
RECOLLEMENT AND TILTING COMPLEXES

JUN-ICHI MIYACHI

Abstract. First, we study recollement of a derived category of unbounded
complexes of modules induced by a partial tilting complex. Second, we give

equivalent conditions for P ¦ to be a recollement tilting complex, that is, a tilt-
ing complex which induces an equivalence between recollements {DA/AeA(A),

D(A), D(eAe)} and {DB/BfB(B), D(B), D(fBf)}, where e, f are idempotents

of A, B, respectively. In this case, there is an unbounded bimodule complex ∆¦
T

which induces an equivalence between DA/AeA(A) and DB/BfB(B). Third,

we apply the above to a symmetric algebra A. We show that a partial tilting
complex P ¦ for A of length 2 extends to a tilting complex, and that P ¦ is a
tilting complex if and only if the number of indecomposable types of P ¦ is

one of A. Finally, we show that for an idempotent e of A, a tilting complex
for eAe extends to a recollement tilting complex for A, and that its standard

equivalence induces an equivalence between Mod A/AeA and Mod B/BfB.

0. Introduction

The notion of recollement of triangulated categories was introduced by Beilinson,
Bernstein and Deligne in connection with derived categories of sheaves of topological
spaces ([1]). In representation theory, Cline, Parshall and Scott applied this notion
to finite dimensional algebras over a field, and introduced the notion of quasi-
hereditary algebras ([5], [14]). In quasi-hereditary algebras, idempotents of algebras
play an important role. In [16], Rickard introduced the notion of tilting complexes
as a generalization of tilting modules. Many constructions of tilting complexes
have a relation to idempotents of algebras (e.g. [13], [19], [6], [7]). We studied
constructions of tilting complexes of term length 2 which has an application to
symmetric algebras ([8]). In the case of algebras of infinite global dimension, we
cannot treat recollement of derived categories of bounded complexes such as one
in the case of quasi-hereditary algebras. In this paper, we study recollement of
derived categories of unbounded complexes of modules for k-projective algebras
over a commutative ring k, and give the conditions that tilting complexes induce
equivalences between recollements induced by idempotents. Moreover, we give some
constructions of tilting complexes over symmetric algebras.

In Section 2, for a k-projective algebra A over a commutative ring k, we study a
recollement {KP ,D(A),D(B)} of a derived category D(A) of unbounded complexes
of right A-modules induced by a partial tilting complex P ¦, where B = EndD(A)(P ¦).
We show that there exists the triangle ξV in D(Ae) which induce adjoint functors
of this recollement, and that the triangle ξV is isomorphic to a triangle which is
constructed by a P ¦-resolution of A in the sense of Rickard (Theorem 2.8, Propo-
sition 2.15, Corollary 2.16). In general, this recollement is out of localizations of
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triangulated categories which Neeman treated in [12] (Corollary 2.9). Moreover, we
study a recollement {DA/AeA(A),D(A),D(eAe)} which is induced by an idempo-
tent e of A (Proposition 2.17, Corollary 2.19). In Section 3, we study equivalences
between recollements which are induced by idempotents. We give equivalent con-
ditions for P ¦ to be a tilting complex inducing an equivalence between recollements
{DA/AeA(A),D(A),D(eAe)} and {DB/BfB(B),D(B),D(fBf)} (Theorem 3.5). We
call this tilting complex a recollement tilting complex related to an idempotent
e. There are many symmetric properties between algebras A and B for a two-
sided recollement tilting complex BT ¦

A(Corollaries 3.7, 3.8). Moreover, we have
an unbounded bimodule complex ∆¦

T ∈ D(B◦ ⊗ A) which induces an equivalence
between DA/AeA(A) and DB/BfB(B). The complex ∆¦

