'(¥)) and set B, = Q(s) * o Q3 o U¢* o U(R'F(Q(s))), which does not depend on the
choice of s. Then® O Hom (U - R'F o Q, Q) and Qd =00 U& Thus by Proposition 9.11
there exists 8 D Hom (U« R'F, 1_. ) such that B= 6,

D™ (st)

Claim 2: There exists n 0 Hom (1 R'F - U) such that &, - Qe= No:

D* (%) ’
Proof. By Proposition 9.11.

Claim3: R'FOo n_,_=id

R'F - CR'F

11



Proof. We have

(R+F00 r’R*F)Q &= R+F6Q ° rIR*FQ °¢
= R'FO,0 RFUE o Ny
= R'F(6,° U&) o N
=R'F(QJ) o & Q&
=¢oQFJ0 Qg
=&

Thus by Proposition 13.2 R'F60 n_._ = id

F R'F’
Claim4: 6;0Un =id;.
Proof. We have

(650 UrI)Q = GL-JQ °© Ur’Q
= 0y, 0 U&, - UQe
=(6,°U¢,°QUe
=Qd, QUe

=idqy,.

Thus by Proposition 9.11 8; - Un =id;.

(4) Assume Jdis an isomorphism. For any | 0 Ob(K*(¥)), since Q4 = 6, ° U¢, and since
&, is an isomorphism, 6, is an isomorphism. Since K'($) = D'(sA), it follows that Bis an
isomorphism.

12



814. Left derived functors

Throughout this section, 4, B and % are abelian categories, U is the épaisse subcategory
of K(sd) consisting of acyclic complexes. Unless otherwise stated, functors are covariant
functors.

Definition 14.1. Let K'(s{) be alocalizing subcategory of K(s{) and F : K'(sd) — K(%B) a
o-functor. A left derived functor of F isaterminal object of the following category: an object
isapair (G, ¢) of ad-functor G : D' (sf) — D(®B) and ¢ O Hom (GQ, QF); and a morphism n
1 (G §) - (G, ) isamorphism n O Hom (G, G,) with {; = {, > n,. The left derived
functor of F is denoted by (L'F, DJor simply by L'F. In case K'(sf) = K(s4), K*(s4), K(4),
K, (s4), etc., L'F iswritten L'F, L'F, L°F, L_.F, etc., respectively. If no confusion can
result, then L'F is simply written LF. Similarly, a left derived functor of a d-functor F :
K'(«d) — D(%) is defined.

Incase F : K'(sd) — K(%) is a contravariant 0-functor, by replacing K'(s«{) with the
opposite category K'(s4)®, we define a left derived functor of F as a left derived functor of a
covariant d-functor F : K'(s4)® — K(%).

Remark 14.1. Let K'(s4) be alocalizing subcategory of K(s4) and F : K'(s4) - K(®) a
d-functor which has aleft derived functor (L'F, &). Then for any n O Z the folowing hold.

(1) FT": K'(s1) — K(%B) has aleft derived functor (L'F o T, £.,).

(2) T'F: K'(d) — K(%) has aleft derived functor (T"o L'F, T"é).

Proposition 14.1 (Dual of Proposition 13.1). Let K'(s{) be a localizing subcategory of
K(sd) and F : K'(«d) — K(%) aad-functor. Then the following hold.

(1) QF : K'(s4) — D(%) vanishes on the acyclic complexes if and only if there exists a
d-functor F' : D'(sd) — D(%) suchthat FFQ = QF.

(2) If there exist a d-functor F’ : D'(s4) — D(%) and anisomorphismé: F'Q = QF, then
(F’, &) isaleft derived functor of F.

Remark 14.2. Let K'(s4) be a localizing subcategory of K(s4). Then T: D'(s4) — D'(sA)
isaleft derived functor of T: K'(s) — K'(s4).

Proposition 14.2 (Dual of Proposition 13.2). Let K'(s«{) be a localizing subcategory of
K(sd) and F : K'(d) — K(®B) a d-functor. For a pair (L'F, &) of a 0-functor L'F : D' (4) —
D(%) and a homomorphism of 0-functors & : L'F - Q — QF, the following are equivalent.

(1) (L'F, &) isaleft derived functor of F.

(2) For any d-functor G : D'(s4) — D(%), the correspondence



Hom (G, L'F) — Hom (GQ, QF), n— & - n,
is an isomor phism.

Corollary 14.3 (Dua of Corollary 13.3). (1) Let K'(s4) be a localizing subcategory of
K(#) and F = (F, 9) : K () - K(®B) a 0-functor. Assume F has a left derived functor (L'F,
§). Then QB & =Té& o n, and, for a homomorphism of d-functors @: L'F o T - To L'F, the
condition QB0 &, =T& o ¢, implies ¢=n.

(2) Let K'(s4) be a localizing subcategory of K(s4) and F, G : K'(#d) — K(%) d-functors.
Assume both F and G have left derived functors (L'F, &) and (L' G, ), respectively. Then we
have a correspondence

Hom (F,G) -~ Hom (L'F,L'G), p—~L"gp

such that Qe &= (L' @)

(3) Let K" () C K'(A) be localizing subcategories of K(s4) and F : K'(«) — K(®) a
-functor . Assume both F and F |Km(&4) have left derived functors (L'F, &) and
(L™ (F |Km( &4))’ (), respectively. Then there exists a unique homomor phism of 0-functors

B:LF |yu — L' L)

such that & |K%¢) ={° ¢,

(4) Let K' () C K(sA), KT'(%B) C K(B) be localizing subcategories and let F : K' () —
K(®), G : K'(B) — K(6) be d-functors. Assume that F has a left derived functor (L'F, &)
and L'F(D"(«)) C D(®), that G has a left derived functor (L'F, ), and that F(K"(s4)) C
K'(@) and GF has a left derived functor (L"(GF), (). Then there exists a unique homomorphism
of d-functors

¢:L'GoL'F - L' (GF)

suchthat ¢ o L'G(&) = o ¢,
(5) Let A’ be a thick subcategory of «{ and J : D(sd’) — D («) the canonical functor.
Let F: K (A) - K(%) be ao-functor. Assume both F and F | have left derived functors

K~ (s1")
(L'F, & and (¢, L (F | ), respectively. Then there exists a unique homomorphism of
o-functors

K‘(s»l’))

p:LFod - LFl )

such that & |K_(ﬂ,) ={° ¢,



Definition 14.2. Let K'(s4) be a localizing subcategory of K(s4) and F : K'(s4) — K(%) a
d-functor. If F has a left derived functor L'F : D'(«d) — D(®), weset LF=H"' o L'F:
D(d) » B forilZ.

Proposition 14.4 (Dual of Proposition 13.4). Let K'(«{) be a localizing subcategory of
K(sf) and F : K'(d) — K(®B) a o-functor. Assume F has a left derived functor L'F : D'(A)
- D(®B). Then for anexact sequence0 - X" - Y - Z° 5 0inC(oA) with X*, Y, Z' [0
Ob(K'()), we have a long exact sequence

= LF(X) = LF(Y) = LR(Z') = L jF(X) -

Lemma 14.5 (Dual of Lemma 13.5). Let K'(s4) be a localizing subcategory of K(s).
Assume K'(s4) has a full triangulated subcategory & such that for any X' 0 Ob(K"(4)) there
exists a quasi-isomorphism P° - X" with P* 0 Ob(¥). Then for any u O K'(«)( X", Y)
and a quasi-isomorphisms: B, — X' with B, O Ob(¥) we have a commutative square

G

R - R
s Lt

X - Y

in K'(s4) such that t is a quasi-isomorphismwith P, [0 Ob(¥). Furthermore, if u is a
quasi-isomorphism, sois U.

Proposition 14.6 (Dual of Proposition 13.6). Let K'(s«{) be a localizing subcategory of
K(sd) and F : K'(d) — K(%) a d-functor. Assume K'(s) has a full triangulated subcategory
< such that

(1) for any X' 0O Ob(K'(s)), there exists a quasi-isomorphism P° - X' with P* O
Ob(¥), and

(2) QF |, : & — D(%) vanishes on the acyclic complexes.

Then F has a left derived functor (L'F, &) such that &, : L'F(Q(P")) — Q(F(P)) isan
isomorphism for all P° 0 Ob(%¥). In particular, for any X' O Ob(D’(s4)), if we take a
quasi-isomorphism P* - X' in K'(s4) with P 0 Ob(¥), then RF(X') = H(F(1")) for all i
0Z.

Corollary 14.7 (Dua of Corollary 13.7). LetF : 4 — 9B be an additive functor. Assume
there exists a subcollection % of Ob(s4) such that
(2) for any X [0 Ob(s{) there exists an epimorphismP - Xin & with P O %,



(2)if0 - X > Y - Z > Oisan exact sequencein s withZ 0%, then' Y O % if and only
if XO %, and

3)if0 - X - Y - Z - Oisan exact sequence in o with X, Y, Z 0 %, then the induced
sequence0 - FX - FY - FZ - Oisexact.

Then the induced 0-functor F : K(sf) — K(%) has a left derived functor (L7F, &) such that
& L F(Q(P)) —» Q(F(P)) isanisomorphismfor every P° O Ob(K™($)). In particular, for
any X' [0 Ob(D («)), there exists a quasi-isomorphism P° - X' in K(«) with P° O
Ob(K($)) and L, F(X) = H '(F(P")) for all i O Z.

Remark 14.3. In Corollary 14.6, the following hold.

(1) L, F(X) =0for al X 0 Ob(«) andi <O0.

(2 L, F(P)=0foralPO% foralilZ.

(3) L,F: sd — B isright exact.

(4) We have a homomorphism ¢ : L F — F such that ¢, is an isomorphism for all P O %
andF : o - Bisright exact if and only if ¢ isan isomorphism.

Proposition 14.8 (Dual of Proposition 13.8). Let K'(«{) be a localizing subcategory of
K(sf) and F : K'(«) — K(%) ad-functor. Assume the canonical functor Q : K'(s4) — D'(«A)
has a left adjoint P : D'(«d) — K'(s4) and let & : PQ - 1Kw) be the counit. Then the
following hold.

(1) F hasa left derived functor (L'F, &) such that L'F = QFP and & = QFJ.

(2) Assume P is fully faithful. Then for any X' 00 Ob(D’(«)), & is an isomorphism and
LF(X") =H'(F(P(X"))) foralli O Z.

Corollary 14.9 (Dual of Corollary 13.9). Let F : K () - K(%B) be a 0-functor. Assume
A has enough projectives and let % be the collection of projective objects of s{. Then the
following hold.

(1) F has a left derived functor (L'F, &) such that &, : L F(Q(P’)) —» Q(F(P")) is an
isomorphismfor all P* [0 Ob(K™(%)).

(2) For any X" [0 Ob(D'(«)), there exists a quasi-isomorphism P° - X' in K7(s4) with
P" 0 Ob(K (%)) and LF(X') = H'(F(P")) for all i O Z.

(3) If F is given by an additive functor F : s — 9, then the functor L.F |, : o — %
coincides with the usual i" left derived functor of F : &4 — 9 for all i > 0.

Corollary 14.10 (Dua of Corollary 13.10). Let 0’ be a thick subcategory of 54 and let F
C K (1) — K(B) a d-functor. Assume 54’ has enough si-projectives and let % be the
collection of projective objects of «{. Then

(1) F hasa left derived functor (L .F, &) suchthat . : L F(Q(P’)) — Q(F(P")) isan
isomorphismfor all P* OK*(% n A").



(2) For any X" O Ob(D_.(s4)), we have a quasi-isomorphism P° — X" in K, (s{) with
P OKY® n «)and LF(X") = H'(F(P")) for all i O Z.

Proposition 14.11 (Dual of Proposition 13.11). Let K (sf) C K'(«) be localizing
subcategories of K(sf) and F : K'(sd) - K(®B) a d-functor. Assume K'(s) has a full
triangulated subcategory & such that

(1) for any X' O Ob(K'(s4)), there exists a quasi-isomorphism P° - X' with P* [
Ob(%),

(2) for any X* O Ob(K"(s4)), there exists a quasi-isomorphism P° — X' with P* [
Ob(& n K™ (s1)), and

(3) QF |, : £ — D(%) vanishes on the acyclic complexes.

Then both F and F |, ., have left derived functors (L'F, & and (L (F i) O
respectively, and the canonical homomor phism

¢:L'F| S LY

D™ () K:D(&d))

is an isomor phism.

Proposition 14.12 (Dual of Proposition 13.12). Let K'(s{) be a localizing subcategory of
K(sd) and F : K'(s) — K(®B) ad-functor. Let K'(%) be a localizing subcategory of K(%) and
G:K'@®) - K(%) ao-functor. Assume

(1) K'(s) has a full triangulated subcategory & for which the hypotheses (1), (2) of
Proposition 14.5 are satisfied,

(2) K'(%) has a full triangulated subcategory .l for which the hypotheses (1), (2) of
Proposition 14.5 are satisfied, and

(3) F(K'(s)) C K(B) and F(&£) C M.

Then F, G and GF have left derived functors (L'F, &), (L'F, Q) and (L"(GF), ),
respectively, L'F(D"(s4)) C D'(®), and the canonical homomor phism

¢:L'GoL'F - L'(GF)
is an isomor phism.

Proposition 14.13 (Dual of Proposition 13.13). Let s’ be a thick subcategory of & and J
:D(A’) - D () the canonical functor. Let F: K(«d) —» K(%B) be a d-functor. Assume s
has enough injectives and #{’ has enough s{-injectives. Then both F and F | have left

K= (s4')
derived functors(LF, &) and ({,L (F | ), respectively, and the canonical homomor phism

K’(&q’))



p:LFodo L(Fl,. )

IS an isomor phism.

Proposition 14.14 (Dual of Proposition 13.14). Assume s{ has enough projectives. Let F
A - 9B be afunctor which has an exact right adjoint U : B — . Then the following hold.

(1) The extended o-functor F : K'(4) — K(B) has a left derived functor (LF, &) which
satisfies L'F(D(4)) C D(R).

(2) For the extended d-functor U : K'(B) - K(sA), thereexistsU : D (B) - D(«A) such
that QU = UQ.

(3)U:D(B) -~ D(A) isaright adjoint of L'F: D(4) - D(%R).

(4) If Fisfully faithful, soisLF.



§15. Double complexes

Throughout this section, s is an abelian category. Unless otherwise stated, functors are
covariant functors.

Definition 15.1. We denote by A” the category of Z-graded objectsin s, i.e., an object
of A7 is afamily C={C*% ., of C*90Ob(«#) and amorphismu: {C*} - {D”% is
afamily u={u*%,  ,, of U0 A(C*% D). We have two kinds of shift functors T, T, :
A” o d” suchthat

T(CP?=CP* 9 and T (UP*=uwP""q,
T(CP=CP9* ! and T,(u)P?=uPo"

for COOb(s4”") andu O s4*°(C, D), respectively. A differential (d,, d,) of C 0 Ob(s4”)
isapair of d, 0 4 (C, T,(C)) and d, 0 s4*°(C, T,(C)) such that

T(d)od, =0, T,(d)-d,=0 and T,(d)-d, +T,(d)-d,=0.
A double complex C** = (C, d,, d,) in « isaZ*graded object C [J Ob(sﬂzz) together with a
differential (d,, d,). We denote by C*(s4) the category of double complexesin #: a morphism
ull CAA)(C ", D*")isamorphismu O sﬂZZ(C, D) such that

T(ued,=d,ou and T,(u)od,=d,o u.

Then the shift functors T, : A” - A% give rise to autofunctors of C¥(sd), called the
trandations, such that

T(C)=(T(C), -Ti(d),-Ti(dy)) (i=1,2)
for C* = (C, d, d,).

Remark 15.1. (1) T,o T,=T,o T,
(2)d OCHA)(C, T(C ) (i=1,2) foral C* =(C,d,, d,) O Ob(CsA)).

Lemma 15.1. For atriple (C, d,, d,) of C O Ob(s4”*), d, O s*°(C, T,(C)) and d, O
4% (C, T,C)) the following are equivalent.

(1) C'* O Ob(CA(s4)).

@@ C™ =({C* %, {(=1)"d,”}) OOb(C(s4)) for all p O Z,



(b) d”>* O C(s4)(C™, CP***)forallpO Z, and
(©) d”*** o dP* =0foral pOZ.
) @ C*=(C % {(-1)%d,"F) D Ob(C(s4)) for all q T Z,
(b) dy O C(s4)(C, C9*Y) for all g0 Z, and
(©) dy¥**o dy?=0forall gO7Z.

Proof. Straightforward.

Definition 15.2. Let C'* 0 Ob(C%s{)). Then for each p O Z the complex

Cr = (CF {(-DdPY)

iscalled thep™ row of C**, and for each g O Z the complex

C={C"%,{(=1)%"%})
is called the g™ column of C"".

Lemma 15.2. Let C'*, D*° O Ob(CHs4)). Then for u O sﬁZz(C, D) the following are
equivalent.
(DubOC(A)(C ", D).
(2) (@ u”" ={uw % OC(«A)(C>, D*)foralplZ, and
(b) { uP"} DC(C()){ C*},{D""}).
)@ u={u% OC(A)(C" D9 forallqlZ, and
(b) { u™} DC(C(AN{ C 3, { D).

Proof. Straightforward.

Proposition 15.3. We have isomor phisms of categories

- C(C(s4)), C" > ({ CP}. {dP"}),
Ci(st) = C(C(A)), C" > ({ C}, { dy ).

C(sd)

Proof. By Lemmas 15.1 and 15.2.

Definition 15.3. Letu, v O C{«)(C*, D'"). A homotopy (h, h,) : u = visa pair of
morphismsh, O s¢** (T,(C), D) and h, 0 s¢** (T,(C), D) such that



h1 oT, l(Tl(dZ)) + T, 1(d2 °e hl) =0,
h2 oT, l(Tz(dl)) + T, 1(d1 °e hz) =0,
h,od, + Tl_l(d1 oh)+h,od, + Tz_l(dzo h)=u-v.

If there exists a homotopy (h,, h,) : u=v, we say that u is homotopic to v.

Remark 15.3. Let C*°, D' [ Ob(C?(s4)). Then the following hold.
(1) For h, O A" (T,(C), D) thefollowing are equivalent.

@h, o Tz_l(Tl(dz)) +T, l(dz ohy)=0.

(b) h?* ={h% O C(s4)(CP**, D) foral pOZ.
(2) For h, O A" (T,(C), D) the following are equivalent.

@h,o Tl_l(TZ(d])) +T, l(dl oh,)=0.

(b) K9 ={hP9% 0 C(A)(C"%*, D" foralqOZ.

Definition 15.4. In case o satisfies the condition Ab3*, we define a left exact functor t :
AL 47 such that

t(C)" = cr
p+g=n
foral CO Ob(sizz) andn 0 Z, and in case o satisfies the condition Ab3, we define a right
exact functor t' : 4% — #” such that

rEr= L cpe
p+g=n
foral C [ Ob(&izz) and n O Z. Furthermore, in case s satisfies the conditions Ab3 and
Ab3*, we define afunctor t” : A7 L A7 by the canonical exact sequence

t -t-t" - 0.

Throughout the rest of this section, s is assumed to satisfy the condition Ab3*. In the
following statements, t can be replaced by t' (in that case, s is of course assumed to satisfy
the condition Ab3 instead of Ab3*).

Lemma 15.4. The following hold.

(DteT,=Totfori=1,2.

(2) d=t(d,) + t(d,) isa differential of t(C) for any C"* [0 Ob(C*(4)), so that we have a |ft
exact functor



t: Csd) - C(sd), C " > (t(C), t(d,) + t(d,)).

Proof. (1) Obvious.
(2) By the part (1) we have

T(d) o d = T(t(d,) +1(dy) ° (t(d,) + ¥(d,))
= T(t(dy) o t(d,) +{T(t(dy)) o ((d,) + T(Kd,)) ° (dy)} + T(t(d)) ° ¥(d,)
=1(Ty(dy) o d) + (T(dy) o d, + Ty(d,) o d,) + (T(d;) > dy)
=0.

Lemma 15.5. Let u,v O CY(«)(C ", D*") with (h, h,) : u = vand put h = t(h,) + t(h,).
Then h: t(u) = t(v).

Proof. We have

t(u) —t(v) = t(u—v)
=t(h,od, + T,7*(d, o h) + h,od, + T,”'(d, > h,))
+t(h, o T,7X(T,(d,)) + T,7*(d, o h)) + t(h,o T, *(T(d)) + T, *(d, o h,))
={t(hy) o t(dy) + T(t(dy) © t(hy)) +t(hy) o t(d,) + T(t(d,) © t(hy))}
+{t(h) o t(d,) + T((d,) o t(hy)} +{t(h,) o t(dy) + T-Xt(d) o t(h,))}
= (t(hy) +t(hy) o (t(dy) + t(d,)) + T-H(t(d)) + 1(dy)) o T(t(hy) + t(h,))
=hod+T*(d)o T(h).

Definition 15.5. Each complex X° [0 Ob(C(s)) is considered as a double complex
concentrated in the 0" column, i.e., a double complex such that

. OX" (q=0)
X' )P d =
C=00 (@20

and we get afull embedding C(sd) — C*(d).

Remark 15.4. The embedding C(s{) — C?(sd) preserves homotopy classes, i.e., if u, v [
C(A)( X", Y)withh:u=v,then (h,0):u=vforu,vOC* )X, Y.

Definition 15.6. A right resolution of acomplex X [0 Ob(C(s4)) isamorphismu: X' -
C'" in C*(s) such that ({ C"9}, {d;9}) isaright resolution of X' in C(C(s4)),i.e, C'9 =0
forg<0Oand



0- X i C.’O — C.'l — e

is an exact sequence in C(s4). A right resolution 4 : X* - C* of X' iscalled an injective
resolution if every C™9 is an injective object of C(s4), and is called a right Cartan-Eilenberg
resolution if foreachp 0 Z

0 - H(X') - HP(C") - HPY(C) = -+,
0- B(X) - BM(C") - BP(C") - -

are injective resolutions of H°( X") and B°( X"), respectively.

Definition 15.7. For each p 00 Z we define additive functors 2>*, B”", Z/**, B'™" and
HP* 1 C¥(sl) —~ C(st) asfollows

ZP*(C") =Ker df",

B (C")=ImdP™",

Z/>*(C")=Cok df™*",

B/P*(C*)=Coim dP* =Im d> = BP***(C™),
HP* (C) = ZP*(C)/BP (C).

Also, for each g O Z we define additive functors Z;9, B9, Z/9, B"% and H; % : C{sA) -
C(s) asfollows

Z;%(C") =Ker d;,

B (C")=Imd;9,

Z/"9(C ") = Cok d; 9,

B "9(C")=Coimd;?=Im d;%=B;"*(C"),
Hy(C") = Z9(C)/By9(C™).

Lemma15.6. Let X° - C'° bearight Cartan-Eilenberg resolution of X" [1 Ob(C()).
Then for each p [ Z we have injective resolutions

0 Z%(X) - ZM°(C") - ZPXC) - -+,
0- Z'°(X) - Z/*°(C") » Z/"(C7) - -,
0~ Xp - Cp,O - Cp'l —



of Z°(X"), Z'°(X") and X°, respectively.
Proof. Let n0Z. Since we have exact sequences

0BG L 2 (CT) - K (C) o
0~ HP*(C™) ~ Z™(C7) - BI™(CT) - 0,
0 N le’.(C-u) N Cp’. . ap+l’¢(cno) N 0

in C(«), by Proposition 1.3 the assertion follows.

Lemma 15.7. Assume #{ has enough injectives. Then every X' [ Ob(C(s4)) has a right
Cartan-Eilenberg resolution X - C'".

Proof. Takeinjective resolutionsHP(X") - H”", B X") - B™" of H’(X") and B°( X"),
respectively, for al p 0 Z. Then, for each p O Z, by Proposition 2.7 we get an injective
resolution Z°(X") —» Z"* of Z°(X") and a commutative diagram in C(s{) with exact rows and
columns

0 - B(X) - Z%(X) - HA(X) - 0
! 1) |

0O - BP — VA — H> o O,

thus again by Proposition 2.7 we get an injective resolution X - Z°(X") of X’ and a
commutative diagram in C(s{) with exact rows and columns

0 - Z(X) = X o B'YX)-0
! | |

0O - ZP — cPs — Bp+l" - 0.

Consequently, we get aright Cartan-Eilenberg resolution X* - C"".
Definition 15.8. Letu 0 C(A)( X", Y')and X* -~ C", Y" - D'’ right resolutions of X"
and Y", respectively. Then a morphism ( O CHs4)(C ", D") is said to be lying over u if

H;:°(0) = u.

Remark 15.6. If X" - C" isaright resolution of X', thend, islying over d,.



Lemma15.8. Letud C(A)( X', Y)and X* - C*, Y - D’ right Cartan-Eilenberg
resolutionsof X" and Y*, respectively. Thenthereexists G 00 CH(«{)(C™", D'") lying over u.

Proof. For each p O Z, by Lemma 1.8 there exist z”* 0O C(A)(Z"*(C™"), ZP*(D™"))
lying over Z%u) and bP*** O C(4)(BP*>*(C"*), BP*** (D)) lying over B°**(u) and then by
Proposition 3.14 there exists U"" O C(4)(CP", DP") lying over u" which makes the following
diagram in C(s4) commute

0 — le"(C") d Cp'. d ap+l,‘(C") e 0
2" L™ Lo

0 - z»(D') -~ D™ - B**(D’)- 0.

