
t-STRUCTURES, TORSION THEORIES AND DG ALGEBRAS

JUN-ICHI MIYACHI

In this note, for a ring A Mod A (resp., modA) is the category of right A-modules
(resp., finitely generated right A-modules), and ProjA (resp., projA) the category
of projective right A-modules (resp., finitely generated projective right A-modules).

1. t-structures

We recall the notion of t-structures which was introduced by Beilinson, Bernstein
and Deligne. In this section, T is a triangulated category, C is a full subcategory
of T satisfying

HomT (C, C[i]) = 0 (i < 0).

Proposition 1.1. For a morphism f : X → Y in C, suppose that there are N, C ∈
C such that

N

��

α[−1]

����
��

��
��

� N [1]

��
S[−1]

��

�� X
f �� Y

β
���

��
��

��
��

�� S

��
C[−1] C

where all vertical and horizontal sequences are distinguished triangles. Then we
have ker f = α[−1], Cok f = β in C.

Definition 1.2. A morphism f : X → Y in C is called C-admissible if there exist
N,C ∈ C satisfying Proposition 1.1. A sequence X → Y → Z in C is called an
admissible short exact sequence if X → Y → Z → X[1] is a distinguish triangle for
some Z → X[1].

Proposition 1.3. Suppose that C is stable under finite coproducts. Then the fol-
lowing are equivalent.

1. C is abelian, and all short exact sequences are admissible.
2. All morphisms in C are C-admissible.

Definition 1.4. A full subcategory C of T is called an admissible abelian category
if C satisfy the equivalent conditions in Proposition 1.3.

Definition 1.5. Let T be a triangulated category. For full subcategories T ≤0 and
T ≥0, (T ≤0, T ≥0) is called a t-structure on T provided that

(i) HomT (T ≤0, T ≥1) = 0;
(i i) T ≤0 ⊂ T ≤1 and T ≥0 ⊃ T ≥1;

This is a seminar note of which I gave a lecture at Osaka City University in March 2001.

1



2 JUN-ICHI MIYACHI

(iii) for any X ∈ T , there exists a distinguished triangle

X′ → X → X′′ →
with X ′ ∈ T ≤0 and X′′ ∈ T ≥1,

where T ≤n = T ≤0[−n] and T ≥n = T ≥0[−n].
The core of this t-structure is C = T ≤0 ∩ T ≥0.

Proposition 1.6. For n ∈ Z, the following hold.
1. The inclusion T ≤n → T has a right adjoint σ≤n : T → T ≤n.
2. The inclusion T ≥n → T has a left adjoint σ≥n : T → T ≥n.
3. For any X ∈ T , there exists a unique d ∈ HomT (σ≥1X, σ≤0X[1]) such that

σ≤0X → X → σ≥1X
d−→ σ≤0X[1]

is a distinguished triangle.
4. Let A → X → B → A[1] be a distinguished triangle with A ∈ T ≤0, B ∈ T ≥1.

Then this triangle is isomorphic to σ≤0X → X → σ≥1X
d−→ σ≤0X[1].

Remark 1.7. For X ∈ T , the following hold.
1. σ≥nX = O iff X ∈ T ≤n−1.
2. σ≤nX = O iff X ∈ T ≥n+1.

Proposition 1.8. For a ≤ b, X ∈ T , there is an isomorphism σ≥aσ≤bX
∼−→

σ≤bσ≥aX such that

σ≥aσ≤bX
∼ �� σ≤bσ≥aX

��
σ≤bX

��

�� X �� σ≥aX

is commutative.

Theorem 1.9. The core C = T ≤0 ∩ T ≥0 is an admissible abelian category which
is stable under extensions, and H0 = σ≥0σ≤0 : T → C is a cohomological functor.

Definition 1.10. A t-structure (T ≤0,T ≥0) on T is called non-degenerate provided
that

⋂
n∈Z

T ≤n =
⋂

n∈Z
T ≥n = {0}.