T is a compact object in
DA/AeA(A), and satisfies properties such as a tilting complex (Propositions 3.11,
3.13, 3.14, Corollary 3.12). In Section 4, we study constructions of tilting complexes
for a symmetric algebra A over a field. First, we construct a family of complexes
{Θ¦

n(P ¦, A)}n≥0 from a partial tilting complex P ¦, and give equivalent conditions
for Θ¦

n(P ¦, A) to be a tilting complex (Definition 4.3, Theorem 4.6, Corollary 4.7).
As applications, we show that a partial tilting complex P ¦ of length 2 extends to
a tilting complex, and that P ¦ is a tilting complex if and only if the number of
indecomposable types of P ¦ is one of A (Corollaries 4.8, 4.9). This is a complex
version over symmetric algebras of Bongartz’s result on classical tilting modules
([3]). Second, for an idempotent e of A, by the above construction a tilting com-
plex for eAe extends to a recollement tilting complex T ¦ related to e (Theorem 4.11).
This recollement tilting complex induces that A/AeA is isomorphic to B/BfB as a
ring, and that the standard equivalence R Hom¦

A(T ¦,−) induces an equivalence be-
tween Mod A/AeA and Mod B/BfB (Corollary 4.12). This construction of tilting
complexes contains constructions obtained by several authors.

1. Basic Tools on k-Projective Algebras

In this section, we recall basic tools of derived functors in the case of k-projective
algebras over a commutative ring k. Throughout this section, we deal only with
k-projective k-algebras, that is, k-algebras which are projective as k-modules. For
a k-algebra A, we denote by Mod A the category of right A-modules, and denote
by ProjA (resp., projA) the full additive subcategory of Mod A consisting of pro-
jective (resp., finitely generated projective) modules. For an abelian category A
and an additive category B, we denote by D(A) (resp., D+(A), D−(A), Db(A))
the derived category of complexes of A (resp., complexes of A with bounded below
cohomologies, complexes of A with bounded above cohomologies, complexes of A
with bounded cohomologies), denote by K(B) (resp., Kb(B)) the homotopy category
of complexes (resp., bounded complexes) of B (see [15] for details). In the case of
A = B = Mod A, we simply write K∗(A) and D∗(A) for K∗(Mod A) and D∗(Mod A),
respectively. Given a k-algebra A we denote by A◦ the opposite algebra, and by
Ae the enveloping algebra A◦ ⊗k A. We denote by ResA : Mod B◦⊗kA → Mod A
the forgetful functor, and use the same symbol ResA : D(B◦⊗kA) → D(A) for the
induced derived functor. Throughout this paper, we simply write ⊗ for ⊗k.

In the case of k-projective k-algebras A, B and C, using [4] Chapter IX Section
2, we don’t need to distinguish the derived functor
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Resk ◦ (R Hom¦
C) : D(A◦ ⊗ C)◦ × D(B◦ ⊗ C) → D(B◦ ⊗A) → D(k)

(resp., Resk ◦ (
¦⊗L

B) : D(A◦ ⊗B)× D(B◦ ⊗ C) → D(A◦ ⊗ C) → D(k))

with the derived functor
R Hom¦

C ◦((ResC)◦ ×ResC) : D(A◦ ⊗ C)◦ × D(B◦ ⊗ C) → D(C)◦ × D(C) → D(k)

(resp.,
¦⊗ L

B ◦ (ResB ×ResB◦) : D(A◦ ⊗B)× D(B◦ ⊗ C) → D(B)× D(B◦) → D(k))

(see [17], [2] and [20] for details). We freely use this fact in this paper. Moreover,
we have the following statements.

Proposition 1.1. Let k be a commutative ring, A,B, C, D k-projective k-algebras.
The following hold.

(1) For AU ¦
B ∈ D(A◦ ⊗B), BV ¦

C ∈ D(B◦ ⊗C), CW ¦
D ∈ D(C◦ ⊗D), we have an

isomorphism in D(A◦ ⊗D):

(AU ¦ ¦⊗ L
BV ¦)

¦⊗ L
CW ¦

D
∼= AU ¦ ¦⊗ L

B(V ¦ ¦⊗ L
CW ¦

D).

(2) For AU ¦
B ∈ D(A◦ ⊗B), DV ¦

C ∈ D(D◦ ⊗C), AW ¦
C ∈ D(D◦ ⊗C), we have an

isomorphism in D(B◦ ⊗D):

R Hom¦
A(AU ¦

B ,R Hom¦
C(DV ¦

C , AW ¦
C)) ∼= R Hom¦

C(DV ¦
C ,R Hom¦

A(AU ¦
B , AW ¦

C)).