It follows by Lemma 15.2 that G = {uP 9} O C¥(4)(C"*, D*"). Also, H>°(G) = HYG"") =
uwforalpZ.

Lemma15.9. Letu, vOC(HA)(X', Y)withu=v. Letu: X’ - C",v:Y - D be
right Cartan-Eilenberg resolutions of X" and Y", respectively, and (i, v 0 C(«)(C'", D)
lying over uand v, respectively. Then U = v .

Proof. Leth:u=v.

Claim 1: There exists h, O &QZZ(Tl(C"), D")suchthat vo h=h,o T,(u) ardd, o h, +
Tyh,) o Ty(dy) =0.

Proof. For each p 00 Z, by Lemma 1.8 there exists h>* 00 C(«4)(CP**", D™") lying over h?
O AP, Y). SincevPohP=hpP% P foral pOZ, wehave vo h=h, o T,(4). Also, for
any p,q0 Z, since
(1P dpe o= Rparo (CIPt e,
wehave df%o h?9 + h»9*to dP**9 =0, Thusd,o h,+ T(h) o T,(d,) =0.
Claim2: h,od, + T, *(d, oh) OCHs4)(C ", D**) and islying over u—v.

Proof. We have

dyo(h,od + Tl_l(dl ohy))=d ohod



= Tl(hl °© dl + Tl_l(dl °© h])) ° d17

d, o (h, o dy+ T (d o hy)) =d,ohyod,+d,oT,(d) o T, ()
=—T,(h) o T,(d,) o d, + d,o T, (d,) o T,”*(h))
= Ty(h, 0 d)) o d,— T, {(TLd,)) o T,7'(d,) o T, *(hy)
=Ty(hy o dy) o dy + T,7(Ty(d)) o T (To(hy)) o 0,
=Ty(h, o d)) o d,+ T, X(T,(d, 0 hy)) o d,
=T,(h, 0 d,) o d, + T,(T,X(d, 0 hy)) o d,
=Ty(hy o d, +T,7(d, o h)) o d,

Vo (U—=V)=vo (hod,+ T d, o h))
=vohodg+ve T(d) o T(h)
=hyo Typ) o de+ T7H(d) o TH(V) 0 TH(h)
=hjod, o+ T, }d) o T *(voh)
=hpod, op+THd) o T H(hy o Ty(w))
=hod o+ Tl‘l(dl) o Tl‘l(hl) ol
=(h,od, +T,%(d, o h)) o L.

Claim3: ¢=V + (h, o d, + T, *(d, > h,)) islying over u.

Proof. Since V is lying over v, and since h, o d, + T,”(d, o h) is lying over u — v, it
followsthat V + (h,o d, + T,/*(d, o h))) islying over v+ (u—V) = u.

Claim4: Put = U — ¢. Thenthere existsh, [ &QZZ(TZ(C"), D*") suchthat ¢=h,od, +
T l(dz o hy) andd, o h, + T,(hy) o T,(d,) =0.

Proof. Note that /islying over u—u=0. Thus, for each p 0 Z, by Lemma 3.12 there
exist b”" : B"*(¢) = 0and h"" : H"”"(¢) = 0. Then, for each p O Z, by Proposition 3.14
thereexist z™* : 2" (¢) = 0and h)" : Y™ = 0 such that the following diagrams commute

0 - TAB*(C7)) - TLZ*(C7)) - TL(H(C’)) - O
b™" | i [ L

0 - B(DY) - Z°(D7) - HM(DT) - O,

0 » T(ZP'(C7) - TLC™) - TLB"*(C7)) - 0



A L n L pPT

0 - zM(D7) - D .  BPM(D) - O.

It follows that h}'® O C(s4)(C9*%, D% and "% = % o dy® + dy9 o b9 forall q O
Z. Thusy=h,od, + T,7Y(d, o h). Also, forany p, q 0 Z, since

(-1)7dP7 e Rt = e ()T,
dP%o hP9+ hP*t9 dP9** =0. Thusd, o h, +T,(h,) o T4d,) =0.
Claim5: (h,, h,): G = V.
Proof. By Clams1, 3 and 4.

Definition 15.9. For each n O Z, we define truncation functors o, a!, : C(d) -
C?(A) asfollows:

O c (g>n) g O (g>n)
o' (C*) = BB CT) (q=n), 6", (C")" = Z"(X) (a=n)
H o (@<n) Hce  (q<n)

for C* O C¥sd). Weset 0. =0l _,ad ol =al ..

Lemma 15.10. Thefunctors a!, ol : Cq(sl) — C*(sd) preserve homotopy classes

Proof. Straightforward.

Lemma 15.11. Let C'* 0 Ob(C¥(sd)) and n 0 Z. Assume H;"(C*) =0and put Z* =
Z,"(C""). Then we have exact sequencesin C(s) of the form

0 - t(02,(C7)) - Y(oL,(C7)) - T"(C(idy)) - O,

0 - T-(C(id)) - t(al (C)) - t(al (C")) - O.
Proof. Letg: o! (C'") - o' ,(C") beacanonical monomorphismand ¢ : gl (C*) -
o. (C") acanonical monomorphism. Put D' = Cok ¢ = Ker . Then, since each double

complex has bounded rows, we have exact sequences.

0 - t(0.,(C)) - t(0Z,(C")) - (D) - 0,



0~ t(D) » t(0l,(C")) - t(al,(C")) - 0.
Next, since

D9 = EZ. (qzn_l'n)
00 (a#n-1n)

and d;""* =id,, wehave t(D"*) = T-(C(id,)).

Proposition 15.12. Let y: X° —» C'" bearight resolution of X" O Ob(C(«)). Assume
there existsn,= O suchthat C" =0for q>n,. Thent(u): X' - t(C"") isa quasi-isomorphism.

Proof. If n,=0,then X" = C'*. Assumen,>1. Since X" = ¢/,(C"") and 0{, (C'*) =
C", by Lemma15.11 the assertion follows.

Definition 15.10. A left resolution of acomplex X* [0 Ob(C(«)) isamorphisme: C° -
X" in C*(sd) such that ({ C9}, { d,9}) isaleft resolution of X' in C(C(sA)), i.e, C"* =0for
g>0and

c - C.’_l — C.'O i X -0
is an exact sequence in C(sd). A left resolution € : C° - X of X' iscalled a projective
resolution if every C™9 is a projective object of C(«), and is called a left Cartan-Eilenberg

resolution if for eachp [0 Z

C— HPTACT) ~ HP(CT) - H(X) - 0,
-~ BPCT) - BPO(CT) - BYX) - 0

are projective resolutions of H?( X") and B°( X"), respectively.

Lemma 15.13 (Dua of Lemma 15.6). Let C'° - X be a left Cartan-Eilenberg
resolution of X' [0 Ob(C(s4)). Then for each p [0 Z we have projective resolutions

- - ZPTHCT) - ZP(CT) - Z%(XT) - 0,
ee lepv—l(c") . erp,O(C") _ Z:P(x') N O,
— Cp'_l — Cp,O X0

of Z%( X"), Z'?(X") and X°, respectively.
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Lemma 15.14 (Dual of Lemma 15.7). Assume s has enough projectives. Then every X’
[0 Ob(C(4)) has a left Cartan-Eilenberg resolution C'° - X.

Definition 15.11. Letu O C(A)( X', Y)and C" - X', D° - Y left resolutionsof X’
and Y", respectively. Then a morphism ( O CHs4)(C ", D") is said to be lying over u if
H:°(0) = u.

Remark 15.7. If C'* - X' isaleft resolution of X', then d, islying over d,.

Lemma 15.15 (Dual of Lemma 15.8). Letu O C(«4)( X", Y')andlet C* -~ X', D" -
Y* be left Cartan-Eilenberg resolutions of X and Y, respectively. Then there exists U [
C¥s4)(C ", D*") lying over u.

Lemma 15.16 (Dual of Lemma 15.9). Let u, v O C(A)( X", Y )withu=v. Let C" -
X', D" - Y beleft Cartan-Eilenberg resolutions of X" and Y", respectively, and d, v [
C¥s4)(C'", D*") lying over uand v, respectively. Then G = V.

Proposition 15.17 (Dual of Proposition 15.12). Let e: C° - X' be a left resolution of

X" 0 Ob(C(s4)). Assume there exists n,< 0 such that C** = 0 for all g < n, Thent(¢) :
t(C*) - X isaquasi-isomorphism.

11



816. Left exact functors of finite cohomological dimension

Throughout this section, ¢ and % are abelian categories. Unless otherwise stated,
functors are covariant functors.

Proposition 16.1. Let F : 4 — 9B be an exact functor. Then the following hold
(1) There exists a unique d-functor F’ : D(«d) — D(%) such that QF = F' Q.

(2) (idye, F') isaright derived functor of F : K(s) — K(%).

(3) (F, idy) isaleft derived functor of F : K(sd) — K(%).

(4 KerF =D (), wheres!’ = Ker F.

Proof. Since QF : K(#4) — D(%) vanishes on the acyclic complexes, (1), (2) and (3)
follow by Propositions 13.1 and 14.1.

(4) Let X* O Ob(K(«)). Since Q(F(X")) = 0if and only if F(X") is acyclic, it follows
that F'(Q( X")) =0if and only if F(H"( X")) =0foraln Z.

Lemma 16.2. Let ¥ be a subcollection of Ob(s{) closed under finite direct sums. Assume
(2) for any X [0 Ob(s{) there exists a monomorphismX - | insgd with|1 O $, and
(2) there exists an integer n> 1 such that if

X)—bxl—b"'—)xn_l—)Xn—)0
isan exact sequencein & with X°, X%, ... X" 0% then X" O 9.
Then for any X" [0 Ob(K(s4)) there exists a monomorphism X* — 1" in C(«) with 1" [
Ob(K(¢)) which is a quasi-isomor phism
Proof. Let X [0 Ob(K(s{)). By hypothesis (1) and Lemma 1.7 we have aright resolution

u
O—>X—>|'0—>"'—>I'n_l—>|'n—>o

of X'with 1°, .- | """ 0 Ob(K($)). Then by hypothesis (2) I"" 0O Ob(K($)) andt(1°")
[0 Ob(K(¥)). Also, by Proposition 15.12t(1) : X* - t(1°") isaquasi-isomorphism.

Lemma16.3. LetF : A — 9B be aleft exact functor. Assume there exists a subcollection
$ of Ob(s4) such that
(1) there exists an integer n > 1 such that if

X)—)Xl—)"'—)xl’]_l—>Xr1—)0



isan exact sequencein & with X°, X%, ... X" 09 then X" O ¥, and

(2)if0 - X - Y - Z - Oisan exact sequence in f with X, Y, Z 00 ¢, then the induced
sequence0 - FX - FY - FZ - Oisexact.

Then QF : K($) - D(%) vanishes on the acyclic complexes.

Proof. Let I° [0 Ob(K($)) be an acyclic complex. Note that by hypothesis (1) Z'(1°) O ¢
for all i O Z and that, since F isleft exact, F(Z(1°)) = Z((F(1")) forall i 0 Z. Leti O Z. For
an exact sequence

0-Z(1'")y 1" - Z*Y(I') -0,
since Z(1°),1I', Z*Y(1") O ¢, by hypothesis (2) the induced sequence
0~ FZ(I") ~ F(1) - FZ"*(1")) - 0
isexact. Thusthe canonica sequence
0 - Z(F(I")) - F(I')' - Z*}(F(I")) - 0
isexact. It followsthat F(1°) isacyclicand Q(F(17)) =0.

Proposition 16.4. Let F : o - 9B be a left exact functor. Assume there exists a
subcollection $ of Ob(s4) such that

(2) for any X [0 Ob(s{) there exists a monomorphism X — | insgd withl O %,

(2)if0 - X - Y Z - Oisan exact sequencein o with X 0 ¢, then Y O 9 if and only
ifzO 9,

(3) there exists an integer n > 1 such that if

)@—»Xl—»---—»)(”_la)(”ao

isan exact sequencein & with X°, X%, ... X" 0% then X" O ¥, and
(4) for any exact sequece0 - X - Y - Z - 0ind with X, Y, Z O 9, the induced
sequence0 - FX - FY - FZ - Oisexact.
Then both (&, RF) and (J, R'F) exist and the canonical homomor phism
¢:RF - RF|

D™ (s4)

isan isomorphism. Furthermore, & isan isomorphismfor all 1° [ Ob(K(%)).



Proof. According to Proposition 13.11, it suffices to show the following.

Claim: (1) K(#) isafull triangulated subcategory of K(s{).

(2) For any X' [0 Ob(K(sA)), there exists a quasi-isomorphism X° - |° with I O
Ob(K(¥)).

(3) For any X' O Ob(K'(s)), there exists a quasi-isomorphism X — 1" with 1" O
Ob(K($) n K'(s4)).

(4) QF : K(¥) — D(9) vanishes on the acyclic complexes.

Proof. (1) By hypothesis (2) and Proposition 6.1(2).
(2) By hypotheses (1), (3) and Lemma 16.2.

(3) By hypothesis (1) and Proposition 4.7.

(4) By hypotheses (3), (4) and Lemma 16.3.

Remark 16.1. In Proposition 16.4, F has conomological dimension< n on , i.e.,, RF
vanisheson & fori >n.

Definition 16.1. LetF: o — 9B be aleft exact functor. Assume the extended d-functor F
: K'(s) - K(®) has aright derived functor R'F : D*(s{) — D(%). Then an object X O
Ob(s4) is called F-acyclic if RF(X) = 0fori > 0.

Corollary 16.5. Let F : o - 9% be a left exact functor. Assume there exists a
subcollection $ of Ob(s4) such that

(2) for any X [0 Ob(s{) there exists a monomorphism X — | ingd withl O %,

(2)if0 - X - Y Z > Oisan exact sequencein o with X O ¢, then Y O ¢ if and only
ifzO 9,

(3) for any exact sequece0 -~ X - Y - Z - 0ind with X, Y, Z O %, the induced
sequence0 - FX - FY - FZ - Oisexact, and

(4) F has finite cohomological dimension on s, i.e., there exists n > 1 such that RF
vanishes on s for i >n (Note that by Corollary 13.7 R'F exists).

Then (&, RF) exists and the canonical homomor phism

¢:RF - RF |

D* (s4)

is an isomorphism. Furthermore, &, is an isomorphism for all 1° 0 Ob(K($)), where ¥ is
the collection of F-acyclic objects X [1 Ob().

Proof. According to Proposition 16.4 it suffices to show the following.



Claim: (1) For any X [ Ob(s4) there exists amonomorphism X - | in s W|th 109,

(2 IfO - X - Y - Z - 0isan exact sequencein & with X 0J ,Eﬁ then YO 9 if and only
ifz0O 9.

(3) If X° - Xt - ... - X" 5 X" -, Oisanexact sequencein & with X°, X*, ..., X!
O ,Eﬁ then X" 0 9.

@10 - X->Y - Z - 0isanexact sequence in s with X [ 36, then the induced
sequence0 - FX - FY - FZ - Oisexact.

Proof. (1) It sufficesto show $ C . For any X 0.¢ andi > 0, by Corollary 13.7 RF(X)
= H(R'F(X)) = H(Q(F(X)) = 0.

(2) Since we have along exact sequence
. - RF(X) = RF(Y) - RF(2) - R**F(X) - -,

RF(Y) = RF(2) foral i > 0.
(3) Put Z' = Ker(X' — X" for 0<i <n. Then by Proposition 13.4

RF(X") =R*FZ"Y = ... = R*"F(Z9

for al j > 0. It follows by hypothesis (4) that X" [J 9.
(4) Since F isleft exact, F = R canonically. Thus, since R*'F(X) = 0, by Proposition
13.4 the induced sequence 0 — FX - FY - FZ - Oisexact.

Lemma 16.6 (Dua of Lemma 16.2). Let % be a subcollection of Ob(s4) closed under
finite direct sums. Assume

(2) for any X J Ob(sd) there existsa epimorphismP — Xin & with P 0%, and

(2) there exists an integer n > 1 such that if

0 X "o X" L XL X0
isan exact sequencein & with X%, X%, ..., X*™1 O % then X" O P.
Then for any X° [0 Ob(K(s)) there exists an epimorphism P° - X" in C(«) with P* [

Ob(K(%)) which is a quasi-isomor phism.

Lemma 16.7 (Dual of Lemma 16.3). Let G: o — %B be aright exact functor. Assume
there exists a subcollection % of Ob(s4) such that
(1) there exists an integer n= 1 such that if

0o X" X" o XL X0



isan exact sequencein & with X%, X1, ..., X' 0 % then X" O P, and

(2)if0 - X - Y - Z - Oisanexact sequencein & with X, Y, Z [0 %, then the induced
sequence0 - GX - GY - GZ - Oisexact.

Then QG : K(%) — D(%) vanishes on the acyclic complexes.

Proposition 16.8 (Dual of Proposition 16.4). Let G: « — 9% be a right exact functor.
Assume there exists a subcollection % of Ob(s{) such that

(1) for any X [0 Ob(s{) there exists a monomorphismP — Xin s withP 0%,

(2)if0 - X - Y - Z > Oisan exact sequencein o withZ 0%, thenY O % if and only
if XO P,

(3) there exists an integer n > 1 such that if

0- X—n . X—n+1 e X—l . XO

isan exact sequencein & with X%, X1, ..., X' 0 % then X" O P, and

(4)if0 - X - Y - Z > Oisanexact sequencein & with X, Y, Z 0 %, then the induced
sequence0 - GX - GY - GZ - Oisexact.

Then both (LG, &) and (L™ G, ) exist and the canonical homomorphism

$:LG| . - LG

D~ (o)

isanisomorphism. Furthermore, &, isanisomorphismfor all P O Ob(K(%)).

Remark 16.2. In Proposition 16.8, G has homological dimension< non 4, i.e, LG
vanisheson & fori >n.

Definition 16.2. Let G: od — 9B be aright exact functor. Assume the extended d-functor
G :K(A) » K(B) has aright derived functor L'G: D () —» D(%). Then an object X [
Ob(sd) iscaled G-acyclic if L,G(X) =0fori > 0.

Corollary 16.9 (Dual of Corollary 16.5). Let G: s{ - 9% be a right exact functor.
Assume there exists a subcollection % of Ob(s{) such that

(2) for any X [0 Ob(s{) there exists a monomorphismP — Xin s withP 0%,

(2)if0 - X - Y - Z > Oisan exact sequencein o withZ 0%, then Y O % if and only
if XO P,

3)if0 - X - Y - Z > Oisanexact sequencein & with X, Y, Z 0 %, then the induced
sequence0 - GX - GY - GZ - Oisexact, and

(4) G has finite homological dimension on s, i.e., there exists n = 1 such that LG



vanishes on s for i >n (Note that by Corollary 14.7 L G exists).
Then (LG, &) exists and the canonical homomor phism
¢:LG |D_(_ﬂ) - LG

isan isomorphism. Furthermore, &, is an isomorphism for all P* [ Ob(K(P)), where P is
the collection of G-acyclic objects X [0 Ob(#A).

Proposition 16.10. Assume s has enough injectives and % has enough projectives Let
F:d - B be a functor which has a left adjoint G : B - s{. Assume F has finite
cohomological dimension on &4 and G has finite homological dimension on % (Note that by
Corollary 13.7 R'F exists and by Corollary 14.7 LG exists). Then the following hold.

(1) The extended o-functor F : K(s4) — K(%) hasaright derived functor (¢, RF).

(2) The extended 0-functor G : K(B) — K(s{) has a left derived functor (LG, ().

(3) LG isa left adjoint of RF.

(4) Assume G (resp. F) isexact. Then, if F (resp. G) isfully faithful, so is RF (resp. LG).

Proof. (1) By Corollaries 13.7 and 16.5.

(2) By Corollaries 14.7 and 16.9.

(3) By Proposition 3.10 G is aleft adjoint of F. Let e: 1, - FG, §: GF - 1, bethe
unit and the counit, respectively.

Claim 1. There exists 60 Hom (LG RF, 1) such that Qdo {. = 6, LG¢.

Proof. Let $ be the collection of objects X [0 Ob(s4) such that RF(X) = 0 for i > 0. By
Corollary 16.5 and Lemma 16.2, for any X" [ Ob(K(s4)) there exists a quasi-isomorphism
X" - 1" with 1" O Ob(K($)). Also, ¢ isanisomorphism for al 1" [0 Ob(K(#)). For each
X' 0 Ob(K(s)), take aquasi-isomorphisms: X — | with 1" 0 Ob(K($)) and set

6,=Q(s) e Qo gy LG(¢™) o LG(RF(Q(S))) : LG(RF(Q( X)) — Q(X).

Then® OHom (LG o RF - Q, Q) and Qd o (. = Bo LGE. By Proposition 9.11 there exists 6
0 Hom (LG~ RF, 1,,)) such that 8= 6,

Claim 2. There exists n 0 Hom (1, RF o LG) such that &, o Qe = RF{ o 1,
Proof. By the dual argument of Claim 1.

Claim3: RFOo Ny = idg,.



Proof. We have commutative diagrams

Qep QFd
QoF 1 - QoFoGoF [~ QoF

Nor | V& 1€
RF{, RFQS
RFoLGoQoF M- RFoQoGoF M- RFoQ,

Nor RF{
QoF M- RFeLGoQoF M- RFeQoGoF

&l | RFLGE | RFQ&S

NRrFQ RFQQ
RFeQ M. RFoLGoRFeQ M- RFoQ.

Thus (RF@ o Ng)go &= & o QFd0 &) = ¢ and by Proposition 13.2 RF 60 ng, = id.
Clam4: 6,0 LGn=id .
Proof. By the dual argument of Claim 3.

(4) Note that { is an isomorphism. Assume ¢ is an isomorphism. Then for any |° [0
Ob(K(#)), since Qd o {; = 6, LG¢, and since ¢, is an isomorphism, 6, is an isomorphism.
It follows that6 is an isomorphism.

Proposition 16.11. Assume s has enough injectivesand let F : 4 — 9B be a left exact
functor. Assume F has cohomological dimension< non s, i.e, RF vanishes on s for i > n
(Note that by Corollary 13.7 R'F exists). Put G=RF: ol — %B. Let % be the collection of
X 0 Ob(s) with RF(X) =0 for i  n and assume that for any X [0 Ob(s{) there exists an
epimorphismP — X in s with P O %. Then both RF and LG exist and there exists an
isomorphismof -functors n: RF = LGo T™".

Proof. Let $ be the collection of X 0 Ob(s) with RF(X) = 0 for i > 0.

Claim 1: (1) $ contains every injective objects of 4, so that for any X [0 Ob(s) there
existsamonomorphism X - | ing with1 O $.

(2If0 - X - Yo Z- Oisanexact sequencein s with X 0%, thenY O ¢ if and only
ifz0O 9.

I X% o Xt o o 5 X1 L X" L, Oisan exact sequencein s¢ with X°, X*, ..., X!
0%, thenX" O 9.

@If0 - XY - Z - 0isanexact sequence in A with X O 9, then the induced



sequence0 - FX - FY - FZ - Oisexact.

Proof. (1) Let | O Ob(s4) beinjective. Then R'F(I) = F(l) and RF(X) = H'(F(1)) = 0 for
ali>o.

(2) RF(YY) = RF(2) for dl i > 0.

(A Put Z =Ker(X' - X*Hfor0<i<n ThenRF(X) =R *"'F(Z"Y) =... = R*""F(Z9
=0forali>0.

(4) Since F is left exact, F = R canonically. Also, since R'F(X) = 0, the induced
sequence 0 — R%F(X) — RF(Y) - R°F(2) - Oisexact.

Claim 2: (1) For any X' [0 Ob(K(s)) there exists a quasi-isomorphism X° - |° with |’
00 Ob(K(¥)).
(2) QF : K(¥) — D(9) vanishes on the acyclic complexes.

Proof. (1) By Claim 1 and Lemma 16.2.
(2) By Claim 1 and Lemma 16.3.

Claim 3: RF exists.
Proof. By Claim 2 and Proposition 13.6.
Claim4: G=R"F: 4 - B isright exact.

Proof. LetO - X — Y - Z - 0be an exact sequencein {. Then, sinceR"“*F(X) = 0,
the induced sequence R'F(X) - R'F(Y) - R'F(2 - Oisexact.

Claim5: (1) For any X [0 Ob(s{) there exists an epimorphism P - X insd withP O %.

(2If0 - XY 5 Z - 0isanexact sequencein o with Z0O %, thenY O % if and only
if XOP.

RIf0- X" o X"t o L Xt L X%isan exact sequencein o4 with X°, X2, - ) X
"1 P, then X "0 P,

@If0 - XY - Z - 0isanexact sequence in 4 with Z 0 9, then the induced
sequence0 - GX - GY - GZ - Oisexact.

Proof. (1) By hypothesis.

(2) RE(Y) = RF(2) for dl i > 0.

(3) Put Z' = Cok(X'"* — X') for—n<i <0. Then, since R°F is left exact, R°F(Z')
embedsin RF(X*) =0for—n<i<0. ThusRF(X™") =..- =R%¥F(@Z ") =0for0<i<
n.