Proposition 1.11. Let (T ≤0, T ≥0) be a non-degenerate t-structure. For X ∈ T ,
the following hold.

1. Hi X = O for any n iff X = O.
2. Hi X = O for any i > n (resp., i < n) iff X ∈ T ≤n (resp., X ∈ T ≥n).

Here Hi X = H0(X [i]).

2. t-structures Induced by Compact Objects

A triangulated category T is said to contain coproducts if coproducts of objects
indexed by any set exist in T . An object C of T is called compact if HomT (C,−)
commutes with coproducts. Furthermore, a collection S of compact objects of T is
called a generating set provided that X = 0 whenever HomT (S, X) = 0, and that S
is stable under suspensions. In this case, T is called compactly generated (see [Ne]
for details). For an object C ∈ T and an integer n, we denote by T ≥n(C) (resp.,
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T ≤n(C)) the full subcategory of T consisting of X ∈ T with HomT (C,X[i]) = 0
for i < n (resp., i > n), and set T 0(C) = T ≤0(C) ∩ T ≥0(C).

For an abelian category A, we denote by C(A) the category of complexes of A,
and denote by D(A) (resp., D+(A), D−(A), Db(A)) the derived category of com-
plexes of A (resp., complexes of A with bounded below homologies, complexes of A
with bounded above homologies, complexes of A with bounded homologies). For an
additive category B, we denote by K(B) (resp., K−(B), Kb(B)) the homotopy cate-
gory of complexes of B (resp., bounded above complexes of B, bounded complexes
of B) (see [RD] for details).

Proposition 2.1. Let T be a triangulated category which contains coproducts, C
a compact object satisfying HomT (C,C[n]) = 0 for n > 0. Then for any r ∈ Z

and any object X ∈ T , there exist an object X≥r ∈ T ≥r(C) and a morphism
α≥r : X → X≥r in T such that

(i) for any i ≥ r, HomT (C,α≥r[i]) is an isomorphism,
(i i) for every object Y ∈ T ≥r(C), HomT (α≥r, Y ) is an isomorphism.

Theorem 2.2. Let T be a triangulated category which contains coproducts, C a
compact object satisfying HomT (C, C[n]) = 0 for n > 0, and B = EndT (C). If
{C[i] | i ∈ Z} is a generating set, then the following hold.

(1) (T ≤0(C),T ≥0(C)) is a non-degenerate t-structure on T .
(2) T 0(C) is admissible abelian.
(3) The functor

HomT (C,−) : T 0(C) → ModB

is an equivalence.

3. Torsion Theories for Abelian Categories

Throughout this section, we fix the following notation. Let A be an abelian
category satisfying the condition Ab4 (i.e. direct sums of exact sequences are exact),
and let d−1

P : P−1 → P 0 be a morphism in A with the P i being small projective
objects of A, and denote by P � the mapping cone of d−1

P . We set C(P �) = D(A)0(P �),
B = EndD(A)(P �), and define a pair of full subcategories of A

X (P �) = {X ∈ A | HomD(A)(P �, X[1]) = 0},
Y(P �) = {X ∈ A | HomD(A)(P �, X) = 0}.

For any X ∈ A, we define a subobject of X

τ(X) =
∑

f∈HomA(H0(P �),X)
Imf

and an exact sequence in A

(eX) : 0 → τ(X) jX−→ X → π(X) → 0.

Remark 3.1. It is easy to see that P � is a compact object of D(A), and we have
X (P �) = D(A)≤0(P �) ∩A and Y(P �) = D(A)≥1(P �) ∩A.

Lemma 3.2. For any X� ∈ D(A) and n ∈ Z, we have a functorial exact sequence

0 → HomD(A)(P , Hn−1(X )[1]) → HomD(A)(P , X [n]) → HomD(A)(P , Hn(X )) → 0.