(3) For AU ¦
B ∈ D(A◦ ⊗B), BV ¦

C ∈ D(B◦ ⊗C), DW ¦
C ∈ D(D◦ ⊗C), we have an

isomorphism in D(D◦ ⊗A):

R Hom¦
C(AU ¦ ¦⊗ L

BV ¦
C , DW ¦

C) ∼= R Hom¦
B(AU ¦

B ,R Hom¦
C(BV ¦

C , DW ¦
C)).

(4) For AU ¦
B ∈ D(A◦ ⊗B), BV ¦

C ∈ D(B◦ ⊗ C), AW ¦
C ∈ D(A◦ ⊗ C), we have an

isomorphism in D(k):

R Hom¦
A◦⊗C(AU ¦ ¦⊗ L

BV ¦
C , AW ¦

C) ∼= R Hom¦
A◦⊗B(AU ¦

B ,R Hom¦
C(BV ¦

C , AW ¦
C)).

(5) For AU ¦
B ∈ D(A◦ ⊗ B), BV ¦

C ∈ D(B◦ ⊗ C), AW ¦
C ∈ D(A◦ ⊗ C), we have a

commutative diagram:

HomD(A◦⊗C)(AU ¦ ¦⊗ L
BV ¦

C , AW ¦
C)

∼−→ HomD(A◦⊗B)(AU ¦
B , R Hom¦

C(BV ¦
C , AW ¦

C))
ResC ↓ ↓ ResB

HomD(C)(U
¦ ¦⊗ L

BV ¦
C , W ¦

C)
∼−→ HomD(B)(U

¦
B , R Hom¦

C(BV ¦
C , W ¦

C)),

where all horizontal arrows are isomorphisms induced by 3 and 4. Equiva-
lently, we don’t need to distinguish the adjunction arrows induced by BV ¦

C

(see [10], IV, 7).

Definition 1.2. A complex X ¦ ∈ D(A) is called a perfect complex if X ¦ is iso-
morphic to a complex of Kb(projA) in D(A). We denote by D(A)perf the trian-
gulated full subcategory of D(A) consisting of perfect complexes. A bimodule com-
plex X ¦ ∈ D(B◦⊗kA) is called a biperfect complex if ResA(X ¦) ∈ D(A)perf and if
ResB◦(X ¦) ∈ D(B◦)perf .

For an object C of a triangulated category D, C is called a compact object in D
if HomD(C,−) commutes with arbitrary coproducts on D.
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For a complex X ¦ = (Xi, di), we define the following truncations:

σ≤nX ¦ : . . . → Xn−2 → Xn−1 → Ker dn → 0 → . . . ,

σ′≥nX ¦ : . . . → 0 → Cok dn−1 → Xn+1 → Xn+2 → . . . .

The following characterization of perfect complexes is well known (cf. [16]). For
the convenience of the reader, we give a simple proof.

Proposition 1.3. For X ¦ ∈ D(A), the following are equivalent.
(1) X ¦ is a perfect complex.
(2) X ¦ is a compact object in D(A).

Proof. 1 ⇒ 2. It is trivial, because we have isomorphisms:

HomD(A)(X ¦,−) ∼= R0 Hom¦
A(X ¦,−)

∼= H0(− ¦⊗ L
AR Hom¦

A(X ¦, A)).

2 ⇒ 1. According to [2] or [20], there is a complex P ¦ : . . . → Pn−1 dn−1

−−−→ Pn →
. . . ∈ K(ProjA) such that

(a) P ¦ ∼= X ¦ in D(A),
(b) HomK(A)(P ¦,−) ∼= HomD(A)(P ¦,−).