(4) We have R""'F(X) = R"'F(2) = 0.

Claim6: (1) For any X' [0 Ob(K(s4)) there exists a quasi-isomorphism P° - X' with P’
[0 Ob(K(%P)).

(2) QG : K(P) - D(®B) vanishes on the acyclic complexes.

Proof. (1) By Claim 5 and Lemma 16.6.
(2) By Clam 5 and Lemma 16.7.

Claim7: L Gexists.
Proof. By Claim 6 and Proposition 14.6.
Claim 8: There exists an isomorphism of 0-functorsn: RF = LGo T ™.

Proof. Let X 00 Ob(K(sA)). Let u: X* - C° bearight Cartan-Eilenberg resolution of
X andput 1" =g (C"). Then by (1) of Claim 1 we have an exact sequence in C(s{)

u
O X S 1" 5 o S 1", 1" L0

with 17°, .-, 17" 0 Ob(K(¥)). Thusby (3) of Claim 1 " 0 Ob(K(%)), sothat t(1°*) O
Ob(K(¥)). Also, by Proposition 15.12 t(u) : X — t(1'") isaquasi-isomorphism. Thus

RF(Q(X")) = RE(Q((1"")))

= Q(F(t(1°7)))
= Q(t(F(1°"))).
Applying F to aright resolution
u
0- X = I.'O - > I.'n_l SR O,

we get acomplex in C(«)
L0 S F(IT0) o S YY) LRI S G(XT) - 0 o e
namely, we get amorphism e: F(1°") - T,”"(G(X")) in C¥(«). Thuswe get amorphism

t(e) 1 t(F(1"7)) ~ (T, "(G(X))) = G(T™"(X))



in C(s4). Consequently, we get amorphism in D(9)

{x - RF(Q(X)) - Q(G(T"(X))).

It follows by Lemmas 15.5, 15.7, 15.8, 15.9 and 15.10 that {, is natural in X'. Thuswe have
a homomorphism of d-functors { T Hom (RF - Q, Qo Go T™"). Notethat LG T "isaleft
derived functor of G o T™". Let £ : LG o T "o Q - Qo G o T~ " be the canonical
homomorphism. Since we have an isomorphism

Hom (RF,LGoT™") 5 HOM(RF 2 Q,QoGoT™), N> &0 ny,

there exists aunique 1 00 Hom (RF, LG o T™") with { = & o n,. Consider now the case X" [J
Ob(K(%)). Thene: F(1'") - T,"(G( X")) isaleft resolution and by Proposition 15.17 t(¢€) is
aquasi-isomorphism. Thus ¢, is an isomorphism. Then, since by Proposition 14.6 & is an
isomorphism, so is 1. Since the canonical functor Q : K(?) - D(s) is densg, it follows
that nj is an isomorphism.

Proposition 16.12 (Dual of Proposition 16.11). Assume s has enough projectives and let
G:dA - B bearight exact functor. Assume G has homological dimension< non 4, i.e.,
L,G vanisheson s for i > n (Note that by Corollary 14.7 L' G exists). PutF=L G : s - A.
Let $ be the collection of X O Ob(sd) withL,G(X) = 0for i nand assume that for any X [
Ob(«A) there exists a monomorphism X - | in & with | 0 $. Then both LG and RF exist and
there exists an isomorphism of -functorsn: RF o T" = LG.
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817. Derived functors of bi-0-functors

Throughout this section, ¢, B, ¢ and 9 are abelian categories and K'(s4), K'(%) are
localizing subcategories of K(s4) and K(%), respectively. Unless stated otherwise, bifunctors
are contravariant in the first variable and covariant in the second variable.

Definition 17.1. A bi-d-functor F = (F, a, B) : K'(s4)® x K'(%) - K(%) is abifunctor F :
K ()™ x KN (B) - K(%) together with isomorphisms of bifunctors

a:Fo(lxT) S ToF, B:Fo(T*x1) 2 ToF
such that

F(X', =) = (F(X", 5), a) 1 KI(B) - K(€),
F(= M) = (F(= M), B : K(st) » K(€)

are 0-functorsfor all X* 0 Ob(K' (<)), M* O Ob(K'(B)).
The same definiton is also made for bifunctors of the form

K'(s0)® x DY(%) — D(@), D' (s0)® xK'(B) — D() and D’(s4)® x D'(B) — D().

Remark 17.1. For abi-o-functor F = (F, a, p) : K'(s4)® x K'(%B) - K(%), the following
are equivalent (cf. Proposition 7.8(5)).

D TaoBy.n+TBe a =0. Thisisthecaseif F = Hom" or [] (see Lemmas 18.2
and 19.2, respectively).

(2) For any M" O Ob(K'(%)),

(T71x1)

Ay F(5TMY) 2 ToF(= M)

is an isomorphism of 0-functors.
(3) For any X" [0 Ob(K"(s4)),

By - F(TIX, D) S ToFR(X',D
is an isomorphism of 0-functors.

Remark 17.2. LetF = (F, a, B : K(4)® x K'(B) - K(%) be a bi-0-functor. Then by
Proposition 7.9(1)



Qxy F(X', )T S ToF(X, ), Biw:F(= M)o T2 ToF(— M)
areisomorphisms of 0-functorsfor all X' 0 Ob(K"(s4)), M* O Ob(K'(R)).

Remark 17.3. Let F=(F, a, B : K'()® x K'(B) — K(%6) be a bi-o-functor. Then the
following hold.
(D) IfH=(H, 6 : K(®) - K(@) isad-functor, then

HF = (HF, 6. o Ha, T8, o HP) : K'(s0)® x K'(B) - K(%)

isabi-0-functor.
(2) If K*(@) is alocalizing subcategory of K(%) and H = (H, 6 : K* (@) - K'(®B) isa
0-functor, then

Fo(1xH)=(Fo(LxH) ay.yeF(1x6), By K ()®xK (D) - K(€)

isabi-0-functor.
(3) If K* (@) is alocalizing subcategory of K(%) and H = (H, 6) : K (@) - K'(d) isa
0-functor, then

Fo(Hx1)=(Fo(Hx1), a1 Byxy o F(Ox 1)) : K (D)P xK'(B) —~ K(€)
is abi-0-functor.

Definition 17.2. Let (F, a, B, (G, ¥, 0) : K'(sd)® x KI(B) - K(%€) be bi-o-functors. A
homomorphism of bi-0-functors {: (F, a, B) - (G, ¥, d) isahomomorphism of bifunctors ¢:
F - Gsuchthat T{o a =yo {;,nandT{o f=d0 Z(T_lxl).

Remark 17.4. Let (F, a, B) and (G, ¥, 9) : K'()® x K{(B) — K(%€) be bi-0-functors and
(:(F,a, B) - (G, 6 ahomomorphism of bi-d-functors. Then the following hold.

(1) For any X' O Ob(K'(s4)), {x 5 * F(X', =) - G(X', -) is a homomorphism of
o-functors.

(2) For any M" O Ob(K'(%)), (.. - F(= M) - G(-, M) is a homomorphism of
o-functors.

3 If H: K(%) - K®) is a o-functor, then H{ : HF - HG is a homomorphism of
bi-0-functors.

(4) If K* @) is alocalizing subcategory of K(%) and H : K* (%) - K'(%) is a 0-functor,
then {; .y : F o (1 xH) - Go (1 xH) isahomomorphism of bi-d-functors.



(5) If K* (@) is alocalizing subcategory of K(%) and H : K* (%) - K'(#) is a 0-functor,
then {44, : Fo (H x1) - Go (H x 1) isahomomorphism of bi-d-functors.

Definition 17.3. Let F : K'(s4)® x K'(B) - K(%®) be a bi-d-functor. A right derived
functor of F is an initial object of the following category: an object is a pair (¢, G) of a
bi-0-functor G : D" (s4)® x D'(%) — D(%) and a homomorphism of bi-d-functors: Qo F -
G0 (Qx Q); and amorphismn : ({;, G) - ({, G,) isahomomorphism of bi-d-functors r :
G, - G,suchthat {, =1 gxq ° {4

Throughout the rest of this section,
F=(F a, p):K()®xK(B) - K@)
stands for a bi-0-functor.

Lemma 17.1. Assume the following conditions:

(@ F(X", -) has aright derived functor ((¢,)x -, R,F(X", -)) for all X" O Ob(K™ (A));
and

(b) K'(%) has a full triangulated subcategory .t such that for any M* 00 Ob(K'(%)) there
exists a quasi-isomorphism M* - 1° with I* 0 Ob(/t) and (¢,),_ ,, is an isomorphism for all
[* O Ob().

Then the following hold.

(1) R,F:K'(4)® xD"(B) — D(%6) isa bi-0-functor.

(2 &,: Qo F - R,Fo (1 xQ) isahomomorphism of bi-d-functors.

Proof. We divide the proof into several steps.

ClaimL RF: K (s4)® x D'(B) - D(®)isabifunctorandé,,: QoF - RF o (1xQ)is
a homomorphism of bifunctors.

Proof. It follows by Corollary 13.3(2) that for any u O K'(«)( X", Y') there exists a
unique homomorphism of d-functors

RIIF(U1 _) : RIIF(Y. ) _) - RIIF( X ) _)
suchthat (&) ° Q(F(u, -)) = R,F(U, —)q ° (§),,- Thenforany X" O Ob(K'(s4)), since (&

Do © QF(idy, ) = (&)« - We have R F(id,, -) = id. Also, for any two consecutive
morphismsu O K'(s)( X", Y') and vO K'(A)(Y", Z°), since



(§)ix 5 ° QUF(VY, ) = (&) o ° Q(F(u, -) © F(v, )
= (&x o ° QIF(U, 9)) » QF (v, )
=RFU, g (&), ° QR(v, )
=RF(U, g o RF(V oo (G
= (RiF(U, ) e RF(V, 9))g 0 (§i) .

we have R F(u, -) - R,F(v, -) =R,F(wu, -). ThusR,F isabifunctor. We have seen that
(Eu)(x, 5° Q(F(u,-) = R”F(U, _)Q © (Eu)(y, 9
foral u K'(s)(X', Y'). Thus &, isahomomorphism of bifunctors.

Claim 2: There exists a unique isomorphism of bifunctors ¢: R,Fo (1xT) 5 To R/F
such that T(¢,,) c Q(a) = @1 « ) © (§1)1x 7 Furthermore, for any X' [ Ob(K'(A)),

R,F(X",-) = (RF(X",-), @) : D'(B) - D(¥)
isao-functor.
Proof. Let X' 0 Ob(K'(s4)). Since we have an isomorphism of d-functors
Qo) :QoF(X', =) oT 5 QoToF(X',-)=ToQoF(X, ),
there exists a unique homomorphism of d-functors
Qo  RF(X, )T - ToRF(X', )
such that T((&,)x.5) © A0 ) = (Ax. )0 © ((§,)x, o) SO that by Corollary 13.3(1)
R,F(X",-) = (RF(X",-), @y ) : D'(B) - D(¥)
isao-functor. Similarly, there exists a unique homomorphism of d-functors
Py  ToRF(X,-) - RF(X, )T
such that ((§,)x o)r © QA )" = (P, 5)q © T((&1) 5)- Then

(¢(x, 5° Qx —))Q °© ((fn)(x, —))T = ¢(x, x0° ((Rx —))Q ° ((Eu)(x, —))T



= ¢(X,—)Q ° T(('fn)(x, _)) ° Q(a(x, _))
= ((‘?u)(x, —))T ° Q(a(x,—))_1 ° Q(a(x, —))
= ((En)(x, —))T

and by Proposition 13.2 ¢, , o @, = id. Similarly, @, ° ¢, =1id. Thus @, ,isan
isomorphism. Next, let u 0 K'(s4)( X", Y*). Then

(TRF (U, ) ° @y 5)q © (€1 x 5)r = T(RIF (U g © (A, 5)g ° (&) )
= TR F(U, 9))g © T((&1)y, o) ° Ay, )
= T((&1)x o) © TQF(U, 5)) ° Q(ayy )
= T((S1)ex o) © QA ) o AF (U, )y
= (Ax. 5)q ° ((En)x H)r ° QUF (U, )y
= (@ oo RIF(U, Dgre (6, )
= (A5 o RIF(U Drg e ((E1) o)

so that T(R,F(u, -) o @, = @x , ° RF(, -);. It follows that ¢ is an isomorphism of
bifunctorsand T(&,) Q) = @1 g ° (&) x 1y

Claim 3: There exists a unique isomorphism of bifunctorsy : RF o (T*x1) 5 To R/F
such that T(¢,) © Q(B) = Yy ° (£1) (T e Furthermore, for any M" [0 Ob(D'(%)),

R,F(= M) =(RF(- M), QU(_,M)) . K'(sd) ~ D(€)
isaod-functor.

Proof. Let M" [0 Ob(K'(®)). Take aquasi-isomorphisms: M* — | with I° O Ob(t)
and define an isomorphism of functors

Y om RIFG QM) o T 5 ToR,F(= QM)
as acomposite

W ow = T(RF(= Qs) o (€ o QB Y ° (6. |)_l o R,F(- Qs)) _—

Then, asin the proof of Proposition 13.6, Lemma 13.5 enables us to see that ¢j_ , does not
depend on the choice of sand



T(RF(= Qu) o Y ow = Y, on © RiF(= Qu) -1

forall u 0 KI(B)(M*, N*). Thus isanisomorphism of bifunctors. Next, since

‘»U(—, ay = T((Eu)(_,n) ° Q(B(_,|)) ° ((En)(_,n_l) T-1

for al 1" O Ob(M), it follows that T(¢,) © QAB) = Yy «q ° (€ I,)(T_lxl) and ( is unigue.
Finally, since

QoF(= 1")=(Qo F(= 1"), QB ) : K'(s4) - D(6)

isao-functor, it follows by Proposition 7.8(3) that
R,F(= QM) = (R,F(= QM"), ¢_ qun) : K'(s4) - D(6)
isao-functor.
Remark 17.5. If Tao B, .4+ TBo Aoty = 0, then Tgo Yy .y + TWo Brtgy = 0.
By symmetry, the following holds.

Lemma 17.2. Assume the following conditions:

(@ F(= M’) has aright derived functor ((§,)_ v, RF(= M")) for all M* [ Ob(K'(%));
and

(b) K'(s4) has a full triangulated subcategory & such that for any X' 0 Ob(K'(®)) there
exists a quasi-isomorphism P* — X" with P* [ Ob(¥) and (&), , is an isomorphism for all
P O Ob().

Then the following hold.

(1) RF : D'(4)® x K'(%) - D(%®) isa bi-o-functor.

(2) &,:QoF - RF o (Qx 1) isa homomorphism of bi-o-functors.

Proposition 17.3. Assume the following conditions:

(@ F(X', -) hasaright derived functor ((¢,)« 4, R/F(X",-)) for all X* [ Ob(K™ (A));

(b) K'(%) has a full triangulated subcategory .t such that for any M* 00 Ob(K'(%)) there
exists a quasi-isomorphism M* - 1° with I* 0 Ob(/t) and (¢,)_ ,, is an isomorphism for all
I* O Ob();

(c) R,F(=, M) has a right derived functor ((¢)_ v, RR,F(= M")) for all M" O
Ob(D'(%8)); and

(d) K'(4) has a full triangulated subcategory & such that for any X' 0 Ob(K'(®)) there



exists a quasi-isomorphism P* — X" with P* [0 Ob(¥) and (&), , is an isomorphism for all
P* O Ob(¥).

Then the following hold.

(1) RR,F: D' (s4)® x D'(B) — D(%) isa bi-0-functor.

(2) §=()axg ¢ Qe F - RRF < (Q xQ)isahomomorphism of bi—0-functors.

(3) (¢, RR,F) isaright derived functor of F.

Proof. We use the same notation as in the proof of Lemma 17.1. By Lemma1l7.1 RF =
(R,F, @ ¢) isabi-0-functor and

§1:QoF - RFo(1xQ)

is a homomorphism of bi-0-functors. Also, applying Lemma 17.2 to R,F, we conclude that
RR,F isabi-0-functor and

EI :R,F - RRF o(Qx1)

is ahomomorphism of bi—0-functors. Then, since

(El)(le) ‘RyFo (1xQ) - RiRFe (QxQ)
is al'so a homomorphism of bi—0-functors, so is the composite

é= (EI)(]_XQ) °© Eu 1QoF - RiRFo (QxQ).

Next, let (¢, G) be a pair of a bi-0-functor G = (G, y, 0): D" ()® x D'(%B) - D(%) and a

homomorphism of bi-d-functors { : Q o F - G o (Q x Q). We claim that there exists a
unique homomorphism of bi-0-functorsn : ({, RR,F) - ({, G) suchthat { =1y, q ° ¢. We

divide the proof into several steps.

Claim 1: There exists a unique homomorphism of bifunctors k : R,F - G o (Q x 1) such
that { = Ky, o © &,. Furthermore, for any X' 0 Ob(K'(s4)),

Kot RyF(X, ) - G(Q X, -)
is a homomorphism of d-functors.

Proof. For any X" [0 Ob(K'(s4)), since we have a homomorphism of 0-functors



{5 Qo F(X, ) - G(QX, ) Q,
there exists a unique homomorphism of d-functors
Kxo  RF(X', 5 - G(QX',-)
suchthat {y = (K y)o° (§)x Thenforany ul] K'(4)( X", Y*), since

(Ke oy © RyF(U g o (§1)iv, o = (K 5)g © RiF(U g 0 (&)v,
= (Kx5)q° (€ o ° Q(F(U, )
= (x5 ° Q(F(u, )
= G(QU), )g° vy
= G QU), Dq ° (K, ) ° (&1)v.
= (G(Q(U), -) ° Ky, ))q © (&1

by Proposition 13.2 ki , o R,F(u, =) = G( Q(u), -) ° K . Thus k is a homomorphism of
bifunctors. It thenfollowsthat { =Ky, ¢ ° &, Also, since

Keay =€ ne (€. |)_1
foral I" O Ob(M), it followsthat k is unique.
Claim2: k: R,F - G o (Qx 1) isahomomorphism of bi-0-functors.

Proof. Let X 0 Ob(K'(s4)). Since Kx o RyF(X', -) - G(Q X", ) is ahomomorphism
of 9-functors, we have T(Ky ) © @« 5 = Viox 5 © (Kx - Thus TK o @= Y 5.1y © Kg <y It

remainsto seethat Tk o = Oy © K (ix1)” We have isomorphisms of d-functors

QBx ) Qo KT X', 9 = TeQoF(X', ),
(w(x_))Q : RnF(T_lx.’_) °Q S Toe RIIF( X',=)°Q,
(5(QX,—))Q : G(T_lQ X',—)°Q S To G(QX", ) Q.

Also, since ¢,, and { are homomorphisms of bi-0-functors, we have

T((Eu)(x,_)) ° Q(B(x,_)) = (w(x,_))Q o (&) (T1%, )"
T(Z()g _)) ° Q(B(x, _)) = (5(QX, —))Q ° Z(T-lx,—)'



Thus

(Tke Wix o ° (G r1x 5 = TKa o)) © W o ° (€0 11y
= T((Ka x )ex, ) © TUE1)x 5) © AB )
= T(Kax g ° Ex o) © QUBx )
= T({(x ) ° QBx )
= (Qx9)e° Srix g
= (90x5)o ® (Kaxg © (&) (124
= (%0x 5)o ® (Kax ) (r-1x 1 © (&) (715

= ((5(Qxl) ° K(T’1><1))(X'—))Q ° (E”)(T*lxy—)'
It follows by Proposition 13.2 that (Tk o Y), ;= (Ggx1) © K p-1 1, )ix -

Claim 3: There exists a unique homomorphism of bifunctors n: RR,F - G suchthat k =
Nox 1 ° & Furthermore, for any M* O Ob(D' (%)),

New - RRF(= M) - G(=, M)
is ahomomorphism of d-functors for al and.
Proof. For any M* 00 Ob(D(®)), since by Claim 2
Kew:RF(= M) - G(= M) Q
is a homomorphism of d-functors, there exists a unigue homomorphism of 0-functors
New - RRF(= M) = G(=, M)
suchthat Ky = (N w)o° (§) wy Thenforany ull DY(®B)(M*, N*) we have

(N y e RRFE= W)g o (6)cm= (Mo RRIF(= Ug e (6)
= (Mg © (§)e vy o RyF(= u)
=K_ y o RF(=U)
=G U)g° Kim
= G(= U)q° (M mlo © () m)
= (G(= W) © N mg © (€ my



Thus by Proposition 13.2 1 _, e RR,F(= U) = G(= u) » n_,. Hence 1 is a homomorphism
of bifunctors and satisfies k= 1. 1, © &,. Also, since

MNop, 5= Kp, o © (EI)(P,—)_l
foral P 00 Ob(¥), it followsthat n is unique.
Claim4: nis ahomomorphism of bi-o-functors and satisfies { =1 ¢, © ¢.

Proof. Since kK = 1y © ¢, and both ¢, and k are homomorphisms of bi-0-functors, it
follows by the same argument as in the proof of Claim 2 that 1, ., is aso ahomomorphism
of bi-d-functors. It then follows that n7 is a homomorphism of bi-0-functors. Also, by Claims
land 3wehave {=1g.q° ¢

Claim5: nisunique.
Proof. Let ¢ :RRF — G beahomomorphism of bi-d-functorswith {=¢ ¢, °é. Then

(Dax1° $)axq ° €= Paxg ° (E)axg °
= Poxg° ¢
={

= Kaxg© S

Thus, for any X' 0 Ob(K'(s4)), we have

((¢(Qx 1 ° E|)(x, —))Q ° (EII)(X, 9= (K(x, —))Q ° (Eu)(x, Y
and by Proposition 13.2 (@ . 1y ° €)x 5 = Kx, - Hence @1y &, =k andby Clam 3 ¢ = n.
Changing the order of taking right derived functors, we get the following.

Proposition 17.4. Assume the following conditions:

(@ F(- M’) hasaright derived functor ((¢)_ v, RF(= M")) for all M" O Ob(K"(R));

(b) K'(s4) has a full triangulated subcategory & such that for any X' 0 Ob(K'(®)) there
exists a quasi-isomorphism P* — X" with P* [ Ob(¥) and (&), , is an isomorphism for all
P O Ob(¥);

(c) RF(X', -) has a right derived functor ((¢ )y 4, R/RF(X", -)) for all X [
Ob(D’(s4)); and

(d) K'(%) has a full triangulated subcategory .t such that for any M* 00 Ob(K'(%)) there
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exists a quasi-isomorphism M* - I* with I" [0 Ob(M) and (¢,)._ ,, is an isomorphism for all
[* 0O Ob(M).

Then the following hold.

(1) R,RF: D'(sA)® x D'(B) — D(%) isa bi-0-functor.

(2) §=(&)oxn° & Qo F - RRF < (Q xQ) isahomomorphism of bi-0-functors.

(3) (¢, R,RF) isaright derived functor of F.

Definition 17.4. Let K'(«), K'(®) be localizing subcategories of K(sf) and K(®),
respectively, and F : K'(s4)® x K'(B) - K(%) abi-0-functor. A left derived functor of Fisa
terminal object of the following category: an object is a pair (G, {) of a bi-0-functor G :
D(s4)® x D'(%) — D(%) and a homomorphism of bi-d-functors{: Go (Qx Q) — Qo F;
and amorphism n : (G, {}) - (G,, {,) isahomomorphism of bi-o-functorsn : G, - G, such
that {;= &, 2 Ng o

Lemma 17.5 (dual of Lemma 17.1). Assume the following conditions

(@ F(X', -) hasaleft derived functor (L ,F( X", ), (§,)« ) for all X" O Ob(K'(s4)); and

(b) K'(%) has a full triangulated subcategory .t such that for any M" 0 Ob(K'(%)) there
exists a quasi-isomorphism P° - M" with P* 00 Ob(/t) and (¢,)_ 5 is an isomorphism for
all P [0 Ob(A).

Then the following hold.

(1) L,F: K(4)®x D"(B) — D(6) isa bi-0-functor.

(2 &, L,Fo(Qx1) - Qo Fisahomomorphism of bi—0-functors.

Lemma 17.6 (dual of Lemma 17.2). Assume the following conditions

(@ F(= M’) hasa left derived functor (L,F(—, M"), (). ) for all M" 0 Ob(D'(#8)); and

(b) K'(s4) has a full triangulated subcategory & such that for any X' O Ob(K'(%)) there
exists a quasi-isomorphism X* — I" with 1" [0 Ob(<¥) and (¢ ), _, is an isomorphism for all
I* O Ob(%).

Then the following hold.

(1) L,F:D(A)® x K'(B) — D(®) isa bi-0-functor.

(2 &:LFo(1xQ) - Qo Fisahomomorphism of bi—0-functors.

Proposition 17.7 (dual of Proposition 17.3). Assume the following conditions:

(@ F(X', -) hasaleft derived functor (L ,F( X", ), (§,)« ) for all X" O Ob(K'(s4));

(b) K'(%) has a full triangulated subcategory .t such that for any M" 0 Ob(K'(%)) there
exists a quasi-isomorphism P° - M" with P* 00 Ob(/) and (¢,)_ 5 is an isomorphism for
all P 0 Ob(AM);

(c) L,F(-=, M) has a left derived functor ((LL,F(-, M), (). ) for al M™ O
Ob(D'(%)); and
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(d) K'(s4) has a full triangulated subcategory & such that for any X' O Ob(K'(%)) there
exists a quasi-isomorphism X* — I" with 1" [0 Ob(<¥) and (¢ ), _, is an isomorphism for all
I* O Ob(%).