Moreover, the above short exact sequence commutes with coproducts.
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Definition 3.3. A pair (X ,Y) of full subcategories X ,Y in an abelian category A
is called a torsion theory for A provided that the following conditions are satisfied
(see e.g. [Di] for details):

(i) X ∩ Y = {0};
(i i) X is closed under factor objects;
(iii) Y is closed under subobjects;
(iv) for any object X of A, there exists an exact sequence 0 → X ′ → X → X′′ → 0

in A with X ′ ∈ X and X ′′ ∈ Y.

Remark 3.4. Let A be an abelian category and (X ,Y) a torsion theory for A.
Then for any Z ∈ A, the following hold.

(1) Z ∈ X if and only if HomA(Z,Y) = 0.
(2) Z ∈ Y if and only if HomA(X , Z) = 0.

Theorem 3.5. The following are equivalent for a complex P � : P−1
d−1

P−−→ P 0 with
the P i being small projective objects of A.

(1) {P �[i] | i ∈ Z} is a generating set for D(A) and HomD(A)(P �, P �[i]) = 0 for
all i > 0.

(2) X (P �) ∩ Y(P �) = {0} and H0(P �) ∈ X (P �).
(3) X (P �) ∩ Y(P �) = {0} and τ(X) ∈ X (P �), π(X) ∈ Y(P �) for all X ∈ A.
(4) (X (P �),Y(P �)) is a torsion theory for A.

Lemma 3.6. Assume X (P �)∩Y(P �) = {0}. Then for any X � ∈ D(A), the follow-
ing are equivalent.

(1) X � ∈ C(P �).
(2) Hn(X �) = 0 for n > 0 and n < −1, H0(X �) ∈ X (P �) and H−1(X �) ∈ Y(P �).

Remark 3.7. Let A be an abelian category and X ,Y full subcategories of A. Then
the pair (X ,Y) is a torsion theory for A if and only if the following two conditions
are satisfied:

(i) HomA(X ,Y) = 0;
(i i) for any object X in A, there exists an exact sequence 0 → X ′ → X → X′′ → 0

in A with X ′ ∈ X and X ′′ ∈ Y.

Theorem 3.8. Let P � be a complex P−1 d−1
P−−→ P 0 with the P i being small projective

objects of A. Assume X (P �)∩Y(P �) = {0} and H0(P �) ∈ X (P �). Then the following
hold.

(1) C(P �) is admissible abelian.
(2) The functor

HomD(A)(P �,−) : C(P �) → Mod B

is an equivalence.
(3) (Y(P �)[1],X (P �)) is a torsion theory for C(P �).

Proposition 3.9. Assume P � satisfies the conditions
(i) {P �[i] | i ∈ Z} is a generating set for D(A),
(i i) HomD(A)(P �, P �[i]) = 0 for i �= 0.

If A has either enough projectives or enough injectives, then we have an equivalence
of triangulated categories

Db(A) ∼= Db(ModB).
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Example 3.10 (cf. [HK]). Let A be a finite dimensional algebra over a field k
given by a quiver

1 α−−−−→ 2

δ

�
�β

4 ←−−−−
γ

3

with relations βα = γβ = δγ = αδ = 0. For each vertex i, we denote by S(i), P (i)
the corresponding simple and indecomposable projective left A-modules, respectively.
Define a complex P � as the mapping cone of the homomorphism

d−1
P =

[
f 0 0 0
0 0 g 0

]
: P (2)2 ⊕ P (4)2 → P (1) ⊕ P (3),

where f and g denote the right multiplications of α and γ, respectively. Then P �

is not a tilting complex. However, P � satisfies the assumption of Theorem 3.8 and
hence we have an equivalence of abelian categories

HomD(Mod A)(P �,−) : C(P �) → ModB,

where B = EndD(Mod A)(P �) is a finite dimensional k-algebra given by a quiver

1 ← 2 3 ← 4.

There exist exact sequences in C(P �) of the form

0 → S(1) → S(2)[1] → P (1)[1] → 0, 0 → S(3) → S(4)[1] → P (3)[1] → 0,

and these objects and morphisms generate C(P �).