Consider the complex C ¦ : . . .
0−→ Cok dn−1 0−→ . . ., then it is easy to see that C ¦ =

the coproduct
∐

n∈ZCok dn−1[−n] = the product
∏

n∈ZCok dn−1[−n], that is the
biproduct

⊕
n∈ZCok dn−1[−n] of Cok dn−1[−n]. Since we have isomorphisms in

Mod k:∐
n∈Z

HomK(A)(P ¦,Cok dn−1[−n]) ∼= HomK(A)(P ¦,
⊕

n∈Z
Cok dn−1[−i])

∼=
∏

n∈Z
HomK(A)(P ¦,Cok dn−1[−n]),

it is easy to see HomK(A)(P ¦,Cok dn−1[−n]) = 0 for all but finitely many n ∈ Z.
Then there are m ≤ n such that P ¦ ∼= σ′≥mσ≤nP ¦ and σ′≥mσ≤nP ¦ ∈ Kb(ProjA).
According to [16] Proposition 6.3, we complete the proof. ¤

Definition 1.4. We call a complex X ¦ ∈ D(A) a partial tilting complex if
(a) X ¦ ∈ D(A)perf ,
(b) HomD(A)(X ¦, X ¦[n]) = 0 for all n 6= 0.

Definition 1.5. Let X ¦ ∈ D(A) be a partial tilting complex, and B = EndD(A)(X ¦).
According to [9] Theorem, there exists a unique bimodule complex V ¦ ∈ D(B◦ ⊗A)
up to isomorphism such that

(a) there is an isomorphism φ : X ¦ ∼−→ ResAV ¦ in D(A) such that φf = λB(f)φ
for any f ∈ EndD(A)(X ¦), where λB : B → EndD(A)(V ¦) is the left multi-
plication morphism.

We call V ¦ the associated bimodule complex of X ¦. In this case, the left multiplica-
tion morphism λB : B → R Hom¦

A(V ¦, V ¦) is an isomorphism in D(Be).

Rickard showed that for a tilting complex P ¦ in D(A) with B = EndD(A)(P ¦),
there exists a two-sided tilting complex BT ¦

A ∈ D(B◦ ⊗A) ([17]).

Definition 1.6. A bimodule complex BT ¦
A ∈ D(B◦⊗kA) is called a two-sided tilting

complex provided that
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(a) BT ¦
A is a biperfect complex.

(b) There exists a biperfect complex AT∨¦
B such that

(b1) BT ¦ ¦⊗ L
AT∨¦

B
∼= B in D(Be),

(b2) AT∨¦ ¦⊗ L
BT ¦

A
∼= A in D(Ae).

We call AT∨¦
B the inverse of BT ¦

A.

Proposition 1.7 ([17]). For a two-sided tilting complex BT ¦
A ∈ D(B◦ ⊗ A), the

following hold.
(1) We have isomorphisms in D(A◦ ⊗B):

AT∨¦
B
∼= R Hom¦

A(T,A)
∼= R Hom¦

B(T, B).

(2) R Hom¦
A(T ¦,−) ∼= − ¦⊗ L

AT∨¦ : D∗(A) → D∗(B) is a triangle equivalence,

and has R Hom¦
B(T∨¦,−) ∼= − ¦⊗ L

BT ¦ : D∗(B) → D∗(A) as a quasi-inverse,
where ∗ = nothing, +,−,b.

In the case of k-projective k-algebras, by [17] we have also the following result
(see also Lemma 2.6).

Proposition 1.8. For a bimodule complex BT ¦
A, the following are equivalent.

(1) BT ¦
A is a two-sided tilting complex.

(2) BT ¦
A satisfies that

(a) BT ¦
A is a biperfect complex,

(b) the right multiplication morphism ρA : A → R Hom¦
B(T ¦, T ¦) is an iso-

morphism in D(Ae),
(c) the left multiplication morphism λB : B → R Hom¦

A(T ¦, T ¦) is an iso-
morphism in D(Be).

2. Recollement and Partial Tilting Complexes

In this section, we study recollements of a derived category D(A) induced by a
partial tilting complex P ¦

A and induced by an idempotent e of A. Throughout this
section, all algebras are k-projective algebras over a commutative ring k.

Definition 2.1. Let D,D′′ be triangulated categories, and j∗ : D → D′′ a ∂-
functor. If j∗ has a fully faithful right (resp., left) adjoint j∗ : D′′ → D (resp.,
j! : D′′ → D), then {D,D′′; j∗, j∗} (resp., {D,D′′; j!, j∗}) is called a localization
(resp., colocalization) of D. Moreover, if j∗ has a fully faithful right adjoint j∗ :
D′′ → D and a fully faithful left adjoint j! : D′′ → D, then {D,D′′; j!, j∗, j∗} is
called a bilocalization of D.