Then the following hold.

(1) L,L,F:D(«4)®x DY(B) — D(%) isa bi-a-functor.

(2 §=(&)oxp° & LLFo(Qx*xQ) - QoFisahomomorphismof bi—9-functors.

(3) (L,L,F, &) isaleft derived functor of F.

Proposition 17.8 (dual of Proposition 17.4). Assume the following conditions:

(@ F(= M’) hasa left derived functor (L,F(—, M"), (§)). ) for all M" O Ob(D'(%));

(b) K'(s4) has a full triangulated subcategory & such that for any X' O Ob(K'(%)) there
exists a quasi-isomorphism X* — I" with 1" [0 Ob(<¥) and (¢ ), _, is an isomorphism for all
" 0 Ob(%);

(¢) LIF(X, ) has a left derived functor ((L,L,F(X", -), (§,)« ) for all X" O Ob(K' (A));
and

(d) K'(%) has a full triangulated subcategory .t such that for any M" 0 Ob(K'(%)) there
exists a quasi-isomorphism P° - M" with P* 00 Ob(/t) and (¢,)_ 5 is an isomorphism for
all P [0 Ob(A).

Then the following hold.

(1) L,L,F:D(«4)® x DY(B) —» D(%) isa bi-a-functor.

(2) §=(&)axg &L L F(Qx*xQ) - QoFisahomomorphismof bi—9-functors.

(3) (L, L,F, &) isaleft derived functor of F.

12



818. Theright derived functor of Hom’

Throught this section, s is an abelian category, AU is the épaisse subcategory of K(s)
consisting of acyclic complexesand $ (resp. %) isthe collection of injective (resp. projective)
objects of . We denote by K(#), (resp. K(%),) the the full subcategory of K($) (resp.
K(%)) consisting of Al-local (resp. U-colocal) complexes X [ Ob(K(%)).

Definition 18.1. For X" and Y* [0 Ob(C(s)), we define a double complex C** in Mod Z
asfollows:

CP 9 = (X7, Y9,
(;Ilp'q = (_ 1)p+q+1 &g(d;(pﬂ), Yq),
dy 9 = SA(XP, dy)

forp,q0 Z, and set Hom™ ( X", Y*) =t(C’"). Then we get a bifunctor
Hom' : C(A)* x C(#4) - C(Mod Z)
such that

Hom"( X", Y') = AP, Y9

p+gq=n

for X*, Y O Ob(C(«A)) andnJZ, and

n — (_1\n+1 —(p+1) q
dHom'(X',Y')(u)_( D" ue dy +d/ou

forndZ, p,g0Z withp+qg=nandu O A(X", Y9).

Lemma18.1. For any X', Y [0 Ob(C(s)) the following hold.
(1) We may identify Hom" ( X*, Y*) with s4“( X", T(Y")) for all nO0 Z. Then

O i vy (W) = (= DY T(Wody—d, oup OA(X,THY))
forn0Z andu OA%( X", T(Y")). Inparticular, Hom' (X", Y*) O Ob(C(Mod A®)), where
A=End.,(X").

(2) We may identify Hom" ( X°, Y*) with 4“(T™"(X"), Y*) for all nO Z. Then



d" W=uod ., +Td,eu) 04T HX), Y)

Hom™ (X", Y")

forn0Z and u O AX(T(X'), Y'). Inparticular, Hom' (X", Y*) O Ob(C(Mod B)), where
B =End,,(Y").

Proof. (1) The first assertion is immediate by definition. Let A = End.,,(X"). Then,
since A is a subring of End&gz(X'), every s{4( X', T'(Y")) is a right A-module. Also, it
follows by the first assertion that every d:om.(x.yy.) isan A-linear map.

(2) Dual of (2).

Definition 18.2. For any abelian category i we denote by p : 1 , 5 1, an
automorphism of the identity functor 1 , : 4 — #” such that p; = (- 1)" id,, for al X D
Ob(4%) and n 0 Z.

Lemma18.2. (1) For any X', Y' [0 Ob(C(s4)) we have

Hom' (X°,TY") - T( dHom'(X',Y'))’ dHom’ Ty T( Hom'(X',Y'))'
(2) There exist isomor phisms of bifunctors
a:Hom o(1xT) 5 To Hom', B:Hom o(T*x1) 5 To Hom
such that for any X" and Y* [0 Ob(C(s4))
G = Gy vy By = TPy e vy
Inparticular, Ta o B, + TBo Ay = 0.

Proof. (1) Straightforward.
(2) Let X*, Y" O Ob(C(s4)). Since

Hom"( X', TY") =Hom"" (X", Y') =Hom" (T X", Y")
foral n Z, we may consider that
Hom' (X', TY") = T(Hom' (X", Y*)) = Hom' (T*X", Y°)

in (Mod Z)”. Thus by the part (1) we have natural isomorphismsin C(Mod Z)



O vy = id : Hom' (X', TY") 5 T(Hom™ (X", Y)),

Hom" (X', TY") *

'B(X,Y):T(pHom'(x‘,Y')): Hom' (T X", Y) 5 T(Hom™ (X', Y")).

Itisobviousthat Taof; .+ TS a 0.

(Tixy)
Lemma 18.3. For any X', Y' O Ob(C(#)) and n O Z, we have
H"(Hom' (X", Y*)) = K(«A)( X", T(Y")).

Proof. Let usidentify Hom"( X", ) with s4“( X", =) o T" for all n 0 Z. Then we have

Z\(Hom™ (X', Y')) = {u O s”(X", T(Y)) | T(U) o d = d_, o u}
= C(A)( X", T(Y")).

Also, for any v O sZ( X", T""(Y")), since

o) = 1 TW o b=, o}
= (-1 {T(W) o de+ T, ) o THTW)}
= (- {TV) o A+ T, © T}

with T(v) O A%(T X", T(Y")), we have d"~*(v) O Htp( X", T"(Y")). Conversely, for any u O
Htp( X", T(Y")), since there existsh 0 A%(T X*, T(Y")) such that

u=hod,+T(d,, oh)
=(=Dd (T (),

we have u 00 B"(Hom™ ( X", Y")).
Lemma 18.4. For any u O C(«A)( X", Y') and Z" O Ob(C(s)) the following hold.
(1) Hom'(Z°, C(u)) = C(Hom"(Z", u)).

(2) Hom' (C(u), Z') = Cp(T‘l(Hom' (u, Z7))) (see Proposition 2.10).

Proof. (1) Let usidentify Hom"(Z", -) withs4%(Z",-) o T"for all n 0 Z. Then for any '[f
gl O Hom"(Z", C(u)) = A4 Z", T"" (X)) O A4 Z", T"(Y")) we have

n+1qn f _ f mjn
(-1 dHom’(Z',C(u))(@a _T(@a od, - dT”C(u) ° %H



ET(f)D 0 d.o, 0 OO

" B@i® T HyTmrw d, S0

_ 0 T(f)ed, —d o f 0
£-0" T U)o f+T(g) e d, —d, 0 0

D( 1)n+2d:o;l(z ) O Dljlj
+ n O
% D"*Hom™(Z',u) (=1)""'d;] . (Z',Y')D&B

Thus we have
n+1
dn - = D ) 0 S
Hom' (2, C(u) B—iom””(z',u) d:om-(z' v B

(2) Let usidentify Hom" (=, Z*) withst%(—, Z') o T "foralnO Z. Thenforany[g f] O
AHTY), Z) O AXTO-Y(X"), Z') = Hom"(T"C(u), Z’), since'[g f] correspondsto a
morphism [f ¢ : T 9(X)OT"(Y") - Z in 4% wehave

N 9
dHom' (C(u),Z')( % a

= [f g] ° dT_(””)C(u) +T_l(dZ ° [f g])

0 0 O
= [f nIX +[THd,of) Td,o
[ g] % 1-|- (U) dT (n+1)Y% [ ( Z ) ( Z g)]

=[fod . +THdef)+(=1)""'goT (W) god +T4(d,0 9)]

T—(n+1)Y

Hom" (X", Z" )(f) + (_ 1 ”+1g ° T_n (U) dI-Tom Y.,z )(g)]
=[d" () + (1) g T"(u)  d'(9)]-

=[d"*

Thusthe differential is given by

Eglj'_) 0 I—Tom Y,z 0 D[glj
FH” g0 Hom' . z) dk .,

and we have
D I-Tom Y",z%) 0 E
Yot 0.2 T By Hom' (. Z7) di% 6



Proposition 18.5. The bifunctor Hom" givesrise to a bi-0-functor
Hom" : K(s)® x K(d) - K(Mod Z).

Proof. For any u [0 Htp( X", Y") in C(«4) and Z° O Ob(C(s)), by Lemma 18.4 and
Proposition 3.1 we have

Hom'(Z’, u) O Htp(Hom' (Z°, X*), Hom' (Z", Y")),
Hom’ (u, Z°) O Htp(Hom' (Y, Z*), Hom" ( X", Z°)).

Thus the bifunctor Hom' : C(4)® x C(«d) — C(Mod Z) givesrise to a bifunctor
Hom' : K(sA)® x K(#A) - K(Mod Z).
Next, by Lemmas 18.4 and 18.2
Hom' (Z',-) : K(#4) - K(Mod Z)
isad-functor for al Z° [0 Ob(C(s)). Also, by Lemmas 18.4 and 18.2 and Proposition 2.10
Hom' (-, Z') : K(#A)® - K(Mod Z).
isao-functor for all Z° [0 Ob(C(s4)). Finaly, it follows by Lemma 18.2 that
Hom’™ : K(A)® x K(sf) - K(Mod Z)
isabi-0-functor.
Remark 18.1. (1) Let X' 0 Ob(K(s4)) and Y* O Ob(K"(s4)). Then Hom' (X', Y") O
Ob(K*(Mod Z)) and every Hom"( X", Y") isafinite direct sum.
(2) Let X* O Ob(K'(s4)) and Y* 0 Ob(K™(s4)). Then Hom™ (X', Y") O Ob(K(Mod Z))
and every Hom"( X", Y") isafinite direct sum.
(3) Hom (X, Y") = A(X, Y*) foral X Ob(s4) and Y* [0 Ob(K(s4)).
(4) Hom (X', Y) = A(X",Y) foral X O Ob(K(s4)) and YO Ob(sA).
(5) Let 9B be another abelian category and F : 4 — 9% an additive functor which has a left

adjointG : B — . Then we have anatural isomorphism

Hom' (G(X'), Y') = Hom' (X', F(Y"))



for X* 0 Ob(K()) and Y* 0 Ob(K(s4)).

Lemma 18.6. The following hold.

(1) If either X" O Ob(K(sd))or 1° O Ob(K*(¥)) isacyclic, sois Hom' (X", 17).
(2) If ethter X" 00 Ob(K(s4)) or 1" 0 Ob(K(#),) isacyclic, sois Hom" (X", 17).
(3) If either P* [0 Ob(K™ (%)) or Y [0 Ob(K(s4)) isacyclic, sois Hom (P", Y*).
(4) If either P* O Ob(K(%),) or Y O Ob(K(s4)) isacyclic, sois Hom' (P", Y).

Proof. (1) Notethat T"(1") O Ob(K*($)) for al n0 Z. Incase X' O Ob(W), by Lemmas
18.3and 4.4 Hom" ( X", I")isacyclic. Assume |I° [0 Ob(°U). Then by Lemma4.4T"(1°)=0
inK(«) foral n Z. Thusby Lemma18.3 Hom' (X", |") isacyclic.

(2) Note that T'(1") O Ob(K(#),) for al n 0 Z. Incase X" [ Ob(W), then by Lemma
18.3 Hom’ (X", I") isacyclic. Assume |I° [0 Ob(W). Then by Lemma 12.15 T'(1') = 0in
K(s) foralnO Z. Thusby Lemma18.3 Hom™ ( X", 1") isacyclic.

(3) Duad of (2).

(4) Dud of (2).

Proposition 18.7. Assume s has enough injectives. Then the following hold.
(1) Hom'" : K(s4)® x K*(s4) - K(Mod Z) has a right derived functor

RHom" =RR, Hom' : D(#4)® x D*(sf) - D(Mod Z)
such that RHom' (X*, 1) = Hom’ (X, I") provided I" O Ob(K*(%)).
(2) If o satisfiesthe condition Ab4", then Hom™ : K(s4)® x K(sd) — K(Mod Z) has a right
derived functor
RHom" = RR,Hom' : D(s4)® x D(sA) - D(Mod Z)
such that RHom™ (X, ') = Hom' (X, I") provided I" O Ob(K(%),).
Proof. (1) For any X' O Ob(K(s4)), since by Proposition 4.7 and Lemma 18.6(1) K*(¢)
satisfies the hypotheses of Proposition 13.6 for Hom' (X", -) : K’(s#4) - D(Mod Z). Thus by
Lemma 17.1 we have a bi-d-functor

R, Hom' : K(s0)® x D*(sd) — D(Mod Z).

Then, for any 1° [0 Ob(K*(¥)), by Lemma 18.6(1)



R,Hom (—, ') = Qo Hom' (-, 1) : K(d) - D(Mod 2Z)
vanisheson . Thus, since by Proposition 10.13 K*($) = D*(s4), Proposition 17.3 applies.
(2) For any X" [0 Ob(K(s)), since by Proposition 12.15 and Lemma 18.6(2) K(¥),
satisfies the hypotheses of Proposition 13.6 for Hom™ ( X', —-) : K(¢{) -» D(Mod Z). Thus by
Lemma 17.1 we have a bi-d-functor
R, Hom" : K(s4)* x D(s{) - D(Mod Z).
Then, for any 1° 0 Ob(K(#),), by Lemma 18.6(2)

R, Hom' (=, 1") = Qo Hom' (=, 1") : K(s4)® — D(Mod Z)

vanishes on . Thus, since by Proposition 12.16(1) K(¥), > D(s), Proposition 17.3
applies.

Proposition 18.8 (Dual of Proposition 18.7). Assume % has enough projectives. Then the
following hold
(1) Hom" : K(A)® x K() — K(Mod Z) has aright derived functor
RHom" = R,R Hom" : D (A)® x D(s4) — D(Mod Z)
such that RHom" (P", Y') = Hom" (P", Y") provided P" O Ob(K™ (%)).
(2) If o satisfies the condition Ab4, then Hom™ : K(4)® x K(«) — K(Mod Z) has a right
derived functor
RHom" = R,R, Hom" : D(s4)*® x D(s4) - D(Mod Z)

such that RHom™ (P, Y*) = Hom (P, Y*) provided P" [0 Ob(K(%),).

Remark 18.2. (1) For any P O %, wehave Qo &{(P,-) = RHom' (P,-) - Q.
(2) Forany | O %, wehave Qo d(— 1) > RHom (- 1) Q.

Proposition 18.9. Assume s« has enough injectives. Then the following hold.
(1) For any X" 0 Ob(D(s4)), Y* 0 Ob(D"(s4)) and i 0 Z we have

H(RHom' (X, Y')) = Ext( X", Y°).

(2) If o satisfies the condition Ab4", then for any X* 0 Ob(D(s4)), Y O Ob(D(s4)) and i



O Z we have
H'(RHom' (X', Y)) = Ext( X", Y°).

Proof. (1) By Proposition 4.7 we have a quasi-isomorphism Y' - [|° with |° O
Ob(K*($)). Thus by Lemma 18. 3 and Proposition 10.12 we have

H'(RHom' (X', Y)) = H(Hom' (X, 1))
= K(«4)( X", T(17)
= D(A)( X", T(17))
= D(A)( X", T(Y"))
= Ext'( X", Y°).

(2) By Proposition 12.15 we have a quasi-isomorphism Y* - |° with " O Ob(K(%),).
Thus by Lemma 18. 3 and Proposition 9.13(2) we have

H'(RHom' (X", Y*)) = H(Hom' (X, 1))
= K(«4)( X", T(17)
= D(A)( X", T(17))
= D(A)( X", T(Y"))
= Ext'( X", Y°).

Proposition 18.10 (Dual of Proposition 18.9). Assume s has enough projectives. Then
the following hold.
(1) For any X" 0 Ob(D(4)), Y* 0 Ob(D(#4)) andi O Z we have

H'(RHom' (X', Y*)) = Ext(X, Y°).

(2) If A satisfies the condition Ab4, then for any X" [0 Ob(D(s4)), Y' O Ob(D(s4)) andi O
Z we have

H'(RHom™ (X", Y*)) = Ext( X", Y°).
Proposition 18.11. For any X" [ Ob(C(s)) with A=End,,( X"), we have 0-functors
Hom' (X', -) : K(#A) - K(Mod A®), Hom’(—, X"): K()® - K(Mod A).

Furthermore, the following hold.
(1) If o has enough injectives then Hom' (X', -) : K'(sf) - K(Mod A®) has a right



derived functor RHom™ ( X*, -).

(2) If o has enough injectives and satisfies the condition Ab4', then Hom™ (X", -) : K(sA4)
- K(Mod A*) has aright derived functor RHom" ( X", -).

(2) If & has enough projectives, then Hom' (-, X') : K(4)® - K(Mod A) has a right
derived functor RHom" (—, X").

(4) If o has enough projectives and satisfies the condition Ab4, then Hom™ (—, X°) :
K(#A)® - K(ModA) has a right derived functor RHom™ (—, X").

Proof. By Lemma 18.1 we have functors
Hom' (X', -) : C(«d) - C(Mod A®), Hom" (-, X'):C(s4)® - C(Mod A).
Thus by Proposition 18.5 we get d-functors
Hom' (X', -) : K(«d) - K(Mod A®), Hom' (-, X):K(s4)® - K(Mod A).
The remaining assertions are immediate by the construction of RHom' .
Throughout the rest of this section, Risacommutative ring and A, B are R-algebras.

Definition 18.3. For aring A, we denote by Inj A, Proj A and Flat A the collection of
injective, projective and flat left A-modules, respectively. Also, we denote by proj A the
collection of finitely generated projective left A-modules. Right A-modules are considered as
left A®-modules, where A denotes the opposite ring of A.

Definition 18.4. For a ring A, we denote by mod A the full subcategory of Mod A
consisting of finitely presented modules. In case A is left coherent (resp. noetherian), mod A
consists of the finitely presented (resp. generated) modules and coinsides with the thick
subcategory of Mod A consisting of coherent modules.

Definition 18.5. For * =+, —, b or nothing, we denote by K_(Mod A) the full triangul ated
subcategory of K'(Mod A) consistsing of complexes X' 00 Ob(K'(Mod A)) with the H'( X")
coherent and by D_"(Mod A) the corresponding derived category.

Definition 18.6. A left A O B®-moduleV is an A-B-bimodule V such that the action of R
on VviaAcoinsideswith that of RonVviaB,i.e,rv=vrforalr 0 Randv OV.

Remark 18.4. For V' 0 Ob(C(Mod A O, B%®)) the following hold.
(1) We have ring homomorphisms



Q:A-> Endc(Mod B(J,,)(V'), B - Endgyeq o(V)®
such that ¢(a)(v) = avforall ad A,n0 Z and v V", and ¢(b)(v) =vbforal b0 B,n 07
andv O V"
(2) If V° O Ob(K(Flat B*)) and 1" O Ob(K(Inj A)), then Hom™ (V°, ") O Ob(K(Inj B)).
(3) If V" O Ob(K(InjB*)) and P* O Ob(K(Proj A)), then Hom™ (P", V*) O Ob(K(Inj B)).
Proposition 18.12. (1) We have a bi-0-functor
Hom™ : K(Mod A0, B®*)*® x K(Mod A) — K(Mod B)
which has a right derived functor
RHom' : D(Mod AU, B*)®* xD(Mod A) - D(ModB)
such that RHom™ (V*, X") = Hom"(V", X") provided either V* [0 Ob(K(Proj AL, B>),) or
X" O Ob(K(Inj A)).
(2) We have a bi-0-functor
Hom" : K(Mod A)® x K(Mod A O, B*) - K(Mod B®)
which has a right derived functor

RHom' : D(Mod A)*® x D(Mod A [ B*) - D(Mod B%*)

such that RHom™ ( X", V') = Hom" (X", V) provided either X" O Ob(C(Proj A),) or V' [
Ob(K(Inj A0, B*),).

Proof. Straightforward.

Remark 18.6. Let B — A be a homomorphism of R-algebrasand U : Mod A -~ Mod B the
induced functor. Then the extended d-functor U : K(Mod A) — K(Mod B) has aright derived
functor RHom’ (,A;, —) suchthat Qo U 5 RHom™ (,A;, -) ° Q.

Proposition 18.13. We have a bi-0-functor

Hom' : K(Mod A)* x K(Mod R) - K(Mod A%)
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which has a right derived functor

RHom" : D(Mod A)* x D(Mod R) - D(Mod A%®)

such that RHom’ (X", E") = Hom" (X", E") provided either X" O Ob(K(Proj A),) or E' [
Ob(K(Inj R),).

Proof. Straightforward.
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819. The left derived functor of [

Throught this section, Ris a commutative ring and A, B are R-algebras. For any ring A,
we denote by K(Inj A), (resp. K(Proj A),) the full subcategory of K(Inj A) (resp. K(Proj A))
consisting of Al-local (resp. U-coloca) complexes, where AL is the épaisse subcategory of
K(Mod A) consisting of acyclic complexes. Also, we denote by E an injective cogenerator in
Mod Rand by D both Hom,(—, E) and RHom' (—, E).

Definition 19.1. For M* 0 Ob(C(Mod A®)) and X' [0 Ob(C(Mod A)), we define a double
complex C** in Mod R asfollows:

CPa=MP O, X",
dP9=df O id,,
P9 = (-1 %id,, O df

forp,g0dZ,andset M* L] X" =t'(C"). Then we get abifunctor
[ :C(Mod A®) x C(ModA) —» C(Mod R)
such that
[M'OX]" = [] MO, X
p+q=n
for M" O Ob(C(Mod A®)), X" 0 Ob(C(Mod A)) and n 0 Z, and
di. - (MOX) = di(m Ox + (=1)"m0 dy(X)
fornOZ,p,q0Z withp+g=nandm xO MP O, X%
Definition 19.2. For any M* [0 Ob(C(Mod A*)) and X" [0 Ob(C(Mod A)) we set
M O, X = [] MPO, XA
p+q=0
Then we get a bifunctor

O, : C(Mod A®) x C(Mod A) -~ Mod R

Lemma 19.1. For any M" 0 Ob(C(Mod A®)), X" [0 Ob(C(Mod A)) the following hold.

1



(1) In case we identify (M" LI X")" with T M’ Dgr X" for al n O Z, the differntial is of
the form

d". .=y {d, O,id+id, O, d}.

M®OX

(2) In case we identify (M" LI X")" with M* Dg, T" X* for all n 0 Z, the differential is of
the form

d". . =d,0 id, +id, O, d

MO X ar T'X gr TTnx”

Proof. Straightforward.

Definition 19.3. For any abelian category s« we denote by p : 1 , 5 1,. an
automorphism of theidentity functor 1 , : #d” - s4” such that pj = (= 1)"id,, for al X O
Ob(s4%) and n O Z.

Lemma 19.2. (1) For any M* [0 Ob(C(Mod A*)), X" O Ob(C(Mod A)) we have

d = —T(d

™' OX

d = T(d

M'DX')’ M* OTX M'DX')'

(2) We have isomorphisms of bifunctors
a: (0o (1xT) 2 To(-U-), B:(=0-)o(Tx1) 3 To(-U-)
such that for any M* O Ob(C(Mod A*)) and X" O Ob(C(Mod A)),
Aoy = Puromer B = 105y -
Inparticular, Ta o B, + TBo Oy =0.

Proof. (1) Straightforward.
(2) Let M™ O Ob(C(Mod A*)) and X* O Ob(C(ModA)). Since

[MOTX]" =[M OX]"* =[T™M" O X"
foral nO Z, we have

MOTX =T(M' O x)=TM' O X



in (Mod R)%. Thus by the part (1) we have isomorphismsin C(Mod R)

a(M,X): pM'DTX' M D > 5 T(M. D X'),
Buxy=id .. i TM OXx 2 T(Mm O X).

™" OX

Itisobviousthat Ta o By, + TBo .1, =0.

Lemma 19.3. (1) M" [0 C(u) = C(M" U u) for all M" O Ob(C(Mod A®)) and a
morphismu: X* - Y in C(Mod A) (see Proposition 2.10).

(2)C(u) O X" = Ccul X) for all X 0Ob(C(Mod A)) and a morphismu: M" - N’
in C(Mod A%).

Proof. (1) Weidentify (M" [J X")"with M* LI, T" X" for al M" O Ob(C(Mod A®)), X’
[ Ob(C(Mod A)) andn 0 Z. Let M° [0 Ob(C(Mod A%®)) andu: X' — Y in C(Mod A).
Then

[M Ocw]"= (M O, T*x)0 (M O, TY),

=dy, U, +id, [ d

M* IIIC(u) - TC(u) M =g “1C(u)
~ ng (I o A 0 E"‘ O idy Uy dooiy 0 D
- : n+1 H
H 0 dy Oy id 5" H-D"id, O, T""*u id, O, d . H
n+1
D dM ox O B
5 D" (M Ow™ di. .. i
foraln0Z.