In the rest of this section, we deal with the case where R is a commutative
artin ring, I is an injective envelope of an R-module R/ rad(R) and A is a finitely
generated R-module. We denote by mod A the full abelian subcategory of Mod A

consisting of finitely generated modules. P � is also a complex P−1 d−1
P−−→ P 0 with the

P i being finitely generated projective A-modules. Note that Hn(P �), Hn(ν(P �)) ∈
mod A for all n ∈ Z. We set

Xc(P �) = X (P �) ∩ modA and Yc(P �) = Y(P �) ∩mod A.

Proposition 3.11. For any tilting complexes P �
1 : P−1

1 → P 0
1 , P �

2 : P−1
2 → P 0

2 for
A of term length two, the following are equivalent.

(1) (Xc(P �
1),Yc(P �

1)) = (Xc(P �
2),Yc(P �

2)).
(2) add(P �

1) = add(P �
2) in Kb(projA).

Proposition 3.12. The following are equivalent for a complex P−1 → P 0 ∈
Kb(projA)
(1) P � is a tilting complex.
(2) Xc(P �) ∩Yc(P �) = {0}, H0(P �) ∈ Xc(P �) and H−1(P �) ∈ Yc(P �).
(3) (Xc(P �),Yc(P �)) is a torsion theory for mod A and H−1(P �) ∈ Yc(P �).
(4) (Xc(P �),Yc(P �)) is a torsion theory for modA and Xc(P �) is stable under

DA⊗A−.
(5) (Xc(P �),Yc(P �)) is a torsion theory for modA and Yc(P �) is stable under

HomA(DA,−).
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Definition 3.13. Let A be an abelian category and C a full subcategory of A closed
under extensions. Then an object X ∈ C is called Ext-projective (resp., Ext-
injective) if Ext1A(X,C) = 0 (resp., Ext1A(C,X) = 0).

Proposition 3.14. Assume P � is a tilting complex. Then the following hold.

(1) H0(P �) ∈ Xc(P �) is Ext-projective and generates Xc(P �).
(2) H−1(ν(P �)) ∈ Yc(P �) is Ext-injective and cogenerates Yc(P �).

Theorem 3.15. Let (X ,Y) be a torsion theory for modA such that X contains an
Ext-projective module X which generates X , Y contains an Ext-injective module
Y which cogenerates Y, and X is stable under DA⊗A−. Let M �

X be a minimal
projective presentation of X and N �

Y a minimal injective presentation of Y . Then

P � = M �
X ⊕Hom�

A(DA,N �
Y )[1]

is a tilting complex such that X = Xc(P �) and Y = Yc(P �).

Remark 3.16. Let

S = {P � : P−1 → P 0 ∈ Kb(projA) | P � is a tilting complex for A}

on which we define the equivalence relation P �
1 ∼ P �

2 provided addP �
1 = addP �

2 in
Kb(projA), and let T be the collection of torsion theories (X ,Y) for modA such
that X contains an Ext-projective module X which generates X , Y contains an
Ext-injective module Y which cogenerates Y , and X is stable under DA⊗A−. Set

Φ(P �) = ((Xc(P �),Yc(P �)) for P � ∈ S,

Ψ((X ,Y)) = M �
X ⊕Hom�

A(DA,N �
Y )[1] for (X ,Y) ∈ T.

Then, according to Propositions 3.11, 3.12, 3.14 and Theorem 3.15, Φ and Ψ induce
a one to one correspondence between S/ ∼ and T.

4. Perverse t-structures Induced by Torsion Theories

We recall the notion of perverse t-structures which was introduced by [BBD] and
was translated into the language of torsion theories by [VB], and show a relation
to the results of Section 3. In this section, A is an abelian category, D = D∗(A),
where ∗ = nothing, +,− or b, and