For full subcategories U and V of D, (U ,V) is called a stable t-structure in D
provided that

(a) U and V are stable for translations.
(b) HomD(U ,V) = 0.
(c) For every X ∈ D, there exists a triangle U → X → V → U [1] with U ∈ U

and V ∈ V.

We have the following properties.
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Proposition 2.2 ([1], cf. [11]). Let (U ,V) be a stable t-structure in a triangulated
category D, and let U → X → V → U [1] and U ′ → X ′ → V ′ → U ′[1] be triangles
in D with U,U ′ ∈ U and V, V ′ ∈ V. For any morphism f : X → X ′, there exist
a unique fU : U → U ′ and a unique fV : V → V ′ which induce a morphism of
triangles:

U −−−−→ X −−−−→ V −−−−→ U [1]

fU

y
yf

yfV

yfU [1]

U ′ −−−−→ X ′ −−−−→ V ′ −−−−→ U ′[1].
In particular, for any X ∈ D, the above U and V are uniquely determined up to
isomorphism.

Proposition 2.3 ([11]). The following hold.
(1) If {D,D′′; j∗, j∗} (resp., {D,D′′; j!, j∗}) is a localization (resp., a colocaliza-

tion) of D, then (Ker j∗, Im j∗) (resp., (Im j!,Ker j∗)) is a stable t-structure.
In this case, the adjunction arrow 1D → j∗j∗ (resp., j!j

∗ → 1D) implies
triangles

U → X → j∗j∗X → U [1]

(resp., j!j
∗X → X → V → X[1])

with U ∈ Ker j∗, j∗j∗X ∈ Im j∗ (resp., j!j
∗X ∈ Im j!, V ∈ Ker j∗) for all

X ∈ D.
(2) If {D,D′′; j!, j∗, j∗} is a bilocalization of D, then the canonical embedding

i∗ : Ker j∗ → D has a right adjoint i! : D → Ker j∗and a left adjoint
i∗ : D → Ker j∗ such that {Ker j∗,D,D′′; i∗, i∗, i!, j!, j∗, j∗} is a recollement
in the sense of [1].

(3) If {D′,D,D′′; i∗, i∗, i!, j!, j∗, j∗} is a recollement, then {D,D′′; j!, j∗, j∗} is
a bilocalization of D.

Proposition 2.4 ([1]). Let {D′,D,D′′; i∗, i∗, i!, j!, j∗, j∗} be a recollement, then
(Im i∗, Im j∗) and (Im j!, Im i∗) are stable t-structures in D. Moreover, the adjunc-
tion arrows α : i∗i! → 1D, β : 1D → j∗j∗, γ : j!j

∗ → 1D, δ : 1D → i∗i∗ imply
triangles in D:

i∗i!X
αX−−→ X

βX−−→ j∗j∗X → i∗i!X[1],

j!j
∗X

γX−−→ X
δX−−→ i∗i∗X → j!j

∗X[1],
for any X ∈ D.

By Definition 2.1, we have the following properties.

Corollary 2.5. Under the condition of Proposition 2.4, the following hold for X ∈
D.

(1) i∗i!X ∼= X (resp., X ∼= j∗j∗X) in D if and only if αX (resp., βX) is an
isomorphism.

(2) j!j
∗X ∼= X (resp., X ∼= i∗i∗X) in D if and only if γX (resp., δX) is an

isomorphism.

For X ∈ Mod C◦ ⊗A, Q ∈ Mod B◦ ⊗A, let

τQ(X) : X ⊗A HomA(Q,A) → HomA(Q,X)

be the morphism in Mod C◦⊗B defined by (x⊗f 7→ (q 7→ xf(q))) for x ∈ X, q ∈ Q,
f ∈ HomA(Q,A). We have the following functorial isomorphism of derived functors.
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Lemma 2.6. Let k be a commutative ring, A, B, C k-projective k-algebras, BV ¦
A ∈

D(B◦⊗A) with ResAV ¦ ∈ D(A)perf , and V ?¦ = R Hom¦
A(V ¦, A) ∈ D(A◦⊗B). Then

we have the (∂-functorial) isomorphism:

τV : − ¦⊗ L
AV ?¦ ∼−→ R Hom¦

A(V ¦,−)

as derived functors D(C◦ ⊗A) → D(C◦ ⊗B).