(2) We identify (M* 0 X*)" with T" M* [, X" for al M" O Ob(C(Mod A%¥)), X' O
Ob(C(ModA)) andn 0 Z. Let X’ OOb(C(Mod A)) andu: M* - N’ inC(Mod A®). Then,
asin the part (1), we have

[Cwy O x]"= @™ O, X)0 (N O, X),

O-d™ 0 O
ar =g Seox 008
cwox T Hud X" dl

foralnO Z.

Proposition 19.4. The bifunctor L] gives rise to a bi-d-functor



0 : K(Mod A%) x K(Mod A) — K(Mod R).

Proof. By Lemma 19.3 and Proposition 3.1, for any u 00 Htp( X", Y") in C(Mod A) and
M* O Ob(C(Mod A*)) we have

M OuOHp(M O X, M 0O Y),

and for any u OO Htp(M*, N*) in C(Mod A®*) and X" [0 Ob(C(Mod A)) we have

uld X OHtp(M O X, N° O X).
Thus the bifunctor [] : C(Mod A®) x C(Mod A) — C(Mod R) givesriseto a bifunctor
[J:K(Mod A®) x K(Mod A) - K(Mod R).
Next, by Lemmas 19.3 and 19.2
-0 X' :K(Mod A®) — K(Mod R)
isao-functor for all X* 0 Ob(K(Mod A)). Also, by Lemmas 19.3, 19.2 and Proposition 2.10
M® L —:K(Mod A) - K(Mod R)
isao-functor for all M* [0 Ob(K(Mod A®)). Finaly, it follows by Lemma 19.2 that

0 : K(Mod A%) x K(Mod A) — K(Mod R).

is a bi-0-functor.

Remark 19.1. (1) M° 0 X O Ob(K'(Mod R)) for al M* O Ob(K'(Mod A®)) and X' [

Ob(K'(Mod A)), where* =+, —or b.
QMO X =M0O, X foral MO ModA®and X' 0 Ob(K(Mod A)).

(3 M" [ X= M" 0O, Xforal M" 00 Ob(K(Mod A®)) and X 0 Mod A.
Lemma 19.5. (1) There exists a natural isomorphism

Hom (M J vV, N') 2 Hom'(M’, Hom'(V", N°))



for V' 0 Ob(D(Mod A O, B*®)), M* 0 Ob(C(Mod A®)) and N O Ob(C(Mod B*)).
(2) There exists a natural isomorphism

Hom' (V' O X', Y') Z Hom (X', Hom (V", Y"))
for V' 0 Ob(D(Mod A0, B%)), X" 0 Ob(C(Mod B)) and Y* O Ob(C(Mod A)).

Proof. (1) For any n [0 Z, we may consider that

Hom"(M" J v°, N°) = |_| Hom,(M~P O,V~% N,
p+q+r=n
Hom"(M*, Hom'(V*, N)) = |_| Hom,(M~", Hom,(V~% N")).
p+g+r=n

For any p, g, r [0 Z we have a natural isomorphism
> %" Hom(M P00, V9 N) 5 Hom,(M™®, Hom,(V % N")

such that

a(q+1)

POUMVI= D T PP D)

for %" 00 Hom;(M PO, V4, N), m" 0 M and Vv O V' % Thusfor any n [l Z we have a
natural isomorphism

@"=(¢"*) Hom;M~"0, V-9 N) = Hom,(M~°, Homg(V-%, N)).
p+tg+r=n p+qg+r=n
It is easy to see that ¢ commutes with differentials.
(2) By symmetry.

Remark 19.2. For V' 0 Ob(D(Mod A U B*)) the following hold.
(1) If V" O Ob(K(Proj B®)) and P* O Ob(K(Proj A®)), then P* [J V' O Ob(K(Proj B®)).
(2) If V' O Ob(K(Flat B®)) and P* O Ob(K(Flat A%®)), then P" [J V" O Ob(K(Flat B*)).

Lemma 19.6. For abi-d-functor [1 : K(Mod A®) x K(Mod A) — K(Mod R) the following
hold.

(1) If either M" O Ob(K(Mod A®))or P* O Ob(K(Proj A),) isacyclic, sois M" L] P.
(2) If either M" O Ob(K(Mod A®))or P" O Ob(K (Flat A)) isacyclic, sois M* L1 P".
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(3) If either P O Ob(K(Proj A®),) or X" 0 Ob(K(Mod A)) isacyclic, sois P [1 X".
(4) If either P" O Ob(K(Flat A®)) or X" O Ob(K(Mod A)) isacyclic, sois P° L1 X'.

Proof. (1) Since by Lemma19.5(2) D(M" I P') = Hom'(P*, D(M")), Lemma 18.6(4)
applies.

(2) Since by Lemma 19.5(1) D(M" [ X) 2 Hom' (M°, D(X)) with D(X') O
Ob(K*(Inj A%®)), Lemma 18.6(1) applies.

(3) and (4) follow by symmetry.

Proposition 19.7. The bi-d-functor L1 : K(Mod A®) x K(Mod A) - K(Mod R) has both a
left derived functor

L LiLy

0= 0 :D(ModA”) x D(Mod A) — D(Mod R)

I-ILII

suchthat M" [0 P = M" [ P for all M" O Ob(K(Mod A®)) and P O Ob(K(Proj A),),
and a left derived functor

L Lk

0= 0 :D(ModA”) x D(Mod A) — D(Mod R)

I-IILI

such that P’ X = P [ X forall P" O Ob(K(Proj A%®),) and X" OK(Mod A).
I-ILII
Proof. We claim first that [] exists. For any M" 0O Ob(K(Mod A®)), by Proposition
12.20 and Lemma 19.6(1) K (Proj A), satisfies the hypotheses of Proposition 14.6 for M* [] —
:K(Mod A) - K(ModR). Thus by Lemma 17.5 we have a bi-0-functor

I-II

0 : K(Mod A®) x D(Mod A) — D(Mod R).

LII
Then, for any P 0 Ob(K(Proj A),), by Lemma 19.6(2) — [J P’ : K(Mod A*) - D(Mod R)
vanishes on the acyclic complexes. Also, by Proposition 12.21(1) K(Proj A), > D (Mod A).
I-IILI

Thus Proposition 17.7 applies. Theexistenceof [1 follows by symmetry.

L

Proposition 19.8. M" [ X" = M" [0 X" provided either X" 00 Ob(K™(Flat A)) or M" [J
Ob(K™(Flat A®)).

Proof. Assume X" [J Ob(K™(Flat A)). By Proposition 4.11 there exists a quasi-isomorphism
s: P - X with PP O Ob(K(Proj A)). Then, since C(9) is acyclic, and since C(s) [
Ob(K™(Flat A)), by Lemmas 19.3(1) and 19.6(1) M" L] sisaquasi-isomorphism. Thus



[N
S
- - O

P
P
X,

L
By symmetry, M" [ X" = M" [0 X if M" O Ob(K™(Flat A*)).
L
Remark 19.3. (F [ -)oQ 5 Qo (F O,-) foral F O Flat A”.
Proposition 19.9. (1) We have a bi-0-functor
[]:K(Mod A, B®) x K(Mod B) - K(Mod A)
which has a left derived functor

L
[l :D(Mod AO,B%*) xD(Mod B) - D(ModA)

L

such that V* [ X" = V' [ X provided either V* 0 Ob(K(Proj A O, B®),) or X' O
Ob(K(Proj B),).
(2) We have a bi-0-functor
[J: K(Mod A*®) x K(Mod A 00, B*®) - K(Mod B%)
which has a left derived functor

L
0 : D(Mod A”) x D(Mod A O, B¥) - D(Mod B®)

L
such that M* [ V" = M" [ V' provided either V* O Ob(K(Proj A O, B®),) or M" O
Ob(K(Proj A™®),).

Proof. Straightforward.

Remark 19.4. Let B — A be ahomomorphism of R-algebrasand U : Mod A — Mod B the
induced functor Then the extended o-functor U : K(Mod A) - K(Mod B) has a left derived

functor (;A, [ -) such that A, D -oQ 5 QoU.

Lemma 19.10. (1) Assume A iscommutative. Then there exists a natural isomorphism



M OX S X owm

for M", X 0 Ob(C(Mod A)).
(2) There exists a natural isomorphism

MOV OX) > M Ov)OX.
for M" O Ob(C(Mod A®)), V' 0 Ob(C(Mod A0, B*)) and X' O Ob(C(Mod B)).
Proof. (1) For any n [0 Z we have anatural isomorphism

¢ [ MO, X 5[] x@O,M

p+gq=n p+g=n
such that

(p+a)p+q-1)

grPOx¥)=(-1) 2  >0Onf

form’ O x40 MP O, X% wherep, g 0 Z withp + g=n. Itiseasy to seethat ¢commutes with
differentials.
(2) For any n [0 Z we have anatural isomorphism

¢: [] (MPO,V)O X 5[] MO, (Vg X)

p+tg+r=n p+g+r=n
such that

r(2g+r-1)

P OV)OX)=(-1) 2 nPOWDOX)

for(m Ov) OxX OMPO, V) O, X, wherep, g, r D Zwithp+q+r =n. Itiseasy to see
that gcommutes with differentials.
Proposition 19.11. (1) Assume A iscommutative. Then there exists a natural isomorphism

L L

M OX 2 xOM

for M* 0 Ob(D(Mod A)) and X [0 Ob(D(Mod A)).
(2) There exists a natural isomorphism



L

MO (Vv O X) S (M OV X
for M* O Ob(D(Mod A®)), V' 0 Ob(D(Mod A 0, B*)) and X [ Ob(D(Mod B)).

Proof. (1) Let M 0 Ob(K(Mod A)) and X* 1 Ob(K(Mod A)). By Proposition 12.20 we
may assume M™ [ Ob(K(Proj A),). Thus by Lemma 19.10(1) we have
L
M OX=M01OX
= X M
= X ﬁ M.

(2) Similar to (1).



§20. Hyper Tor

Throught this section, Ris a commutative ring and A, B are R-algebras. For any ring A,
we denote by K(Inj A), (resp. K(Proj A),) the full subcategory of K(Inj A) (resp. K(Proj A))
consisting of Al-local (resp. U-colocal) complexes, where Al is the épaisse subcategory of
K(Mod A) consisting of acyclic complexes. Also, we denote by E an injective cogenerator in
Mod Rand by D both Hom,(—, E) and RHom' (—, E).

Definition 20.1. For M* O Ob(D(Mod A®)), X" [0 Ob(D(Mod A)) and n [0 Z we set
L
Tor, (M, X')=H™(M" O X)),
which is called the n" hyper Tor.

Proposition 20.1. For any M" 0 Ob(D(Mod A®)), X" 00 Ob(D(Mod A)) and i O Z, there
exist isomor phisms

D(Tor(M", X')) = Ext(M", D( X)),
D(Tor(M", X')) = Ext(X", D(M")).

Proof. Since by Proposition 12.20 we have a quasi-isomorphism P° - M® with P [
Ob(K(Proj A®),), we have

D(Tor(M", X)) =D(H'(M’ tl X))
=D(H'(P ﬁ X))
=DH'(P O X))
= H(D(P" 1 X))
= H'(Hom' (P", D( X"))
= H'(RHom" (P", D( X"))
= H'(RHom" (M", D( X"))
= Ext'(M", D(X")).

By symmetry, the last isomorphism follows.
Proposition 20.2. For X" O Ob(D(Mod A)) the following are equivalent.

(1) X' O ObD(Mod A),).
(2) D(X') 0 Ob(D(Mod A®),..).



Proof. By Proposition 20.1.

Proposition 20.3. Let V' O Ob(C(Mod A [0 B*)). Then the following hold.
(1) For each exact sequence 0 -~ X' - Y° - Z° - 0in C(Mod B), we have a long
exact sequencein Mod A

- = Tor(V', X)) - Tor(V', Y') - Tor(V', Z') - Tor,_,(V', X)) - -

(2) For each exact sequence0 - L' -~ M" -~ N - 0in C(Mod A%®), we have a long
exact sequence in Mod B®

- - Tor(L, V') - Tor(M, V) - Tor(N", V') - Tor,_,(L, V") - -
L
Proof. (1) Since V' U — : D(Mod A) —» D(Mod B) is a d-functor, and since by
Proposition 11.1 we have atriangle in D(Mod A) of the form (X, Y, Z*, LILIDl we get a
trianglein Mod B of the form

v Ox, v oy, v Oz, 0o
(2) By symmetry.

Proposition 20.4. Tor,(M, X) coinsides with the usual Tor?(M, X) for all M 0 Mod A%, X
[(0ModA andi=0.

Proof. Let M 0 Mod A*and X T Mod A. PutG=M0,—: ModA - Mod R and take a
projective resolution P* — X. Thenfor any i = 0 we have

Tor(M, X) = H™'(M Ii X)
=H-(M 0 P)
=H- (MO P)
=H"'(G(P"))
= Tor’(M, X).

Definition 20.2. A complex X* [0 Ob(K(Mod A)) is said to have finite flat dimension on
Mod A% if, for i » 0, Tor,(—, X") vanishes on Mod A®. Sometimes, flat dimension is called
Tor dimension. For * =+, —, b or nothing, we denote by K’ (Mod A),, the full subcategory of
K (Mod A) consisting of X' [0 Ob(K"(Mod A)) which have finite flat dimension on Mod A™.



Lemma 20.5. For * =+, —, b or nothing, the following hold.

(1) K'(Mod A),, isafull triangulated subcategory of K'(Mod A).

(2) U n K'(Mod A),,, is an épaisse subcategory of K’'(Mod A),,,, where U is the épaisse
subcategory of K(Mod A) consisting of acyclic complexes.

Proof. (1) Let X" 0 Ob(K'(Mod A),;,) and n0 Z. Then Tor,(—, T'( X)) = Tor,_.(— X")
vanishes on Mod A® for i »> 0 and T(X") O Ob(K'(Mod A),,). Also, foranyu: X' - Y in
K'(Mod A) with X', Y* O Ob(K'(Mod A),,,), since by Proposition 20.3 we have an exact
sequence

= Ton(= Y7 = Tor(= C) — Ton 4= X)) — -,

Tor,(—, C(u)) vanishes on Mod A% for i »> 0 and C(u) O Ob(K"(Mod A).,).
(2) By Proposition 7.7.

Definition 20.3. For * =+, —, b or nothing, according to Lemma 20.5, we have a derived
category

D'(Mod A)., = K'(Mod A),;,/U n K'(Mod A),,,
wherel is the épaisse subcategory of K(Mod A) consisting of acyclic complexes.

Proposition 20.6. For * =+, —, b or nothing, the following hold.
(1) D'(Mod A),,; C D' (Mod A),,.
(2) The canonical functor D'(Mod A),;, — D(Mod A) is fully faithful.

Proof. (1) By Proposition 20.1.

(2) It follows by definition that K’ (Mod A),,, is closed under quasi-isomorphism classesin
K'(Mod A). Thus by Proposition 8.17 the canonical functor D'(Mod A),;, — D(Mod A) is
fully faithful.

Lemma 20.7. For X' [ Ob(D(Mod A)) the following are equivalent.

(1) X' O Ob(D(Mod A),;)-

(2) Fori» 0, Tor,(—, X") vanishes on mod A®.

(3) There exists an isomorphism P* — X" in D(Mod A) with P* O Ob(K™ (Flat A)).

Proof. (1) O (2). Obvious.
(2) O (3). Take n Z such that, for i > n, Tor,(—, X) vanishes on the finitely presented
modules. By Proposition 12.20 there exists a quasi-isomorphism P° - X' with P° [



Ob(K(Proj A),). Thenfor i > nwe have

H(PT) = H(X)
=H (A ﬁ X"
= Tor, (A, X)
=0.

Thus by Lemma 10.6 we have a quasi-isomorphism P° - o, ,(P’). Next, since we have a
projective resolution of B~"( P")

S L PTM2 L P L BTY(PY) - 0,
by Proposition 20.4 we have

Tor,(M,B™"(P)) = H™?(M O, P))
= H "*2((M i P))
=H "M ﬁ X))
=Tor,,,(M, X)
=0

for all M 0 mod A®. ThusB~"(P") isflat and o,_(P") O Ob(K'(Flat A)).
(3) O (1). Fori » 0, since P° O Ob(K*(Flat A)), we have

Tor,(M, X) =Tor,(M, P")
=H(M O PY)
=H'(MO PY))
=0

foral M O Mod A®.

Lemma 20.8. For X' O Ob(K(Mod A)) the following are equivalent.
(1) X" O Ob(K(Mod A),)-
(2) For i » 0, Ext'(—, X") vanishes on the finitely generated modules.

Proof. (1) O (2). Obvious.

(2) O (1). Take nO Z such that, for i > n, Ext((—, X) vanishes on the finitely generated
modules. By Proposition 12.15(1) there exists a quasi-isomorphism X - [° with |° [
Ob(K(Inj A),). Thenfori >nwe have



HI(X) = H(Hom' (A, X))
= H'(RHom' (A, X"))
= Exti(A, X)
=0.

Thus by Lemma 10.7 we have a quasi-isomorphism o (1°) - I°. Next, since we have an
injective resolution of Z"(1")

0-2Z(1") > 1" 5 I 5 een
for any finitely generated modules Y [0 Mod A we have

Ext(Y, Z2(1")) = H™ {(Hom,(Y, 1))
= H""Y(RHom" (Y, 1))
= H""Y(RHom’ (Y, X"))
= Ext"* (Y, X)
= 0.

It follows by Baer’s criterion that Z'(1") isinjective. Thus o (1°) 0 Ob(K™(Inj A)) and
Ext'(Y, X)) = Ext'(Y, o (1))
= H'((RHom' (Y, & ,(1"))))
= H'((Hom" (Y, o ,(1"))))

-0

forali>nandY O ModA.



821. Universal coefficient theorems
Throughout this section, & is an abelian category, $ (resp. %) isthe collection of injective
(resp. projective) objects of 4 and U is the épaisse subcategory of K(s{) consisting of acyclic
complexes. Also, R is a commutative ring and A is an R-algebra. We denote by E an

injective cogenerator in Mod R and by D both Hom(—, E) and RHom' (—, E).

Lemma 21.1. Let X [0 Ob(K(s{)). Assume one of the following canonical exact
sequences splitsin s4*

0- B(X)- X - Z°(X) = 0,
0. Z(X) = X - B (X)-0.

Then X" = H'(X") inD(«A).
Proof. Assume the canonical exact sequence
0- Z(X) > X 5 B (X)-0

splits as an exact sequencein %, Letv' : B"(X') - X' beamorphismin #”withvo Vv =
id Letw: B"(X") - T(Z(X")) betheinclusion. Then, sinced, =Tuowov,d, oV

= 'IB"u():iNand we get amorphism ¢ =T-w V]: B"(X) - Cu)inC(#). Pute=[1 0] :
Cu) - T(Z (X)) and V=[0 V]:C(u) - B"(X). ThenQ(¢) =Q(V) *and—w = €0 ¢.
Thus by Proposition 11.1(2) we have atriangle in D(sA)

(Z'(X), X, B*(X),u,v,—w).
Then, sinceT"}(B"" (X)) = B'(X"), by (TR2) we have atrianglein D(s)

(B (X)), Z'(X7), X', T"{(w), u, v).

On the other hand, since T '(w) : B'(X') - Z'(X") istheinclusion, again by Proposition
11.1(2) we have atrianglein D(«{) of the form

(B'(X), Z'(X), H'(X), T-(w), LI

It follows by Corollary 6.7 that X* = H*(X") in D(«4). In case the canonical exact sequence



0- B(X)- X = Z°(X)- 0
splitsin <44, by the dual argument we conclude also that X' = H"(X") in D(sA).
Definition 21.1. For an abelian category 4 we set
gldimsl =sup{n=0]| Ext] (X Y) Oforsome X, Y O Ob(s4)},
which we call the global dimension of <.
Lemma21.2. Assumegl dim s&f < 1. Then the following hold.
() I" = H'(1") inD(«A) for al 1" 00 Ob(K($)).
(2) PP = H'(P")inD(«A) for all P" 0 Ob(K(%)).
Proof. (1) Notefirstthat B (1) 0 Ob(K(#)). Thusthe canonical exact sequnce
O- B(I) - 1"5Z2°(1") >0

splitsin 4 and Lemma 21.1 applies.
(2) Dud of (2).

Lemma 21.3. Assume gl dim o < 1 and s{ has either enough injectives or enough
projectives. Then X' = H'(X") for all X" O Ob(D(A)).

Proof. By Lemmas 16.2, 16.6 and 21.2.

Definition 21.2. Foreachn 0Z weset H,= H™": C(#) - o, called the n" homology
functor.

Proposition 21.4 (Universal coefficient theorem in cohomology). Assume s has enough
injectives. Then for any n [J Z there exists a natural exact sequence

0 - Exti(H, (X),Y) = EXt(X,Y) - si(H,(X),Y) - 0

for X' [0 Ob(D(s4)) and Y [J Ob(s4) with inj dim Y < 1. Furthermore, if gl dim & < 1, then
for any X' [ Ob(D(s4)) and n 0 Z there exists a split exact sequence of functors on s

0 - Ext)(H, (X),-) - Ext(X",-) - sd(H,(X'),-) - 0.



Proof. Take aninjectiveresolutionY — 1° suchthat I'=0fori >2. Then C(T*d°) = I’
and we have atriangle (1°,1°, 1%, [1d?, DlinK"(s4). Thusfor any n 0 Z we have an exact
sequence

Ext" (X, 19 - Ext{( X", 1Y) - Ext"(X", ') - Ext"(X", 19 - Ext(X", 1Y).
Also, by Proposition 18.8(1) we have
Ext'( X", 1) = H"(RHom" (X", 1)
= H"(Hom' ( X", 1')
= H"(A(X", ")
= AHN(X), 1)

foradlndZandi=-1,0. Thusfor any n 0 Z we have

Cok Ext"" (X", d°) = Ext’ (H™(X),V),
Ker Ext( X", d°) = s(H™(X),Y).

SinceY = |’ in D(s4), we get a desired exact sequence. Next, assume gl dm sf < 1. Then
by Lemma21.3 X' = H'(X") inD(«) and we have

Ext"( X", X) = Ext"(H" (X'), 1)
= H"(RHom' (H"(X’), 1"))
= H"(Hom' (H"(X), 1")).

Since
Hom'(H*(X"), 1I') = A(H™"(X"), 1°) O A(H™(X), 1,
4 _0 0 0O
ron 800 T BI(HT(X7), d°) - 0F
we have

H"(Hom" (H"(X"), 1")) = sd(H™"(X"), Y) O Ext (H™"}(X'),Y)
and the required splitting follows.

Proposition 21.5 (Dual of Proposition 21.4). Assume s has enough projectives. Then for



any n [J Z there exists a natural exact sequence
0 - Ext)(X, H" " (Y")) - Ext"(X, Y) - A(X, H"(Y")) - 0

for X 00 Ob(s4) with proj dim X< 1and Y [0 Ob(D(s4)). Furthermore, ifgl dim & < 1, then
for any Y* [ Ob(D(s4)) and n [ Z there exists a split exact sequence of functors on

0 - Extl(= H%(Y")) - Ext"(= Y') - sd(= H"(Y")) - O.

Lemma21.6. (1) Let I°, 1" O Ob(s4%) beinjectiveand u O «4“(1°, 1'). Then, if X" O
Ob(C(s4)) isacyclic, sois Hom' ( X", C(T 'u)).

(2) Let P, P O Ob(s4%) be projectiveandu O A%(P'", P*). Then, if X' 0 Ob(C(«)) is
acyclic, sois Hom™ (C(u), X°).

Proof. (1) Let n [0 Z. Since by Lemma18.3 we have
H"(Hom™ (X*, C(T 'u))) = K(«)( X", T(C(T *u))),

it suffices to show K(s4)( X, T(C(T 'u))) = 0. Since T(1°), T"(1"") O Ob(s4%) are injective
and T"(C(T-*u)) = C(T *(T"(u))), we may assumen = 0. Let [f g] O C(«)( X", C(T 'u)).
Wehavefo T'd, =0andgo T 'd, =T *(uof). Thusthereexistsh O 4T X", |I") such that
f=hod, Then(g—T *(uch)) o T 'd,=0andthereexistsh’ O AT X", T*1"") such that
g—T uoh)y=h od,. Itfollowsthat

oo tho 00 ogor*hO

BE BB B ofdwH

Thus[f g] = 0and K(s4)( X", T(C(T*u))) = O.
(2) Dud of (1).

Lemma 21.7. Assume gl dim < co. Then the following hold.

(D) If 1" OOb(K(¥)) isacyclic, then 1" =0in K(«) and Hom™ ( X", 1") isacyclic for all
X' 0 Ob(K(sA)).

(2) If P O Ob(K(%)) isacyclic, then P* =0inK(«) and Hom™ (P", Y") isacyclic for all
Y" O Ob(K(sA)).