D≤0 := {X ∈ D|Hi(X) = O for i > 0}
D≥0 := {X ∈ D|Hi(X) = O for i < 0}

Definition 4.1. Let (X ,Y) be a torsion theory for A. We set

pD≤0 := {X ∈ D≤0|H0(X) ∈ X}
pD≥0 := {X ∈ D≥−1|H−1(X) ∈ Y}

Lemma 4.2. For X � ∈ D≤0, we have a distinguished triangle

X �
1 → X � → X �

2 → X�
1[1]

with X �
1 ∈ pD≤0, X�

2 ∈ pD≥1 ∩D0.
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Sketch. We have
. . . �� X−1 �� X

′0

P B

��

��

�� ������ τ H0 X �
��

���
�
�

. . . �� X−1

��

�� X0

����

�� ������ H0 X �

�����
�
�

O �� π H0 X� ��� ��� π H0 X �

Proposition 4.3. Let (X ,Y) be a torsion theory for A. Then (pD≤0, pD≥0) is a
non-degenerate t-structure in D.

Proof. For X � ∈ pD≤0, Y � ∈ pD≥1, we have

HomD(X�, Y �) ∼= HomD(σ≥0X
�, σ≤0Y

�)
∼= HomD(H0 X�, H0 Y �)
= 0

It is easy to see that pD≤0 ⊂ pD≤1 and pD≥1 ⊂ pD≥0. Let Y � ∈ D. By Lemma
4.2, we have a commutative diagram

Y �
1 −−−−→ τ≤0Y � −−−−→ Y �

2 −−−−→ Y �
1 [1]∥∥∥

�
�

∥∥∥
Y �

1 −−−−→ Y � −−−−→ Z� −−−−→ Y �
1 [1]�

�
τ≥1Y � τ≥1Y �

�
�

τ≤0Y
�[1] −−−−→ Y �

2 [1]

where all vertical and horizontal sequences are distinguished triangles, and Y �
1 ∈

pD≤0, Y �
2 ∈ pD≥1 ∩ D0. Therefore Z� ∈ D≥0 and H0 Z� ∼= H0 Y �

2 ∈ Y. Hence
Z � ∈ pD≥1. Since pD≤0 ⊂ D≤0 and pD≥0 ⊂ D≥−1, it is non-degenerate.

Proposition 4.4. Let (X ,Y) be a torsion theory for A, pC = pD≤0 ∩ pD≥0. Then
pC is admissible abelian and (Y[1],X ) is a torsion theory for pC.

Proof. It is easy to see that HomD(Y[1],X ) = {O}. X� ∈ pC iff X � ∼= Y � : Y −1 →
Y 0 with H0 Y � ∈ X and H−1 Y � ∈ Y. Then we have a distinguished triangle

H−1 Y �[1] → Y � → H0 Y � → H−1 Y �[2].

This means that we have an exact sequence in pC
O → F → Y � → T → O

with F ∈ Y[1], T ∈ X .

Proposition 4.5. Let P � be a complex P−1 → P 0 with the P i being small pro-
jective objects of A. Assume X (P �) ∩ Y(P �) = {0} and H0(P �) ∈ X (P �). Then a
perverse t-structure (pD≤0, pD≥0) coincides with (D≤0(P �),D≥0(P �)).
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Proof. By Lemma 3.2.

5. DG-Algebras and Derived Equivalences

Definition 5.1. A differential graded algebra (a DG algebra) B over a commu-
tative ring k is a Z-graded k-algebra B =

∐
n∈Z

Bn endowed with a differential
d : Bn → Bn+1 (n ∈ Z) such that

d(ab) = d(a)b + (−1)pad(b)

for a ∈ Bp.
A DG (right) B-module M is a Z-graded B-module M =

∐
n∈Z

Mn endowed
with a differential d : Mn → Mn+1 (n ∈ Z) such that

d(ma) = d(m)a + (−1)pmd(a)

for m ∈ Mp, a ∈ B.
For DG B-module M,N and n ∈ Z,

HomGr B(M,N)n = the set of graded B-homomorphisms of degree n

HomGr B(M, N) =
∐
n∈Z

HomGr B(M, N)n

HomDif B(M, N) = HomGr B(M,N) endowed with the differential
∂ : HomGr B(M,N)n → HomGr B(M, N)n+1

(∂((fp)p∈Z) = (dp+n
N ◦ fp + (−1)n+1fp+1 ◦ dp

M )p∈Z)
HomCB(M, N) = Z0 HomDif B(M,N)
HomHB(M, N) = H0 HomDif B(M, N)

Definition 5.2. The suspension functor S : CB → CB is defined by

(SM)n = Mn+1

m · a = ma

dn
SM = −dn+1

M

for M ∈ CB.
For u : M → N in CB, the mapping cone M(u) is defined by

Mn(u) = Nn ⊕ Mn+1

[ n
m ] · a = [ na

ma ]

dn
M(u) =

[
dn

N un+1

0 −dn+1
M

]

Proposition 5.3. The following hold.
1. Let SB be the collection of exact sequences O → X → Y → Z → O in CB

such that O → Xn → Y n → Zn → O is split exact in Mod k. Then (CB,SB)
is a Frobenius category.

2. Let TB be the collection of sextuples (X,Y,Z, i, v, w) which are isomorphic to
standard triangles in HB. Then (HB,TB) is a triangulated category.

Concerning the notion of Frobenius categories, see [Ha], [Mi] Section 5.

Definition 5.4. For a DG algebra B, H� B =
∐

n∈Z
Hn B. For DG B-module M ,

H� M =
∐

n∈Z
Hn M. Then we have the functor H� : HA → GrH� B. A morphism

f : M → N is called quasi-isomorphism if H� f is isomorphism.
Let Σ be the collection of quasi-isomorphisms in HB, then DB is Σ−1HB. In

this case, the canonical functor CB → HB → DB commutes with coproducts.
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Lemma 5.5. Let (Fi,Si) be Frobenius categories (i = 1, 2). If a functor F : F1 →
F2 satisfies that F (S1) ⊂ S2 and that FQ is S2-projective for every S1-projective
object Q, then F induces ∂-functor F : F1 → F2.

Definition 5.6. Let A be an abelian category. For a complexes X �, Y � ∈ C(A), we
define the complex Hom�

A(X�, Y �) by

Homp
A(X �, Y �) =

∏
n∈Z

HomA(Xn, Y n+p)

Hom�
A(X �, Y �) =

∐
p∈Z

Homp
A(X�, Y �)

dp
Hom�

A(X� ,Y �)((f
n)n∈Z) = (dn+p

Y ◦ fn − (−1)pfn+1 ◦ dn
X)n∈Z.

Proposition 5.7. Let A be an AB4-category, A′ thick abelian subcategory which is
closed under coproducts. Let C � ∈ CA′(A), B = End�

C(A)(C �). Then the following
hold.

1. We have the functor Hom�
A(C �,−) : CA′(A) → CB.

2. Hom�
A(C�,−) induces the ∂-functor Hom�

A(C�,−) : KA′(A) → HB.
3. If there is a triangulated full subcategory L of KA′(A) such that

(a) every X � ∈ KA′(A) has a quasi-isomorphic to some complex in L,
(b) HomK(A)(K

φ
A′(A),L) = 0,

then the ∂-functor Hom�
A(C�,−) : KA′(A) → HB induces the right derived

functor RHom�
A(C�,−) : DA′(A) → DB.

Here Kφ
A′(A) is the full subcategory of KA′(A) consisting of acyclic com-

plexes. In this case, we say that KA′(A) has a Kφ
A′(A)-Bousfield localization.

Lemma 5.8. Let A be an AB4-category. Let C� ∈ C(A) which is a bounded com-
plex of small projective objects, and B = End�

C(A)(C�). Then the following hold.

1. RHom�
A(C�,−) commutes with coproducts.

2. HomD(A)(C�, X�) ∼= HomDB(RHom�
A(C�, C�),RHom�

A(C �,X �)).

Lemma 5.9. Let A be an AB4-category, A′ thick abelian subcategory which is
closed under coproducts. Assume that KA′(A) has a Kφ

A′(A)-Bousfield localiza-
tion. Let C� ∈ CA′(A) which is Kφ

A′(A)-local and is compact in DA′(A), and
B = End�

C(A)(C �). Then the following hold.