Proof. (1) Let I' O Ob(W n K($)). Thenwe have Z'(1") O Ob(K($)), B'(1") = Z"(1")
and Z" (1")=T(Z (1")). Thuswe have an exact sequence in C(«{)



oz 21 twzay-o

with d =Tj o p. Since this exact sequence splitsin s4%, there exists h O A“(T(Z"(1°)), 1°)
suchthatpo h= idT(Z.(l.)). Then [} h]:C(id,) — |" isanisomorphism in C(s{) and by
Proposition 3.5 I" = 0in K(s4). It then follows by Lemma 18.3 that Hom™ ( X", |") isacyclic
foral X' 0O Ob(K(sA)).

(2) Dud of (2).

Proposition 21.8. Assume gl dim sl < co. Then the following hold.

(1) If s has enough injectives and satisfies the condition Ab4 , then RHom™ (X°, |I") =
Hom™ (X', 1") for all X" O Ob(K(s))and 1" 0 Ob(K(%))

(2) If o has enough projectives and satisfies the condition Ab4, then RHom' (P", Y') =
Hom' (P, Y*) for all P O Ob(K(%)) and Y* [ Ob(K(s4))

(3) If A has both enough injectives and enough projectives, then the bi-0-functor Hom® :
K(A)* x K(#4) - K(Mod Z) hasaright derived functor

RHom' : D(A)® x D () - D(Mod Z)
such that RHom' (P", I') = Hom’ (P, I") for all P 0 Ob(K(%)) and |I" [0 Ob(K(¥)).
Proof. (1) Let I 0O Ob(K(¥)) and take a quasi-isomorphisms : I° - 1" with I"" O
Ob(K(#),). Since C(s) is acyclic, and since C(s) [1 Ob(K(#)), it follows by Lemma 21.7(1)
that Hom’ ( X", s) isaquasi-isomorphism. Thus
Hom (X', I') = Hom (X", I")
= RHom (X", I"")

= RHom (X", I").

(2) Dual of (1).
(3) The following Claims enable us to apply Proposition 17.3.

Claim 1: For any X' [0 Ob(K(s)), K(¥) satisfies the hypotheses of Propostion 13.6 for
Hom' (X", -) : K(d4) - K(Mod Z).

Proof. By Lemmas 16.2 and 21.7(1).

Claim 2: For any Y* [0 Ob(K(s)), K(?) satisfies the hypotheses of Propostion 13.6 for
Hom' (-, Y*) : K(d) - K(Mod Z).



Proof. By Lemmas 16.6 and 21.7(2).

Proposition 21.9. Assume gl dim &4 < 1. Then the following hold.

(1) If o has enough injectives, then RHom (X", I") = Hom (X', I") for all X' O
Ob(K(s4)) and 1° 00 Ob(K(%)).

(2) If A has enough projectives, then RHom' (P*, Y') = Hom (P", Y*) for all P° [
Ob(K(%)) and Y* [0 Ob(K(A)).

Proof. (1) Let X' [0 Ob(K(s{4)) and 1° 00 Ob(K(#)). By Lemmas 16.2 and 21.7(1) K(%)
satisfies the hypotheses of Propostion 13.6 for Hom' (X, -) : K(#4) - K(Mod Z) and we
have R,Hom (X, 1') = Hom (X", I"). Thusthe next Claim completes the proof.

Claim: For any Y* O Ob(D(«)), R,Hom (-, Y*) : K(#) - D(Mod Z) vanishes on the
acyclic complexes.

Proof. By Lemma21.3 Y = H'(Y")inD(#A). Let

«,0

d2
O- H(Y)=- 1" 2 1”50
be an exact sequence in s4” with 1°, 1" 0 Ob(s4?) injective. Then, since by Proposition

15.12 H (Y") = C(T~*d;°) in D(s4), by Lemma 21.6(1) R, Hom' (—, Y*) vanishes on the
acyclic complexes.

(2) Dudl of (1).

Definition 21.3. A ring A is called left (rsp. right) hereditary if left gl dim A < 1 (resp.
right gl dm A< 1).

Remark 21.1. For aring A the following are equivalent.
(1) Aisleft hereditary.
(2) Every left ideal of Aisprojective.

Proposition 21.10 (Universal coefficient theorem in homology). For any n [0 Z there
exists a natural exact sequence

0-H/(M)O,X - Tor (M, X) - Torf(H,_,(M"),X) - 0
for M* OO Ob(D(Mod A*)) and X O Mod A with flat dim ,X < 1. Furthermore, if Aisright

6



hereditary, then for any M* [0 Ob(D(Mod A*)) and n O Z there exists a split exact sequence
of functorson Mod A

0-H(M)Od,— - Tor,(M",-) - Tor}(H,_(M"),-) - 0.

Proof. Take aflat resolution F* - X suchthat F =0fori <—2. Then C(d-*) = F" and
L

we have atriangle (F™*, F°, F°, d-*, [JDJin K'(Mod A). Thus, since M* [ —isad-functor,
for any n [0 Z we have an exact sequence

Tor (M, F') - Tor,(M",F%) - Tor(M", F') - Tor,_,(M",F™% - Tor,_(M", F.
Note also that

Tor (M, F)=H"(M" ﬁ F)
=H-(M" O F)
=H"(M" O, F)
=H"(M") O, F

foradlndZ andi=-1,0. Thusforany n ] Z we have

Cok Tor (M", d=") = H™"(M") 0, X,
Ker Tor._(M’, d=%) = Torf(H™"*}(M"), X).

Since F* = Xin D(Mod A), we get a desired exact sequence. Next, assume A is right
hereditary. Thenby Lemma21.3 M* = H'(M") inD(Mod A*) and we have

Tor,(M", X) =Tor,(H (M"), F’)
=H"(H(M") i F)
=H"(H (M) U F).

Since
[H (M) O F]"= (M) O,F ) 0 (H(M) 0, F9),
. B -0 0 o
dH‘(M')DF' =1 H—i‘””(M')D d-* 05
we have



H™(H' (M) O F)= Tor{(H™YM"),X) 0 H (M) O, X)
and the required splitting follows.

Lemma 21.11. (1) Let P°, P O Ob((Mod A®)?) be projectiveandu: P* - P a
morphismin (Mod A®)%. Then, if X" 0 Ob(C(Mod A)) is acyclic, soisC(u) [ X'.

(2) Let P", P OJOb((Mod A)%) beprojectiveandu: P — P amorphismin (Mod A)~.
Then, if M" 0 Ob(C(Mod A®)) isacyclic, sois M* 1 C(u).

Proof. (1) By Lemma 19.5 D(C(u) LI X') = Hom’ (C(u), D(X")) and Lemma 21.6(2)

applies.
(2) By symmetry.

Lemma 21.12. (1) If A has finite left global dimension and if P° [0 Ob(K(Proj A)) is
acyclic, then P° =0in K(Mod A) and M* L] P’ isacyclic for all M* O Ob(K(Mod A®)).

(2) If A hasfiniteright global dimension and if P* O Ob(K(Proj A®)) isacyclic, then P* =
0inK(Mod A®) and P* [J X" isacyclic for all X" 0 Ob(K(Mod A)).

Proof. (1) By Lemmas 21.7(2) and 19.5(2).

(2) By symmetry.

Proposition 21.13. (1) If A hasfinite left global dimension, then M* ﬁ P=M 0P
for all M" O Ob(K(Mod A*)) and P O Ob(K(Proj A)).

(2) If A has finite right global dimension, then P’ ﬁ X =P 0 X foral PO
Ob(K(Proj A*)) and X' O Ob(K(Mod A)).

Proof. (1) Let P* O Ob(K(Proj A)). By Proposition 12.20(1) we have a quasi-isomorphism
s: P" - P with P" O Ob(K(Proj A),). Then, since C(s) is acyclic, and since C(s) [
Ob(K(Proj A)), by Lemmas 19.3(1) and 21.12(1) M" [ sisaquasi-isomorphism. Thus

L L
M OP =M 0P
=M [ P"
=M 0 P.

(2) By symmetry.



§22. Way-out functors

Throughout this section, s, B and € are abelian categories. Also, R is a commutative
ring and Ais an R-algebra. We denote by E an injective cogenerator in Mod R and by D both
Homg(—, E) and RHom' (—, E). Unless otherwise stated, functors are covariant functors.

Definition 22.1. Let K’ () be alocalizing subcategory of D(s4). A d-functor F : D" ()
— D(RB) is called way-out right (resp. left) if for any n, O Z there exists n, U Z such that
H'(F(X'))=0fori<n, (resp.i >n) and X' 0 Ob(D" (s4)) with H(X") =0 for i < n, (resp. i
>n,), and is called way-out in both directions if both way-out |eft and way-out right.

In case F is contravariant, F is said to be way-out left, way-out right or way-out in both
directionsif so isthe covariant d-functor F : D" (s4)® — D(%).

Proposition 22.1. Let F : o — 9B be an additive functor. Assume there exists a

subcollection $ of Ob(s4) such that
(2) for any X [ Ob(s{) there exists a monomorphism X — | insgd with| 0 9,
(2)if0 - X - Y - Z - Oisanexact sequencein o with X0 ¢, YO ¢ if and only if Z

09, and
3)if0 - X - Y~ Z - Oisan exact sequence in & with X, Y, Z 00 $, then the induced

sequence0 - FX - FY - FZ - 0in® isexact.
Then R'F : D'(s4) — D(%), which exists by Corollary 13.7, is way-out right.

Proof. Letn,0Z andputn,=n, + 1. Let X' 0 Ob(D"(s4)) withH' (X") =0fori<n,
We claim that R F(X") = 0 for i < n. By Lemma 10.6 we have a quasi-isomorphism X' -
0., (X)with o, (X)) Ob(K™(s4)). Also, by Proposition 4.7 we have a quasi-isomorphism
O, (X)) - 1" with I" [ Ob(K'(#)). By construction, we may assume I' =0fori<n,—1=
n,. Thusforanyi<n, since F(1") = F(I') = 0, we have

RF(X) = RF(I")
= H'(Q(F(1")))
=0.

Proposition 22.2. Let F : o - 9B be a left exact functor. Assume there exists a

subcollection $ of Ob(s4) such that
(2) for any X [ Ob(s{) there exists a monomorphism X — | ingd with| 0 9,
(2)if0 - X - Y - Z - Oisanexact sequencein o with X0 ¢, YO ¢ if and only if Z

09,
(3) there exists an integer n= 1 such that if



)@—»Xl—w--—»)(”_l—»x”—»O

isan exact sequencein & with X°, X%, ... X" 0% then X" O ¥, and

(4)if0 - X - Y- Z - Oisanexact sequence in 6 with X, Y, Z 00 ¢, then the induced
sequence0 - FX - FY - FZ - 0in% isexact.

Then RF : D(s4) — D(9), which exists by Proposition 16.4, is way-out in both directions.

Proof. Note that by Proposition 16.4 RF |D+( 0y = R'F. Thus by Proposition 22.1 RF is
way-out right. Next, letn, 0Z and put n,=n, —n. Let X" 0 Ob(D(s4)) withH'(X") = 0 for
i >n, Weclaimthat RF(X") =0fori >n,. By Lemma 16.2 we have a quasi-isomorphism
X - 1" with 1" O Ob(K($)). Since H'(1") =0 fori = n, >n,, by Lemma 10.7 we have a
quasi-isomorphism o_, (17) - 1". Also, since we have an exact sequence

" o S I L Z(17) S0
withn, —n,=n, Z"(1") O Ob(K(¢)) and O, (1") O Ob(K(¥)). Thusforanyi>n,, sinceF(
g, (1"))'=0,wehave

RF(X)=RF(o,(I")

= H'(Q(F(a.,, (1))
=0.

Proposition 22.3. Let F: i - 9B be a left exact functor. Assume there exists a
subcollection $ of Ob(s{) such that

(1) for any X [0 Ob(«A) there exists a monomorphismX - | ins with | O %,

2if0 - X5 Y -5 Z - Oisanexact sequencein  with X O $, YO $ ifand only if Z
09,

3if0 - X5 Yo Z o 0isanexact sequencein o with X, Y, Z [0 %, then the induced
sequence0 - FX - FY - FZ - 0in® isexact, and

(4) F has finite cohomological dimension on s, i.e., there exists n = 1 such that RF
vanishes on  for i >n (Note that by Corollary 13.7 R'F exists).

Then RF : D(sd) — D(9), which exists by Corollary 16.5, is way-out in both directions.

Proof. By Corollary 16.5 and Proposition 22.2.

Proposition 22.4 (Dual of Proposition 22.1). Let G : s{ — % be an additive functor.
Assume there exists a subcollection % of Ob(s{) such that

(1) for any X [1 Ob(«4) there exists an epimorphismP — Xin « withP O %,

(2if0 - X ->Y - Z - Oisanexact sequencein o withZ 0%, then Y O % if and only



if XO %, and

(3)if0 - X - Y - Z - Oisan exact sequence in o with X, Y, Z 0 %, then the induced
sequence0 - GX - GY - GZ - Oisexact.

ThenL G : D () - D(®B), which exists by Corollary 14.7, is way-out |eft.

Proposition 22.5 (Dual of Proposition 22.2). Let G: 4 — 9% be a right exact functor.
Assume there exists a subcollection % of Ob(s{) such that

(2) for any X [0 Ob(s{) there exists a monomorphismP — Xin s withP 0%,

(2)if0 - X - Y - Z > Oisan exact sequencein o withZ 0%, thenY O % if and only
if XO P,

(3) there exists an integer n > 1 such that if

0- X—n . X—n+1 e X—l . XO

isan exact sequencein o with X%, X1, ..., X' 0 % then X" O P, and

(4)if0 - X - Y - Z > Oisanexact sequencein & with X, Y, Z 0 %, then the induced
sequence0 - GX - GY - GZ - Oisexact.

Then LG : D(#A) — D(%), which exists by Proposition 16.8, is way-out in both directions.

Proposition 22.6 (Dual of Proposition 22.3). Let G: 4 — 9% be a right exact functor.
Assume there exists a subcollection % of Ob(s{) such that

(2) for any X [0 Ob(s{) there exists a monomorphismP — Xin s withP 0%,

(2)if0 - X > Y - Z > Oisan exact sequencein o withZ 0%, then'Y O & if and only
if XO P,

(3)if0 - X - Y - Z > Oisanexact sequencein & with X, Y, Z [0 %, then the induced
sequence0 - GX - GY - GZ - Oisexact, and

(4) G has finite homological dimension on s, i.e., there exists n = 1 such that LG
vanishes on s for all i > n (Note that by Corollary 14.7 LG exists).

Then LG : D(#A) — D(%), which exists by Corollary 16.9, is way-out in both directions.

Throughout the rest of this section, $ (resp. ?) is the collection of injective (resp.
projective) objects of s{. We denote by K(¥), (resp. K(?),) the full subcategory of K(%)
(resp. K(%)) consisting of U-local (resp. AU-colocal) complexes, where Al is the épaisse
subcategory of K(s4) consisting of acyclic complexes.

Proposition 22.7. Assume s has enough injectives. Then for X 0O Ob(D(s)) the
following hold.

(1) If X' O Ob(D*(s4)), thenRHom' (-, X') : D(s4) — D(Mod Z) is way-out right.

(2) If o satisfies the condition Ab4” and if RHom' (—, X°) : D(«) - D(Mod Z) is way-out



right, then X* 0 Ob(D*(s4)).

Proof. (1) Letn, 0 Z. TakenO Z suchthat H'(X) =0fori <nand put n,= (n—1) —n,.
By Lemma 10.6 we have a quasi-isomorphism X* - o, (X"). Also, by Proposition 4.7 we
have a quasi-isomorphism o, (X') — 1" with I" O Ob(K"(¢$)) suchthat I'=0fori<n-1.
Let Y° O Ob(D(4)) withH'(Y*) =0fori>n, Since H(Y") =0fori >n, by Lemma 10.7
we have a quasi-isomorphism o_, (Y") - Y'. Thusfori<n, sinceT(I'y =I'"'=0forj <
n,and o, (Y'Y =0forj> n, by Proposition 10.12 we have

EXt(Y", X') = Ext(a., (Y), I)
= D(sA) (o, (Y), T(1'))
= K()(0.,, (Y), T(1")
—0.

(2) By Proposition 12.15(2) we have a quasi-isomorphism X — 1° with I [0 Ob(K(%),).
For n, = 0, there existsn, = n 0 Z such that Ext(Y", X')=0fori <0and Y O Ob(D())
with H(Y') =0fori >n. Leti<nandj: Z(1') - I'theinclusion. Then, since by
Proposition 9.13(2) we have

K(s)(T(Z(17)), 1) = D(sA)(T(Z(17)), 1)
= D(A)(T(Z'(1")), X)
= D(A)(T(Z(1"), T~(X))
= Ext~"(T™"(Z'(1")), X°)
= O’

there existsf: Z'(1") - I'"*suchthat j= d,~* of. It followsthat B'(1")=Z'(1"). Consequently,
HI(X) = H(1")=0forali<nand X' 0 Ob(D*(s4)).

Proposition 22.8. Assume s has enough injectives. Then for X' 0 Ob(D(s)) the
following are equivalent.

(1) X' 0 Ob(D*(s4)g)-

(2) There exists a quasi-isomorphism X* — | with |" [ Ob(Kb(&B)).

(3 RHom' (—, X*) : D(#4) — D(Mod Z) is way-out left (and thus by Proposition 22.7(1)
way-out in both directions).

Proof. (1) O (2). By Proposition 11.12.

(20 (3). TakenOZ suchthatl'=0fori>n. Letn,0Zandputn,=n—-n, + 1. Let
Y" 0 Ob(D(s4)) with H(Y") =0 for i < n, By Lemma 10.6 we have a quasi-isomorphism
Y - 0,,(Y). Thusforanyi>n,sinceT(I'y=1"""=0forj=n,~1and ag,, (Y )=0
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forj <n, -1, by Proposition 10.12 we have

EXt(Y", X) = Ext(0,, (Y), ')
= D(sd)(0,,, (Y'), T(1")
= K(A)(0,,, (Y), T(I1")
—0.

(3) 0 (1). Forn, =0, thereexistsn,=n [ Z such that Ext(Y", X’)=0fori>0and Y’
[0 Ob(D(s4)) withH'(Y") =0fori<n. Thusforanyi>nandY O Ob(s4) we have

Exti(Y, X) = Ext -"(T™"Y, X')
—0.

Proposition 22.9. Assume s has enough injectives and satisfies the condition Ab4". Then
for X [0 Ob(D(sA)) the following are equivalent.

(1) X' O Ob(D(s4)y,)-

(2) Thereexistsa quasi-isomorphism X* — " with I" O Ob(K(¥),).

(3) RHom' (—, X") : D(#4) —» D(Mod Z) isway-out |eft.

Proof. (1) O (2). By Proposition 12.15(2).

(20 (3). TakenOZ suchthatl'=0fori>n. Letn,0Z andputn,=n—n, + 1. Let
Y" O Ob(D(s4)) with H(Y") = 0 for i < n,, By Lemma 10.6 we have a quasi-isomorphism
Y - 0,,(Y). Thusforanyi>n,since T(I'y=1"""=0forj2n,—1and ag,, (Y )=0
for j <n, -1, by Proposition 9.13(2) we have

EXt(Y", X) = Ext(0,, (Y), ')
= D(sd)(0,,, (Y'), T(1"))
= K(A)(0,,, (Y), T(1"))
—0.

(3) O (1). Sameasinthe proof of Proposition 22.8.

Remark 22.1. (1) Assume s has enough injectives. Then it follows by Proposition 22.8
that D*(s4),, C D°(s4).

(2) Assume ¢ has enough injectives and satisfies the condition Ab4". Then it follows by
Proposition 22.9 that D(A);,; C D (A).

Proposition 22.10. Assume s has enough injectives and satisfies the condition Ab4 .
Then for X" 0 Ob(D(4)) the following are equivalent.



(1) X 0 Ob(D"(s4)y)-
(2) There exists a quasi-isomorphism X° — | with |" [ Ob(Kb(&B)).
(3) RHom' (—, X") : D(«#4) - D(Mod Z) isway-out in both directions.

Proof. (1) O (2) O (3). By Proposition 22.8.
(3 O (1). By Propositions 22.7(2) and 22.9.

Proposition 22.11 (Dual of Proposition 22.7). Assume s has enough projectives. Then
for X' [0 Ob(D(s4)) the following hold.

() If X* O Ob(D (#A)), then RHom™ ( X", —) : D(#4) —» D(Mod Z) isway-out right.

(2) If o satisfies the condition Ab4 and if RHom™ ( X", —) : D(d) - D(Mod Z) is way-out
right, then X' [0 Ob(D («A)).

Proposition 22.12 (Dual of Proposition 22.8). Assume & has enough projectives. Then
for X [0 Ob(D («4)) the following are equivalent.

(1) X° 0 Ob(D (A)p)-

(2) There exists a quasi-isomorphism P — X" with P* [J Ob(Db(QP)).

(3) RHom (X", -) : D(#4) - D(Mod Z) is way-out left (and thus by Proposition 22.11(1)
way-out in both directions).

Proposition 22.13 (Dual of Proposition 22.9). Assume s has enough projectives and
satisfies the condition Ab4. Then for X* [0 Ob(D(s{)) the following are equivalent.

(1) X* O Ob(D(A))-

(2) There exists a quasi-isomorphism P* — X" with P° 0 Ob(D*(®),).

(3) RHom (X", -) : D(#) — D(Mod Z) is way-out |eft.

Remark 22.2. (1) Assume s has enough projectives. Then it follows by Proposition
22.12 that D(s),,q C D°(A).

(2) Assume o has enough projectives and satisfies the condition Ab4. Then it follows by
Proposition 22.13 that D(s4),,, C D(s4).

Proposition 22.14 (Dual of Proposition 22.10). Assume & has enough projectives and
satisfies the condition Ab4. Then for X* [0 Ob(D(s{)) the following are equivalent.

(1) X* 0 Ob(D (A),)-

(2) There exists a quasi-isomorphism P — X" with P* [J Ob(Db(QP)).

(3) RHom (X", -) : D(«#4) - D(Mod Z) isway-out in both directions.

Proposition 22.15. For X' [0 Ob(D(Mod A)) the following are equivalent.
(1) X° O Ob(D(Mod A)).



(2) There exists a quasi-isomorphism P° — X" with P [0 Ob(K™(Flat A)).
L
(3)— U X :D(Mod A*®) . D(Mod R) isway-out |eft.

Proof. (1) O (2). Taken O Z such that H'( X") = 0 for i >n. Then by Lemma 10.7 the
canonical monomorphism o (X') - X' isaquasi-isomorphism. Also, by Proposition 4.11
we have aquasi-isomorphism P - o (X') with P* [0 Ob(K"(Proj A)).

()0 (2). Letn,07Z. TakenO Z suchthatP'=0fori>nandputn,=n,—n. Let M’
00 Ob(D(Mod A®)) with H'(M") = 0 for i > n,. By Lemma 10.7 we have a quasi-isomorphism
g, (M) -~ M. Thusfori<n,since[o,, (M") [ P']' =0, we have

HMWﬁXjEW@dM)ﬁP)
=H'(o,,, (M) U P)
— 0.

) L
(3) O (1). Forn, =0, there existsn, =n [0 Z such that H'(M* [J X") =0fori >0 and
M* O Ob(D(Mod A®)) with H'(M*) = 0 for i > n. Thusfor any i >—n we have

HI(X) = HA D X))
=H""(T"(") 0 X)
—0.

Proposition 22.16. For X' [0 Ob(D(Mod A)) the following are equivalent.

(1) X’ O Ob(D(Mod A),;)-

(2) There exists an isomorphism P* — X" in D(Mod A) with P* O Ob(K™ (Flat A)).
3) - Ifl X" :D(Mod A*) - D(Mod R) isway-out right.

Proof. (1) O (2). By Lemma20.7.

(20 (3). Letn,07Z. TakenOZ suchthat P =0fori<nandputn,=n,—n+1 Let
M" 0 Ob(D(Mod A®)) with H'(M*) = 0fori < n,. By Lemma 10.6 we have a quasi-isomorphism
M" - a,, (M"). Thusfori<n,since[o_, (M) P]' =0, wehave

i L . L
H(M" O X') =H(o,, (M) 0 P)
= Hi(asnz(M') 0 P)
=0.

) L

(3) O (1). Forn, =0, there existsn, =n 00 Z such that H'(M* [J X") =0fori <0 and

M O Ob(D(Mod A®)) with H(M*) =0 for i <n. Thusfor any i >nand M 0 Mod A® we
have



Tor(M, X') =H'(M ﬁ X")
= Hi(T"(M) U X')
= 0.

Proposition 22.17. For X' O Ob(D(Mod A)) the following are equivalent.

(1) X" O Ob(D"(Mod A)y)-

(2) There existsanisomorphism P° — X" in D(Mod A) with P [0 Ob(Kb(FIat A).
3) - Ii X" :D(Mod A®) - D(Mod R) isway-out in both directions.

Proof. By Propositions 22.15 and 22.16.

Remark 22.3. (1) It follows by Proposition 22.17 that D (Mod A),, C Db(M od A).
(2) It follows by Propositions 22.13 and 22.17 that D (Mod A),; C D' (Mod A),.
(3) It follows by Proposition 22.16 that D(Mod A),, C D*(Mod A).

(4) 1t follows by Propositions 22.12 and 22.16 that D(Mod A),, C D(Mod A);,.