1. RHom�
A(C�,−) commutes with coproducts.

2. HomD(A)(C�, X�) ∼= HomDB(RHom�
A(C�, C�),RHom�

A(C �,X �)).

Proposition 5.10. Under the condition of Lemma 5.8 (resp., Lemma 5.9), if
{C �[i]|i ∈ Z} is a generating set for D(A) (resp., DA′(A)), then RHom�

A(C �,−) :
D(A) → DB (resp., RHom�

A(C�,−) : DA′(A) → DB) is an equivalence.

Proof. By Theorem 6.3 of Appendix.

Corollary 5.11. Let P � be a bounded complex of finitely generated projective mod-
ules over a ring A, B = End�

C(A)(C �). If {P �[i]|i ∈ Z} is a generating set for
D(ModA), then RHom�

A(P �,−) : D(Mod A) → DB is an equivalence.

Corollary 5.12. Let X be a quasi-compact separated scheme over an algebraically
closed field. If a perfect complex C � ∈ C+

qc(InjX) satisfies that {C �[i]|i ∈ Z} is a
generating set for Dqc(X) (or D(QCohX)), then

D(QCoh X) ∼= DB
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with B = End�
C(A)(C �).

Proof. According to [BN], Kqc(X) has a Kφ
qc(X)-Bousfield localization, and Dqc(X)

∼= D(QCohX). By 5.10 we complete the proof.

Corollary 5.13. Let X be a projective scheme which embeds to Pn
k . If a complex

C � ∈ C+
qc(InjX) which is quasi-isomorphic to ⊕n

i=0OX(−i), then

D(QCohX) ∼= DB.

Sketch. Let V be an (n + 1)-dimensional k-vector space. In ModPn
k we have an

exact sequence

O → ∧n+1V ⊗OP(−n − 1) → ∧nV ⊗OP(−n) → . . .

→ ∧1V ⊗OP(−1) → OP → O

Since the above sequence is locally split exact, we have an exact sequence in ModX

O → ∧n+1V ⊗OX(−n − 1) → ∧nV ⊗OX(−n) → . . .

→ ∧1V ⊗OX(−1) → OX → O

Therefore ⊕n
i=0OX(−i) generates D(Qcoh X).

Corollary 5.14 ([Be]). Let B′ = EndPn
k
(⊕n

i=0OPn(−i)), then

D(QCohPn
k ) ∼= D(ModB′)

Db(CohPn
k ) ∼= Db(modB′).

Proof. By Corollary 5.13, we have D(QCoh Pn
k ) ∼= DB. Let B′′ = σ≤0B and

B′ = H0 B, we have morphisms B′ ← B′′ → B which induce B′ ∼← H� B′′ ∼−→
H� B. By [Ke1] 6.1 Example, we have D(QCohPn

k ) ∼= D(ModB′). Since CohPn
k

and modB′ have finite global dimensions, the full subcategories of D(QCohPn
k )

and D(ModB′) consisting of compact objects are equivalent to Db(CohPn
k) and

Db(modB′), respectively. By Theorem 6.3, we complete the proof.

Remark 5.15. Let ( 
Q, ρ) be the following quiver with relations:

0

α0
0

��...
α0

n

�� 1

α1
0

��...
α1

n

�� 2 ··· n − 1

αn−1
0

��...
αn−1

n

�� n ,

and ρ is the set of relations over k

αl+1
i αl

j = αl+1
j αl

i for 0 ≤ i < j ≤ n,0 ≤ l < n − 1.

Then B′ of Corollary 5.14 is isomorphic to k( 
Q, ρ).

Remark 5.16. Recently, Bondal and Van den Bergh showed that the derived cate-
gory D(QCohX) of quasi-coherent sheaves of a Noetherian scheme X has a compact
generator. By using [Ke2], they also showed that D(QCoh X) ∼= DB for some DG
algebra B.