§23. Lemma on way-out functors

Throughout this section, 4, % are abelian categories and s{’, A’ are thick subcategories
of o4 and %, respectively. Unless stated otherwise, functors are covariant.

Lemma 23.1. For any X' [ C(s) and n O Z, there exists a commutative diagram with
exact rows and columns

0 0
l l
0 - 0. (X) > 0. (X) > TH(X)) - 0
II ! !
0 - o..(X) - X - o, (X) -0
l l
0. (X) = 0,(X)
l l

0 0.

Proof. Straightforward.

Lemma 23.2. For any X' [0 C(«{) and n [0 Z, there exists a commutative diagram with
exact rows and column

0 0
! !

0~ 0.(X) - 0.(X) - C(id 0

e ey)
I ! !
0-0,(X) - X 5 oX) - 0
l l
0.,(X) = 0l,(X)
l l

0 0.



Proof. Straightforward.

Definition 23.1. For each n U Z, we define truncation functors 7., 7_,,: C(sd) - C(A) as
follows:

DX (1) W 0 (>0
T>n(X)_EO (iSn)’ Tsn(x)_%(i (|Sn)

for X’ 0 C(sA). Wesetr, =1, ;ad 1, =7 _,.

Lemma 23.3. For any X' [0 C() and n O Z, there exists a commutative diagram with
exact rows and columns

0 0
l !

0 - 7,(X) - 1.(X) - TX) - 0
I l !

0 - T>n(X.) - X - Tsn(x.) - 0

! !
T (X) = 1.(X)
! !

0 0.

Proof. Straightforward.

Lemma 23.4. For any X" 0O C(s#f) and n [0 Z, there exist triangles in D(s4) of the
following form

D) (T.(X), X', 7, (X7), LILIDN

2 (.4 X, 7. (X), T(X), LILIDL

3) (TXY, T2 (X7), To(X7), LILIDN

(4) (0.(X), X', 0,,(X), LILIDL

() (0. (X), 0,(X7), T(H(X)), LILIDL
(6) (T(H(X)), 0. (X), 0. (X7), LILIDL



Proof. By Lemma 23.3 we have exact sequencesin C(«{)

0- T>n(x.) - X o Tzn(x.)_’ 01
0- T>n(x.) - Tzn(x.) - T—n(xn) - 0!
0- T—n(xn) - Tsn(x.) - T<n(x.) - 0.

Thus by Proposition 11.1(2) we get first three triangles. Also, by Lemma 23.1 we have exact
sequencesin C(sA4)

0- O.sn(x.) - X - O.>n(x‘) - 0!
0 - 0.,(X) - 0,(X) - TH(X)) - 0,
0 - T(H(X)) - 0,(X) - 0. (X) - 0.

Thus, since by Lemma 23.2 we have isomorphismsin D()
O.(X) 5 0L (X)), 0.,(X)) 5 gL,(X),
by Proposition 11.1(2) we get last three triangles.

Proposition 23.5 (Lemma on way-out functors). Let F, G : Dﬂ (A) -» D(B) be
o-functors, where * = +, — b or nothing, and n 0 Hom (F, G). Then the following hold.

(1) Assume n(X) is an isomorphism for all X 0 Ob(s4’). Then n( X") is an isomorphism
for all X" 0 Ob( D, (A)).

(2) Assume n(X) is an isomorphism for all X [0 Ob(s4’), and assume both F and G are
way-out right. Then n(X") isan isomorphismfor all X" 0 Ob( D (s{)).

(3) Assume there exists a subcollection $ of Ob(s4’) such that (a) for any X 00 Ob({’)
there exists a monomorphism X — | with1 0 %, and (b) n(l) isan isomorphismfor all | O %,
and assume both F and G are way-out right. Then n(X") is an isomorphism for all X* [0
Ob( D, (s4)).

(4) Assume n(X) is an isomorphism for all X [0 Ob(s4’), and assume both F and G are
way-out left. Then n(X") isanisomorphismfor all X* 00 Ob( D, (4)).

(5) Assume there exists a subcollection % of Ob(s4’) such that (@) for any X 0 Ob(«{’)
there exists an epimorphismP - X with P 0 %, and (b) n(P) is an isomorphism for all P [
%, and assume both F and G are way-out left. Then n( X") is an isomorphism for all X" [
Ob( D, (s4)).

(6) Assume n(X) is an isomorphism for all X [0 Ob(s4’), and assume both F and G are
way-out in both directions. Then n( X") isanisomorphismfor all X" O Ob(D,,. (s4)).



Proof. We need the following.
Claim Let X* 0 Ob(D,, («)). If n(X")isanisomorphism, sois n(T" X*) for al n 0 Z.

Proof. Let F=(F, a) andG = (G, B). Then,since n,=B"*-Tno a, it followsthat n( X")
isan isomorphism if and only if soisn(T X°).

(1) Let X* O Ob( D;, (oA)). Forn» 0, g, (X)) =0and n(a. (X)) is an isomorphism.
Let n O Z and assume n(o, ,(X")) is an isomorphism. We claim that n(o, (X)) is an
isomorphism. By Lemma 23.4 we have atriangle of the form

(T(H(X)), 0.,(X), . (X7), LILIDL

Since by Claim n(T-"(H"(X"))) is an isomorphism, so is n(o, (X)) by Proposition 6.6.
Thus, since X =g, (X") for n« 0, it follows by induction that n( X") is an isomorphism.

(2) Let X 0 Ob(D, (4)) andn O Z. We claim that H(n( X")) is an isomorphism. Put
n,=n+ 1 Thereexist nF) O Z such that H'(F( X)) =0fori < n,and X' O Ob(D(s4) with
H'(X") = 0fori < n,F),andn(G) O Z such that H(G( X)) =0fori<n, and X" 0 Ob(D ()
with H'(X") = 0fori < n,(G). Putn, = max{n,(F), n,(G)}. Since H(o,, (X)) =0fori<n,,
we have

H(F(0.,, (X)) = H"(F(0.,,, (X)) =0,
HY(G(0.,, (X)) =H""1G(0.,,, (X)) =0.

Since by Lemma 23.4 we have atriangle of the form

(0, (X), X, 0., (X), LILIDL

we have a commutative diagram

~

HY(F(o.,, (X)) ~ H(F(X))
HY(n(o.,, (X)) L H((X))

H(G(0.,, (X)) > HIG((X)) .

By the part (1) n(o.,, (X)) isanisomorphism, so isH(n( X)).
(3) By the part (2), it suffices to show that n(X) is an isomorphism for all X [0 Ob(s4").
Let X 0 Ob(s4’). By hypothesis (a) X has aright resolution X — 1° with I 0 Ob(K*(¥)). It



suffices to show that n(1°) isan isomorphism, the proof of which consists of two steps.
Step 1: n(1°) isanisomorphismfor al 1° [ Ob(Kb(ﬁ)).

Proof. Let I" O Ob(Kb(ﬁ)). Forn» O, sincet, (1") =0, n(r, (1)) is an isomorphism.
Let n O Z and assume n(t, (17)) is an isomorphism. We claim that n(r. (1)) is aso an
isomorphism. By Lemma 23.4 we have atriangle of the form

(. (1), 7., (1), T°(1"), LILIDL

Since by Claim n(T-"(1")) is an isomorphism, sois n(7.,(1")) by Proposition 6.6. Thus, since
I =1,,(1") for n« O, it follows by induction that (1) is an isomorphism.

Step 2: n( 1) isan isomorphism for all 1° 0 Ob(K*($)).

Proof. Let I" O0Ob(K'($)) andn O Z. We claim that H'(n(1°)) is an isomorphism. Put
n,=n+ 1 Thereexist n,(F) 0 Z such that H'(F(X')) =0fori<n, and X" 0 Ob(D(s4)) with
H'(X") = 0 fori < ny(F), and n(G) O Z such that H'(G(X)) =0fori <n,and X O
Ob(D(s4)) with H(X") = 0 for i < n(G). Putn, = max{n,F), n(G)}. Since Hi(t, (1)) =0
fori <n,, wehave

HY(F(T,,(17))) =H""(F(1.,(1"))) =0,
HYG(, (1)) = H"H(G(7, (1)) = 0.

Since by Lemma 23.4 we have atriangle of the form

(7. (1), 1" 1o (17), LILID)

we have a commutative diagram

H(F(T.(17))) = H(F((1")
HY(n(T...(1"))) L HY(n(17))

HY(G(z. (1)) - H(G(1"))

By Step 1 n(z.,(17)) isanisomorphism, sois H"(n(1")).
(4) Dud of (2).
(5) Dud of (3).
(6) Let X* O Ob(D,, (s4)). By thepart (2) n(a. « X)) is anisomorphism, and by the part
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(4) n(o_,( X)) isanisomorphism. Since by Lemma 23.4 we have atriangle of the form
(0. X), X', 0,4(X7), LILID]
it follows by Proposition 6.6 that n( X") is an isomorphism.

Proposition 23.6. Let F : DS;, (d) - D(%) be a o-functor, where* =+, —, b or nothing.
Then the following hold.

(1) Assume F(X) O Ob( D, (%)) for all X 1O Ob(s4’). Then F(X") U Ob( D, (%)) for all
X" 0 Ob(D.? (st)).

(2) Assume F(X) U Ob( D, (%)) for all X O Ob(s4"), and assume F is way-out right. Then
F(X") O Ob(D,, (®)) for all X 0 Ob(D, (s4)).

(3) Assume there exists a subcollection $ of Ob(s4’) such that (a) for any X O Ob(s{")
there exists a monomorphism X - | with | O %, and (b) F(I) O Ob(D,, (%)) for all I U 4,
and assume F isway-out right. Then F(X") 0 Ob(D,,. (%)) for all X" 0 Ob( D, (s4)).

(4) Assume F(X) O Ob(D,,, (%)) for all X [0 Ob(s4’), and assume F is way-out left. Then
F(X") O Ob(D,, ()) for all X" 0Ob(D, (A)).

(5) Assume there exists a subcollection % of Ob(sd’) such that (@) for any X O Ob(s{")
there exists an epimorphismP - Xwith P O %, and (b) F(P) O Ob(D,, (%)) for all P O ,
and assume F isway-out left. Then F(X") O Ob(D,, (%)) for all X 0 Ob( D, ().

(6) Assume F(X) O Ob(D,, (%)) for all X O Ob(s{’), and assume F is way-out in both
directions. Then F(X") O Ob( D, (%)) for all X* 0 Ob(D_, (4)).

Proof. (1) Notefirst that F(T"X) O Ob(D,,. (%)) for all X Ob(s4’) andn Z. Let X' O
Ob( D&;’, («)). Forn» 0O, since g, (X)) =0, F(o.,(X")) O Ob(D,, ()). Letn Z and
assume F(o, (X)) O Ob(D,, (%)). We claim that F(o, (X)) U Ob(D,, (%)). By Lemma
23.4 we have atriangle of the form

(T(H(X)), 6.,(X'), g, (X7), LILIDL
Since F(T-"(H'(X"))) O Ob( D,,, (9)), it follows that F(a.,( X')) O Ob( D, (%)). Thus, since
X =a, (X)forn«Q0,itfollows by induction that F( X") 0 Ob( D, (%)).
(2) Let X’ 0Ob(D(s)) andn O Z. We claim H'(F(X’)) O Ob(@’). Putn, =n+ 1.
There exists n, 0 Z such that H'(F(X")) =0fori <n,and X' 0 Ob(D(s4)) with H(X') =0
fori<n,. SinceH'(a,, (X)) =0fori<n, wehave

H(F(0.,, (X)) = H"(F(0.,,, (X)) =0.

Thus, since by Lemma 23.4 we have atriangle of the form



(0, (X), X, 0., (X), LILIDL

we get H'(F (o, (X)) = H(F((X")). Since o, (X") 10 Ob( D&;’, (s4)), by the part (1) we
have F(a,,, (X")) O Ob(D,, (%)), so that H'(F(( X*)) = H(F(o,, (X"))) O Ob(%’).

(3) By the part (2), it suffices to show that F(X) [0 Ob(%’) for all X [0 Ob(s4’). Let X O
Ob(s4’). By hypothesis (a) X has aright resolution X — 1° with I* O Ob(K'(¥)). It suffices
to show that F(1°) O Ob(D,, (%)), the proof of which consists of two steps.

Step 1: F(1") 0 Ob(D,,, ()) for al 1° O Ob(K*(#)).

Proof. Notefirst that F(T"1) 0 Ob(D,, (®)) forall D% andnOZ. Let 1" O Ob(Kb(ﬁ)).
Forn» 0,sincet, (1") =0, F(7, ,(1")) O Ob(D,, (A)). LetnO Z and assume F(z, ,(17)) O
Ob(D,, (#B)). Weclaim F(r,,(17)) O Ob(D,, (%)). By Lemma 23.4 we have a triangle of
the form

(. (1), T.,(17), 77017, LILIDL

Since F(T-"(1")) O Ob(D,,, (%)), it follows that F(7, ,(17)) O Ob(D,, ()). Thus, since I =
T, (1) for n« 0, it follows by induction that F(1") 0 Ob( D, (%)).

Step 2: F(1") 0 Ob(D,,, ()) for al 1" 0 Ob(K*(5)).

Proof. Let 1I' 0 Ob(K'($)) and n 0 Z. Weclaim H'(F(1°)) O Ob(®’). Putn, =n+ 1.
There exists n, 0 Z such that H'(F(X")) = 0fori <n,and X' 0 Ob(D(s4)) with H(X') =0
fori<n,. SinceHi(0>n2(I')) =0fori<n, wehave

H(F(0.,, (1)) = H"(F(o.,,, (1)) = 0.

Thus, since by Lemma 23.4 we have atriangle of the form

(0, (1), 17, 0., (1"), LILIDL

we get H'(F(o,,, (17))) = H(F((1")). Since o, (1") O Ob( D;, (1)), by the part (1) we
have F(a,,, (17)) O Ob(D,, (%)), so that H'(F((1")) = H(F(a., (1))) O Ob(%").

(4) Dud of (2).

(5) Dud of (3).

(6) Let X" O Ob(D,, (s4)). By thepart (2) F(o,  X")) O Ob(D,, (%)), and by the part (4)
F(o.,(X")) OOb(D,, ($)). Thus, since by Lemma 23.4 we have atriangle of the form



(0.o(X), X, 0,(X7), LILIDL

it follows that F(X") 0 Ob(D,, (%)).



§24. Connections between RHom" and ]

Throughout this section, Ris a commutative ring and A, B are R-algebras. For any ring A,
we denote by K(Inj A), (resp. K(Proj A)),) the full subcategory of K(Inj A) (resp. K(Proj A)))
consisting of AU-local (resp AU-colocal) complexesin K(Inj A) (resp. K(Proj A))), where AUl is
the épaisse subcategory of K(Mod A) consisting of acyclic complexes. Also, we denote by E
an injective cogenerator in Mod R and by D both Hom,(—, E) and RHom' (—, E).

Proposition 24.1. (1) There exists a natural isomorphism

L

RHom (M* [0 V*, N°) 5 RHom (M, RHom (V", N"))

for M" O Ob(D(Mod A®)), V' O Ob(D(Mod A [, B*)) and N° [0 Ob(D(Mod B*)). In
particular, for any V' [0 Ob(D(Mod A U, B%)),

L
-0 V' :D(Mod A*®) —. D(Mod B®)
isaleft adjoint of
RHom' (V',-) : D(Mod B*) - D(Mod A®).

(2) There exists a natural isomorphism

L

RHom (V' O X', Y') S RHom' (X', RHom (V", Y"))

for X° O Ob(D(Mod B)), V° O Ob(D(Mod A Oy B®)) and Y° O Ob(D(Mod A)). In
particular, for any V' 0 Ob(D(Mod A O, B%)),

L
V' [ -:D(Mod B) -~ D(Mod A)
isaleft adjoint of
RHom’ (V*,-) : D(Mod A) - D(Mod B).

Proof. (1) By Propositions 12.21 and 12.16 we may assume M" [ Ob(K(Proj A*),) and
N* O Ob(K(Inj B*),), respectively. Then by Lemma 19.5 we have canonical isomorphisms

RHom' (M’ ﬁ V', N')=RHom (M" [ V', N")



= Hom"(M" O V*, N")

= Hom’(M’, Hom (V", N"))

= RHom (M", Hom’(V’, N"))
= RHom'(M’, RHom (V*, N")).

Next, by applyingH®°: D(Mod R) - Mod R, we get natural isomorphisms

L
HOM_ g, (M7 0 V7, N°) = H(RHom" (M" 00 V*, N"))
= H%RHom (M", RHom" (V", N")))
= HOM g pmy (M, RHOM' (V7 N7))

for M* 0 Ob(D(Mod A®)) and N* [0 Ob(D(Mod B*)).
(2) Similar to (1).

Definition 24.1. Let V[ Mod A [ B*. Then there exist anatural homomorphism
@ v Hom,(X,V) Oz Y - Hom, (X, VO, Y), hOy = (X h(x) O y),
for X0 Mod Aand Y [0 Mod B, and a natural homomorphism
Yy, x - Homy(V, M) 0, X - Homg(Hom,(X, V), M), h O xi—= (f = h(f(x))),

for M O Mod B* and X 0 Mod A.

Lemma?24.2. LetV [0 ModA O, B®. Then the following hold.

(1) @ yisanisomorphismfor all X O mod AandY U Flat B.

(2) @ isanisomorphismfor all X O Proj Aand Y O mod B.

(3) Y, xisanisomorphismfor all M O Inj B*® and X 0 mod A.

Proof. Straightforward.

Lemma 24.3. There exists a natural homomor phism

Hom (X, V) Y - Hom' (X', V'Y

for X' 0 Ob(K(Mod A)), V' 0 Ob(K*(Mod A O, B®)) and Y* O Ob(K*(Mod B)), which is

an isomorphism provided either
(@ X' O Ob(K(modA))and Y O Ob(K*(Flat B)), or



(b) X' O Ob(K™(Proj A)) and Y* 0 Ob(K*(mod B)).
Proof. For any n [ Z we may consider that

[Hom (X', VYO Y']" = [] Hom,(XP?,V)O,Y,

p+q+r=n

[Hom (X', V' OY)]"= [] Hom,(XP" VO,Y),

p+q+r=n

which are finite direct sums, and we have a homomorphism

&y: [J Hom,(XP”V)O,Y - [] Hom,(XP*WV0O,Y)

p+q+r=n p+q+r=n

such that

@y (BP0 Y)O€) = (1" b*90¢) Oy

for i*4 0 Hom (XP, V), ¥y O Y and ¥ O XP, wherep, g, r 0 Zwithp+qg+r=n. Itiseasy
to see that pcommutes with differentials. The remaining assertions follow by Lemma 24.2.

Lemma 24.4. There exists a natural homomor phism

L

RHom' (X, V') U Y* = RHom (X', V' I Y')

for X" 0 Ob(D"(Mod A)), V' 0 Ob(D'(Mod A 0,B*)) and Y 0 Ob(D"(Mod B),;,), which
is an isomorphism provided either

(@) Aisleft coherent and X' [0 Ob(D (mod A)), or

(b) Bisleft coherent and Y* [0 Ob(D (mod B);,,).

Proof. By Propositions 10.15 and 22.17 we may assume X [J Ob(K(Proj A)) and Y* [
Ob(K"(Flat B)), respectively. Then we have

RHom' (X', V) Ii Y' = Hom (X', V') ﬁ Y
= Hom (X', V') I Y-,

RHom' (X*, V' [ Y') = RHom' (X*, V" 0 Y*)
= Hom' (X', V' O Y').

Thus by Lemma 24.3 we get a desired homomorphism



(a) Assume Ais left coherent and X* O Ob(D (mod A)). Then by Proposition 10.15 we
may assume X [ Ob(K™(proj A)). Thusby Lemma24.3(1)

Hom' (X', V)OO Y = Hom (X', V' O Y).

(b) Assume B is |eft coherent, X* [1 Ob(D" (Mod A)) and Y* [J Ob(D (mod B),,,). Then
by Proposition 11.17 we may assume Y [J Ob(Kb(proj B)). Thusby Lemma 24.3(2)

Hom™ (X, V) O Y 2 Hom (X', V' O Y).
Proposition 24.5. Let A be left coherent. Then there exists a natural isomorphism
RHom" (X', V") Oy = RHom" (X', V' 0 Y')
for X 0 Ob(D;(Mod A)), V' 0 Ob(D*(ModA O, B®)) and Y 0 Ob(D(Mod B),,).

Proof. Let V' O Ob(D"(Mod A O, B*®) and Y* 0 Ob(D(Mod B),;). Then by Lemma
24.4 there exists a natural homomorphism

L L
@ :RHom (X', V) O Y° - RHom (X', V' I Y)
L
for X* O Ob(D(Mod A)). By Proposition 22.7(1) RHom™ (-, V* [0 Y") is way-out right,
L
and by Propositions 22.7(1) and 22.17 (- LI Y") o RHom' (-, V°) is also way-out right.

Thus, since by Lemma 24.4(1) ¢, is an isomorphism for al X" [0 Ob(D (mod A)), it follows
by Proposition 23.5(2) that ¢, isanisomorphism for al X' O Ob( D;(Mod A)).

Lemma 24.6. (1) There exists a natural homomor phism
Hom' (V', M) J X -~ Hom (Hom' (X", V), M")
for V' O Ob(D*(Mod A 0,B%)), M* 0 Ob(K(ModB*®)) and X' [ Ob(K(Mod A)), which is
an isomorphism provided M" [J Ob(Kb(Inj B%)) and X" O Ob(K (mod A)).
(2) There exists a natural homomor phism
Hom' (V', M) J X -~ Hom (Hom' (X", V), M")

for V' 0 Ob(D°(Mod A O, B®)), M" [0 Ob(K(Mod B®)) and X' 0 Ob(K(Mod A)), which is
an isomorphism provided M* 0 Ob(K*(Inj B®)) and X' 0 Ob(K"(mod A)).



Proof. Let V' 0 Ob(D*(Mod A O, B*)), M* 0 Ob(K(Mod B*)) and assume either (1) M’
[0 Ob(K"(Mod B*)), or (2) V' 0 Ob(D°(Mod A, B®). Let X' 0 Ob(K(ModA)). For any n
[0 Z we may consider that

[Hom' (V', M) O X]" = [] Homg(V°, M9 0O, X,

p+g+r=n
[ Hom' (Hom" (X", V°), M)]" = |_| Homg(Hom, (X, V"P), M9).
p+q+r=n
We have a homomorphism
Yux: [ Homg(VP,MH)O, X - Homg(Hom,(X', V-P), MY)
p+gtr=n p+q+r=n
such that
r(2p+r+1)

PrxPIOOE = (D) 2 R
for i* 90 Homg(V'P, 1), X O X and "~ O Hom,(X', V'F), wherep, g, r O Z withp+q+r
=n. Itiseasy to see that ¥ commutes with differentials. Next, assume either (1) M* O
Ob(K°(Inj B®)) and X' O Ob(K(mod A)), or (2) V' O Ob(D°(Mod A Og B*), M" O
Ob(K*(Inj B®) and X" 0 Ob(K"(mod A)). Then

[] Homg(Hom, (X, VP), M%) = Homy(Hom, (X", V7), M9

p+g+r=n p+g+r=n
for all n 0 Z and by Lemma 24.2(3) ¢,  is an isomorphism.
Lemma 24.7. (1) There exists a natural homomor phism
RHom’ (V*, M") h X" - RHom" (RHom (X", V*), M")
for V' 0 Ob(D"(Mod A 0, B*)), M* 0 Ob(D(Mod B®)) and X" [0 Ob(D(Mod A)), which is

an isomorphismif Aisleft coherent, M" 0 Ob(D"(Mod B*), ) and X' 0 Ob(D (mod A)).
(2) There exists a natural homomor phism

RHom' (V', M) h X" - RHom (RHom™ (X', V°), M")

for V© 0 Ob(D°(Mod A O, B¥)), M* 0 Ob(D(Mod B*)) and X* 0 Ob(D(Mod A)), which is



an isomorphismif A isleft coherent, M* 0 Ob(D*(Mod B®)) and X' [0 Ob(D (mod Aipa)-

Proof. Let V' 0 Ob(D"(Mod A O, B®)) and M* [0 Ob(D(Mod B*)). Assume either (1)
M O Ob(D (Mod B*®)), or (2) V' O Ob(Db(M od A O B*). By Proposition 12.16 we may
assume M" 0 Ob(K(Inj B®),). Furthermore, in case M* 0 Ob(D*(Mod B*)), by Proposition
10.13 we may assume M" [ Ob(K'(Inj B¥)). Let X' O Ob(D(Mod A)). By Proposition
12.21 we may assume X' [0 Ob(K(Proj A) ). Since we have isomorphisms

RHom’ (V*, M") i X' = Hom'(V', M") LI X',
RHom’ (RHom (X", V°), M") = Hom’ (Hom™ ( X", V*), M),

by Lemma 24.6 we get desired homomorphisms.

Next, assume A is left coherent. Assume either (1) M* 0 Ob(D"(Mod B%®),,) and X' O
Ob(D(mod A)), or (2) V' O Ob(D°(Mod A Og B*®), M" O Ob(D*(Mod B®)) and X' O
Ob(D (mod A),,,). By Proposition 10.13 we may assume M* [J Ob(K*(Inj B®)). In case M’
0 Ob(D*(Mod B*),,), by Proposition 11.13 we may assume M" [ Ob(Kb(Inj B*)). Also, by
Propodition 10.15 we may assume X' [J Ob(K (proj A)). Furthermore, in case X" J Ob(D (mod
A);,), by Proposition 11.17 we may assume X' [J Ob(Kb(proj A)). Then, since by Lemma
24.6 the canonical homomorphism

Hom' (V', M) J X -~ Hom (Hom' (X", V), M")
isan isomorphism, sois
RHom' (V°, M) Ii X" - RHom" (RHom™ ( X', V°), M").
Proposition 24.8. Let A be left coherent. Then there exists a natural isomorphism
RHom' (V°, M) Ifl X" 5 RHom (RHom' (X", V°), M")
for V' 0 Ob(D'(Mod A, B*)), M* O Ob(D"(Mod B®),) and X" 00 Ob( D;(Mod A)).
Proof. Let V' O Ob(D*(Mod A O, B®)) and M* 0 Ob(D"(Mod B*).,). By Proposition
11.13 we may assume M" [J Ob(Db(Inj B*)). Then RHom'(V', M") = Hom'(V', M") [
Ob(D (Mod A*)) and by Proposition 22.15 RHom" (V*, M") i —isway-out left. Also, by

Propositions 22.7(1) and 22.8 RHom' (—, M*) - RHom' (-, V") is way-out left. By Lemma
24.7(1) there exists a natural homomorphism



Y, : RHom' (V', M) Iil X" - RHom’ (RHom™ ( X", V'), M)

for X* OO Ob(D (Mod A)), which is an isomorphism for X* [0 Ob(D (mod A)). Thus, it
follows by Proposition 23.5(4) that ¢, is an isomorphism for X* 1 Ob( D (Mod A)).

Corollary 24.9. Let A be left coherent. Then for any X' 0 Ob(D;(Mod A)), Y' O
Ob(D"(Mod A)) and i O Z there exists an isomorphism

D(Ext( X", Y)) = Tor,(D(Y"), X').
In particular, Y* 0 Ob(D"(Mod A),,) if and only if D(Y*) O Ob(D(Mod A%®),).

L
Proof. It follows by Proposition 24.8 that D(Y") I X" = D(RHom’ (X", Y")). Thus, for
anyi 007, wehave

D(Ext(X", Y')) = D(H'(RHom' (X", V"))
= H'(D(RHom" (X", V"))
= H(D(Y") ﬁ X)
= Tor,(D(Y"), X").

The last assertion follows by Lemmas 20.7 and 20.8.

Proposition 24.10. Let A beleft coherent. Then there exists a natural isomor phism
D(RHom (X', Y)) = RHom' (Y, D(A) 0 X')
for X' 0 Ob(D_(Mod A),;,) and Y* O Ob( D;(Mod A)).
Proof. Since Hom.(—, E) = Hom,(—, D(A)) as a functor from Mod A to Mod A®, it
followsthat RHom' (-, E) = RHom' (-, D(A)) as a 0-functor from D(Mod A) to D(Mod A™).

Thus by Propositions 24.5 and 24.8 we have

D(RHom (X', Y)) = RHom (RHom (X", Y"), E)
= RHom'(Y', E) h X
= RHom (Y, D(A)) Ii X
= RHom (Y*, D(A) ﬁ X%).

Definition 24.2. There exists a natural homomorphism



Yy x - M O, X » Hom,(Hom,(X, A), M), m O x = (f = mf(x)),

for M O Mod B* and X [0 Mod A.

Lemma 24.11. ¢, « isanisomorphism provided X [ proj A.

Proof. Straightforward.

Lemma 24.12. There exists a natural homomorphism

M [ X - Hom' (Hom' (X', A), M")

for M* 0O Ob(K(Mod A®)) and X' O Ob(K(Mod A)), which is an isomorphism provided
either

(8 X* O Ob(K"(proj A)), or

(b) M* O Ob(K (Mod A®)) and X' T Ob(K (proj A)).

Proof. Let M" [0 Ob(K(Mod A®)) and X" O Ob(K(Mod A)). For any n [0 Z we may
consider that

[M'OX]" = [] MPO,X

p+q=n

[ Hom™ (Hom™ (X", A), M)]" = |_| Hom,(Hom,(X% A), MP).

p+g=n
For any p, g [0 Z we have a homomorphism

¢ MPO, X* . Hom,(Hom, (X%, A), MP), mO x> (h— (- 1)?mh(x)),
which isan isomorphismif X0 proj A. Thusfor any n O Z we have ahomomorphism

¢: [] MPOX - |_| Hom,(Hom,(X%, A), MP).

p+q=n p+g=n

It is easy to see that @ commutes with differentials. Assume either (a) X' 0 Ob(K°(proj A)),
or (b) M O Ob(K"(Mod A®)) and X" [0 Ob(K™(proj A)). Then

[] Hom,(Hom,(X% A), MP) = |_| Hom,(Hom,(X%, A), MP)

p+q=n p+gq=n



foral nO Z. Thus, since by Lemma 24.11 ¢ “is an isomorphism for al p, q O Z, it follows
that @is an isomorphism.
Lemma 24.13. There exists a natural homomorphism

L

M" [ X* - RHom" (RHom' (X', A), M")

for M" 0 Ob(D(Mod A®)) and X* 0 Ob(D(Mod A)), which is an isomorphism provided A is
left coherent and either

(@ X' 0 Ob(D (mod A),,), or

(b) M* O Ob(D*(Mod A”®), ) and X" [0 Ob(D (mod A)).

Proof. By Propositions 12.16 and 12.21 we may assume M" [0 Ob(K(Inj A*),) and X' [
Ob(K(Proj A),), respectively. Then the canonical homomorphisms
L
M OX - MOX
Hom’ (Hom' (X', A), M") - RHom" (Hom (X", A), M")

are isomorphisms. Also, since the canonical homomorphism
Hom (X', A) - RHom (X", A)
is an isomorphism, we have a natural isomorphism
RHom’ (Hom' (X', A), M") = RHom" (RHom" (X", A), M").

Thus by Lemma 24.12 we get a natural homomorphism

L

M® [ X° = RHom" (RHom' (X", A), M").

Now, assume A is left coherent. Assume either (@) X' [ Ob(D(mod A),,) or (b) M" [
Ob(D"(Mod A%),. ) and X' 0 Ob(D"(mod A)). By Proposition 10.15 we may assume X' [
Ob(K™(proj A)). Furthermore, in case X" [0 Ob(D"(mod A), ), by Proposition 11.17 we may
assume X' [ Ob(Kb(proj A)). Also, in caseM™ 0 Ob(D*(Mod A%®),. ), by Proposition 10.13
we may assume M® [ Ob(Kb(Inj A®). Then, since by Lemma 24.12 the canonical
homomorphism

M [ X - Hom' (Hom' (X', A), M")



isan isomorphism, sois

L

M" [ X° -~ RHom (RHom (X", A), M").

Proposition 24.14. Let A be left coherent. Then there exists a natural isomorphism

L

M [ X° - RHom (RHom' (X", A), M")
for M* 0 Ob(D*(Mod A®), ) and X O Ob(D;(Mod A)).

Proof. Let M* 0 Ob(D'(Mod A”)..). Then by Proposition 11.13 we may assume M* [
Kb(lnj B*), so that by Proposition 22.15 M’ ﬁ — is way-out left. Also, by Propositions
22.7(1) and 22.8 RHom' (—, M") o« RHom' (-, A) is way-out left. By Lemma 24.13 there
exists a natural homomorphism

L

Y MO X 5 RHom (RHom (X', A), M")

for X* 0 Ob(D(Mod A)), which is an isomorphism provided X" [0 Ob(D (mod A)). Thus by
Proposition 23.5(4) ¢, is an isomorphism for X" [ Ob( D;(Mod A)).

Corollary 24.15. Let A be left coherent withinj dim A, <c. Then there exists a natural
isomor phism

X" Z RHom (RHom' (X', A), A)

for X 0 Ob(D;(Mod A)).

Proposition 24.16. Let A be commutative. Then there exists a natural homomor phism

L L
RHom (X', Y' [ Z') - RHom" (X" [0 RHom"(Z', A), Y°)

for X, Y and Z' O Ob(D(Mod A)), which is an isomorphism provided A is coherent and
either

(@ Z" 0 Ob(D (mod A),,), or

(b) Y' 0 Ob(D*(Mod A),,) and Z' O Ob(D™(mod A)).

Proof. By Lemma 24.13 we have a natural homomorphism

10



L

Y 0 Z° - RHom (RHom (Z", A), Y°).
Thus we get a natural homomorphism
RHom (X', Y’ h Z') - RHom (X', RHom" (RHom" (Z", A), Y")).
Also, by Proposition 24.1 we have a natural isomorphism
RHom' (X', RHom" (RHom'(Z', A), Y*)) 5 RHom' (X Ii RHom (Z', A), Y°).
Consequently, we get a desired natural homomorphism
RHom (X', Y’ ﬁ Z') - RHom (X Ii RHom' (Z', A), Y°).

The last assertion follows by Lemma 24.13.

11



§25. Duality in Coherent rings

Throughout this section, Ris a commutative ring and A, B are R-algebras. For any ring A,
we denote by K(Inj A), (resp. K(Proj A),) the full subcategory of K(Inj A) (resp. K(Proj A))
consisting of Al-local (resp. U-colocal) complexes, where Al is the épaisse subcategory of
K(Mod A) consisting of acyclic complexes.

Definition 25.1. Let V' [ Ob(Kb(ModA Ok B*). Then, for any X* 0 Ob(K(Mod A))
andn Z,

[ Hom" (Hom™ (X', V*), V)]" = [] Homy(Hom,(x, V%), V),

p—g+r=n

which isafinite direct sum, and the differential is given by

Ao iom (- v y,vy M = (E D) ho Hom,(d, V)
+(=1)"*h o Hom,(X, d/™)
+ dc<3h

for h 00 Homg(Hom,(X?, V), V). For any X' [0 Ob(K(Mod A)) and n [0 Z, we define a
homomorphism

X' » Homg(Hom,(X", V'), V'), x> (f—> (- 1)" D f(x)),
for eachr OO0 Z and set

gy - X" - [] Homg(Hom, (X', V), V) - [] Homg(Hom,(X°, V9, V").

p-g+r=n

Then g, commutes with differentials. Thus we get a homomorphism of d-functors
€. Lmoany — HOM (= V) o Hom' (=, V)
Remark 25.1. Let V' [0 Ob(C(Mod A O, B*)). There exists aring homomorphism
o:A- EndC(ModBUp)(V')
such that ¢(a)"(v) =avforad A, n Z andv O V", which givesrise to aring homomorphism

A~ End,,em (V).



On the other hand, since we have homomorphismsin C(Mod A)
A - Hom (Hom (A, V'), V) 5 Hom'(V', V"),
by Lemma 18.3 we get ahomomorphism in Mod A
A - Endoqme (V).
which coinsides with the above ring homomorphism.

Lemma 25.1. For any V' [ Ob(Db(M od A U, B®)) there exists a homomor phism of
o0-functors

1D(ModA) - RHom' (-, V') e RHom" (—, V°).

Proof. By Proposition 12.21 K(Proj A), =~ D(Mod A). Let P* 0 Ob(K(Proj A),). We
have natural homomorphisms

P° -~ Hom (Hom (P, V), V'),
Hom" (Hom' (P, V°), V') -~ RHom' (Hom(P", V), V°).

Also, since the canonical homomorphism
Hom' (P’, V') - RHom (P, V°)
is an isomorphism, we have a natural isomorphism
RHom’ (Hom' (P", V), V') © RHom' (RHom' (P", V*, V°).
Conseguently, we get a desired natural homomorphism
P° - RHom (RHom™ (P", V°), V).

Definition 25.2. Let V' [ Ob(Db(Mod A, B*). A complex X" [0 Ob(D(Mod A)) is
called V' -reflexiveif the canonical homomorphism

X" - RHom  (RHom™ ( X", V°), V).



is an isomorphism.

Remark 25.2. Let V' [ Ob(Cb(M od A 0, B%)). There exists a sequence of homomorphisms
inD(Mod A)

A - Hom (Hom' (A, V'), V') - RHom’ (RHom' (A, V°), V).

Thus, since V' = Hom' (A, V') = RHom' (A, V'), by Lemma 18.3 and Proposition 18.9(2)
we get a sequence of homomorphismsin Mod A

A — End (V.) d EndD(ModB"p)(V.)’

K (Mod B®)

which are canonical ring homomorphisms.

Lemma25.2. For V' [ Ob(Db(M od A [, B®)) the following are equivalent.
(1) Ais V' -reflexive.
(2) (@) Ext'(V", V))=0fori 0 inD(ModB®), and

(b) the canonical ring homomorphism A — End (V") isan isomorphism.

D(Mod B®)

Proof. (1) O (2). By Proposition 18.9(2)

Ext'(V', V') = H(RHom' (V*, V"))

=H(®
=0
fori Oand
A=H%A)
= HYRHom (V°, V"))
= EndD(ModBop)(V')
in Mod A.

(2) O (1). SinceH'(RHom' (V", V*))=0fori 0, by Proposition 11.7

A= EndD(ModBop)(V')
= Ext(V", V')
= H%RHom (V- V"))
= RHom (V', V"))



inD(Mod A).

Lemma 25.3. Let A be aleft coherent ring and B a right coherent ring. Then for any V*
O Ob(Db(M od A [, B*)) the following hold.
(1) If V" O Ob(K"(proj B¥)), then we have a d-functor

RHom’ (-, V*) : D"(mod A);,; - D (mod B®),.
(2) If Ais V' -reflexive, then there exists a natural isomorphism
X" % RHom (RHom' (X', V), V)
for X" 0 Ob(D (mod A);,,)-

Proof. Let X" OO Ob(D (mod A),,). Then by Proposition 11.17 we may assume X' [J
Ob(Kb(proj A)). Also, by Lemma 23.4 we have atriangle of the form

(T.o(X7), T.,(X), T(XY), LILIDL

Notethat 7, ,(X") =0for n» 0, and that X" =1,,(X") for n<«O.

(1) Forn» 0, since T, ( X’) = 0, RHom" (7, ,( X"), V") 0O Ob(D (mod B%), ). Letnl Z
and assume RHom' (7. ,(X"), V*) O Ob(D (mod B%), ;). Note that, since RHom’ (A, V°) =
Hom (A, V') = V' OO Ob(Kb(proj B*)), RHom" (T~"(X"), V") O Ob(D (mod B®);,). Thus,
since we have atriangle in D (mod B*) of the form

(RHom' (T-(X"), V*), RHom' (1. ( X*), V"), RHom' (1.(X*), V"), LJLID}

RHom' (7, ,(X"), V') O Ob(D (mod B*),,). It follows by induction that RHom" (X", V*) [J
Ob(D (mod B®);,y).
(2) By Lemma 25.1 there exists a homomorphism of 0-functors

N Lmeaa » RHOM (= V) o RHom' (-, V*).

Note that for n» 0O, since 7, ,( X") =0, n(t, (X")) isan isomorphism. Let nJ Z and assume
that n(r. (X)) isan isomorphism. Since n(A) is an isomorphism, it follows that n(T~"(X"))
is an isomorphism. Thus by Proposition 6.6 n(t, (X)) is an isomorphism. It follows by
induction that n( X") is an isomorphism.



Proposition 25.4. Let A be a left coherent ring and B a right coherent ring. Let V' [
Ob(D°(Mod A 0, B*®)) such that vV 0 Ob(K"(proj A)) and V* 0 Ob(K’(proj B*)). Assume
both A and B are V'-reflexive. Then RHom' (-, V") defines a duality between D" (mod A),,
and D™(mod B*),,.

Proof. By Lemma 25.3.

Corollary 25.5. Let A be a left and right coherent ring. Then RHom' (—, A) defines a
duality between D (mod A),,, and D™ (mod A®), ..

Lemma 25.6. For V' [ Ob(Db(M od A [, B*)) such that V' 0 Ob(D"(Mod A),,). Then
we have a d-functor

RHom' (-, V') : D°(Mod A) - D°(Mod B®).

Proof. Let X 0 Mod A Since V' 0 Ob(D(Mod A)), Ext'(X, V) = 0 for i <« 0 and hence
RHom' (X, V') 0 Ob(D'(Mod B®)). Also, since V' [0 Ob(D"(Mod A),,,), Ext'(X, V') = 0 for
i » 0 and RHom" (X, V') O Ob(D(Mod B*)). Thus RHom' (X, V) O Ob(D°(Mod B*®)).
Next, let X" O Ob(Db(Mod A)). Then by Lemma 23.4 we have a triangle in Db(M od A) of
the form

(LX), T,0(X7), TXY), LILIDL
Notethat r, (X") =0forn» 0,and that X" =17, (X")forn« 0. Forn» 0O, sincet, (X') =
0, RHom' (7, (X"), V') O Ob(Db(Mod B*)). Let nO Z and assume RHom' (7, ,( X*), V*) O

Ob(Db(M od B*®)). Then, since RHom' (T-"(X"), V*) O Ob(Db(M od B%)), and since we have
atriangle in D™ (mod B®) of the form

(RHom" (T-(X"), V"), RHom' (1, ( X), V), RHom' (. (X), V*), LILID]

RHom' (7, (X), V') O Ob(Db(Mod B*)). It follows by induction that RHom'" (X", V*) O
Ob(D°(Mod B*)).

Lemma 25.7. Let A be left coherent. Let V' Ob(Db(Mod A O, B*) such that V' O
Ob(D"(Mod B*),,,). Then the following hold.

(1) If Ais V' -reflexive, then there exists a natural isomorphism

X" 5 RHom (RHom' (X', V), V)



for X O Ob(D; (Mod A)).
(2) If Ais V' -reflexiveand V* 0 Ob(D*(Mod A),,,), then there exists a natural isomorphism

X" % RHom (RHom' (X', V), V)

for X" 0 Ob(D (Mod A)).
(3) If Bisright coherent and V' 0 Ob(D (Mod A)), then we have a d-functor

RHom (-, V') : D(Mod B*) —» D (ModA).
Proof. (1) It follows by Propositions 22.7(1) and 22.8 that
RHom' (-, V') e RHom" (-, V*) : D(Mod A) - D(Mod A)

isway-out left. Thus Proposition 23.5(5) applies.
(2) It follows by Proposition 22.8 that

RHom' (-, V') e RHom" (-, V°) : D(Mod A) - D(Mod A)

is way-out in both directions. Thus Proposition 23.5(5) and then Proposition 23.5(6) apply,
successively.

(3) By Proposition 22.8 RHom' (-, V) : D(Mod B®) —» D(Mod A) is way-out in both
directions. Thus, since RHom (B, V') = V' 0 Ob(D(Mod A)), Proposition 23.6(5) and
then Proposition 23.6(6) apply, successively.

Proposition 25.8. Let A be a left coherent ring and B a right coherent ring. Let V' [
Ob(D°(Mod A O, B®)) such that V' 0 Ob(D; (Mod A),.,) and V' 0 Ob(D; (Mod B®), ).
Then the following are equival ent.

(1) RHom' (—, V") defines a duality between D(Mod A) and D (Mod B™).

(2) RHom' (-, V") defines a duality between D?(Mod A) and D?(Mod B%).

(3) Both Aand B are V' -reflexive.

Proof. (1) O (2). Let X" 0 Ob(D?(Mod A)). Then by Lemma25.6 RHom' (X', V') O
Ob(D°(Mod B®)). Thus RHom' (X', V") O Ob( D°(Mod B*)). Similarly, RHom" (M", V*)
0 Ob(DP(Mod A)) for all M* O Ob(DP(Mod B*)).

(2) O (3). Obvious.

(3) O (1). By Lemma25.7.



Definition 25.3. Let A be aleft and right coherent ring. Then a bounded complex V' [
Ob(Db(M od A0, A®)) iscalled adualizing complex if it satisfies the following conditions:

(@ V' 0 Ob(D; (ModA),.;

(b) V' O Ob(D; (Mod A®), ); and

(c) RHom' (-, V") defines a duality between D (Mod A) and D (Mod A™).

Lemma 25.9. Let A be a left coherent ring and B a right coherent ring. Let V' [

Ob(D°(Mod A O, B®)) such that V* 0 Ob(D*(Mod A),,) and V* 0 Ob(K°(mod B*)). Then
there exists a 0-functor

RHom' (-, V') : D’(mod A) - D°(mod B*).

Proof. Let X' [J Ob(Db(mod A)). Then by Proposition 10.15 we may assume X' [J
Ob(K™ b(proj A)). Thus, since V° [ Ob(Kb(mod B%)), RHom" (X", V') = Hom' (X", V*) O
Ob(D°(mod B*)). Also, by Lemma 25.6 RHom' (X', V°) 0 Ob(D°(Mod B®)). It follows
that RHom' (X', V") O Ob(D"(mod B*)).

Corollary 25.10. Let A be aleft and right coherent ring withinj dim ,A < . Then there
exists a d-functor

RHom' (-, A) : D°(mod A) — D°(mod A®),
which induces a 0-functor
D°(mod A)/D°(mod A),,, - D°(mod A%)/D (mod A®), .

Proof. By Lemma 25.9 and Corollary 25.5.

Proposition 25.11. Let A be a left and right coherent ring withinj dim ,A =inj dimA, <
. Then A itself is a dualizing complex. In particular, RHom' (-, A) induces a duality
between D°(mod A)/D°(mod A),,, and D°(mod A®)/D°(mod A®), .

Proof. It follows by Proposition 25.8 that A itself is a dualizing complex. Then by
Corollary 25.0 RHom' (—, A) defines a duality between D°(mod A) and D°(mod A®). Thus by
Corollary 25.5 RHom' (-, A) induces a dudlity between D°(mod A)/D"(mod A),,, and D°(mod

A®)/D°(mod A”), .

Proposition 25.12. There exist natural isomorphisms



L

RHom' (M" O X', E) Z RHom (M’, RHom' (X', E")),
L

RHom (M" OO X', E') Z RHom (X', RHom (M", E))

for M* O Ob(D(Mod A®)), X' 0 Ob(D(ModA)) and E* 0 Ob(D(Mod R)).
Proof. By Proposition 24.1.

Proposition 25.13. RHom™ (X", E’) O Ob(D(Mod A®),,,) for all X" [0 Ob(D(Mod A),)
and E' 0 Ob(D'(Mod R),,,).

Proof. By Lemma 20.7 and Proposition 11.12 we may assume X' 0 Ob(K'(Flat A)) and
E’ O Ob(K’(Inj R)), respectively. Then, for any M 0 Mod A®, since Hom' (M 0 X', E’) O
Ob(K"(Mod R)), by Proposition 25.12
Ext'(M, RHom' (X', E")) = H(RHom" (M, RHom' (X", E")))
) L
= H'(RHom'(M 0 X', E"))
= H'(Hom'(M O X', E"))
=0
fori» 0.
Proposition 25.14. Let A be left coherent. Then there exists a natural isomorphism
L
RHom (X', E) O Y 2 RHom' (RHom' (Y", X°), E)
for X' O Ob(D'(Mod A)), Y 0 Ob( D;(ModA)) and E 0 Ob(D*(Mod R),,).

Proof. By Proposition 24.8.

Proposition 25.15. Let A be left coherent. Then RHom™ (X", E’) 0 Ob(D (Mod A®),,)
for all X’ 0Ob(D'(Mod A),,) and E* 0 Ob(D*(Mod R),,,).

Proof. By Proposition 11.12 we may assume X' [ Ob(Kb(Inj A)). Also, we may assume
E" 0 Ob(K(Inj R)). Note that RHom' (X', E’) = Hom' (X', E’) O Ob(D"(Mod A™)).
Next, for any Y OO mod A andi » 0, Hom" (Hom' (Y, X'), E") O Ob(Kb(Mod R)) and hence
by Proposition 25.14



. L
Tor,(RHom™ (X', E), ) = H(RHom' (X', E) LJ'Y)

= H'(RHom  (RHom" (Y, X°), E"))
= H™'(Hom" (Hom" (Y, X°), E’))
= 0.

Thusby Lemma20.7 RHom™ (X", E’) O Ob(D (Mod A%®),;).

Proposition 25.16. Let A be left coherent. Then there exists a natural isomorphism
L
RHom' (X', E) O Y° 5 RHom' (RHom'(Y", X°), E)
for X' 0 Ob(D"(Mod A),,,), Y' 0 Ob(D(Mod A)) and E* O Ob(D*(Mod R),,,).

Proof. Let X' 0 Ob(D"(Mod A),,) and E* 0 Ob(D*(Mod R),,). By Lemma 24.7(2) there
exists a natural isomorphism

L
RHom' (X', E) O Y° 5 RHom  (RHom'(Y", X'), E’)

for Y° 0 Ob(D (mod A)). By Proposition 25.15 RHom" ( X", E") O Ob(D (Mod A®),;, and
hence by Proposition 22.17 RHom' ( X, E’) ﬁ — is way-out in both directions. Also, it
follows by Proposition 22.8 that RHom' (—, E") o RHom’ (-, X") isway-out in both directions.
Thus, the assertion follows by Proposition 23.5(6).
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