Example 5.17. In Example 3.10, let B′ = End�
A(P �). Then we have

D(Mod A) ∼= DB′.
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Let B′′ = B−1 ⊕ B0 with
B−1 → B0 : HomA(P 0, P−1) → HomC(Mod A)(P �, P �)

(f �→ (f ◦ d−1 − f−1 ◦ f))

According to [Ke1] 6.1 Example, the natural inclusion B′′ → B′ induces the derived
equivalence DB′′ ∼= DB′. Hence we have

D(Mod A) ∼= DB′′.

Example 5.18. In Proposition 5.13, let B′ = End�
A(P �). Then we have

D(Mod A) ∼= DB′.

Let B′′ = B−1 ⊕ B0 with
B−1 → B0 : HomA(P 0, P−1) → HomC(Mod A)(P �, P �)

(f �→ (f ◦ d−1 − f−1 ◦ f))

According to [Ke1] 6.1 Example, the natural inclusion B′′ → B′ induces the derived
equivalence DB′′ ∼= DB′. Hence we have

D(Mod A) ∼= DB′′.

6. Appendix

Throughout this section all triangulated categories contains arbitrary coprod-
ucts.

Definition 6.1. A triangulated full subcategory L of T is called localizing provided
that every coproduct of objects in L is in L.

Lemma 6.2. Let T be a triangulated category, S a generating set. Let L be a
localizing subcategory of T which contains S. Then L = T . Furthermore, for every
X ∈ T , there are distinguished triangles

Zn → Xn → Xn+1 → Zn[1]

with X0, Zn ∈ SumS (n ≥ 0), such that

X ∼= hlim
−→

Xn

Here SumS is the full subcategory of T consisting of coproducts of objects X ∈ S.

Proof. See [Ke1] 5.2 Theorem and [Ne] Theorem 4.1.

Theorem 6.3. Let F : T1 → T2 be a ∂-functor commuting with coproducts. As-
sume that there is a generating set S for T1 such that FS is a generating set for
T2. If F |S is fully faithful, then F : T1 → T2 is an triangle equivalence. In this
case, F induces the triangle equivalence T c

1 → T c
2 , where T c

i is the triangulated full
subcategory of Ti consisting of compact objects.

Proof. Step 1. We have HomT1(C,Y ) ∼= HomT2(FC, FY ) for C ∈ S and Y ∈
SumS.

Step 2. We have HomT1(C,Y ) ∼= HomT2(FC, FY ) for C ∈ S and Y ∈ T1.
∵ ) Given Y ∈ T1, by Lemma 6.2, there are distinguished triangles

Zn → Yn → Yn+1 → Zn[1]

with Y0, Zn ∈ SumS (n ≥ 0), such that

Y ∼= hlim
−→

Yn
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By induction on n, we have HomT1(C,Xn) ∼= HomT2(FC, FYn). Since FC is com-
pact, we have HomT1(C,hlim

−→
Yn) ∼= HomT2(FC,Fhlim

−→
Yn).

Step 3. We have HomT1(X,Y ) ∼= HomT2(FX,FY ) for X,Y ∈ T1.
∵) It is similar to Step 2.
Step 4. Given M ∈ T2, by Lemma 6.2, there are distinguished triangles

Nn → Mn → Mn+1 → Nn[1]

with M0,Nn ∈ SumFS (n ≥ 0), such that

M ∼= hlim
−→

Mn

Since F is fully faithful, by induction there are distinguished triangles

Zn → Xn → Xn+1 → Zn[1]

with X0, Zn ∈ SumS (n ≥ 0), such that

FZn −−−−→ FXn −−−−→ FXn+1 −−−−→ FZn[1]��
��

��
��

Nn −−−−→ Mn −−−−→ Mn+1 −−−−→ Nn[1]

Hence
M ∼= hlim

−→
Mn

∼= Fhlim
−→

Xn

∼= FX

Since the compactness of an object is the categorical property, the last assertion is
trivial .
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