Proof. It is easy to see that we have a ∂-functorial morphism of derived functors
D(C◦ ⊗A) → D(C◦ ⊗B):

τV : − ¦⊗ L
AV ?¦ → R Hom¦

A(V ¦,−).

Let P ¦ ∈ Kb(projA) which has a quasi-isomorphism P ¦ → ResAV ¦. Then we have
a ∂-functorial isomorphism of ∂-functors D(C◦ ⊗A) → D(C◦)

τP : − ¦⊗A Hom¦
A(P ¦, A) ∼−→ Hom¦

A(P ¦,−).

Since ResC◦ ◦ τV
∼= τP and H¦(τP ) is an isomorphism, τV is a ∂-functorial isomor-

phism. ¤

Concerning adjoints of the derived functor − ¦⊗ L
AV ?¦, by direct calculation we

have the following properties.

Lemma 2.7. Let k be a commutative ring, A, B, C k-projective k-algebras, BV ¦
A ∈

D(B◦ ⊗ A) with ResAV ¦ ∈ D(A)perf , and AV ?¦
B = R Hom¦

A(V ¦, A) ∈ D(A◦ ⊗ B).
Then the following hold.

(1) τV induces the adjoint isomorphism:

Φ : HomD(C◦⊗B)(−, ?
¦⊗ L

AV ?¦) ∼−→ HomD(C◦⊗A)(−
¦⊗ L

BV ¦, ?).

Therefore, we get the morphism εV : V ?¦ ¦⊗ L
BV ¦ → A in D(Ae) (resp.,

ϑV : B → V ¦ ¦⊗ L
AV ?¦ in D(Be)) from the adjunction arrow of A ∈ D(Ae)

(resp., B ∈ D(Be)).

(2) In the adjoint isomorphism of 1, the adjunction arrow − ¦⊗ L
AV ?¦ ¦⊗ L

BV ¦ →
1D(C◦⊗A) (resp., 1D(C◦⊗B) → − ¦⊗ L

BV ¦ ¦⊗ L
AV ?¦) is isomorphic to − ¦⊗ L

AεV

(resp., − ¦⊗ L
BϑV ).

(3) In the adjoint isomorphism:

HomD(C◦⊗A)(−,R Hom¦
B(V ?¦, ?)) ∼−→ HomD(C◦⊗B)(−

¦⊗ L
AV ?¦, ?),

the adjunction arrow 1D(C◦⊗A) → R Hom¦
B(V ?¦,− ¦⊗ L

AV ?¦) (resp.,

R Hom¦
B(V ?¦,−)

¦⊗ L
AV ?¦ → 1D(C◦⊗B)) is isomorphic to R Hom¦

A(εV ,−)
(resp., R Hom¦

B(ϑV ,−)).

Let A, B be k-projective algebras over a commutative ring k. For a partial tilting
complex P ¦ ∈ D(A) with B ∼= EndD(A)(P ¦), let BV ¦

A be the associated bimodule
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complex of P ¦. By Lemma 2.6, we can take

jV ! = − ¦⊗ L
BV ¦ : D(B) → D(A),

j∗V = − ¦⊗ L
AV ?¦ ∼= R Hom¦

A(V ¦,−) : D(A) → D(B),

jV ∗ = R Hom¦
B(V ?¦,−) : D(B) → D(A).

By Lemma 2.7, we get the triangle ξV in D(Ae):

V ?¦ ¦⊗ L
BV ¦ εV−−→ A

ηV−−→ ∆¦
A(V ¦) → V ?¦ ¦⊗ L

BV ¦[1].

Let KP be the full subcategory of D(A) consisting of complexes X ¦ such that
HomD(A)(P ¦, X ¦[i]) = 0 for all i ∈ Z.

Theorem 2.8. Let A, B be k-projective algebras over a commutative ring k, P ¦ ∈
D(A) a partial tilting complex with B ∼= EndD(A)(P ¦), and let BV ¦

A be the associated
bimodule complex of P ¦. Take

i∗V = − ¦⊗ L
A∆¦

A(V ¦) : D(A) → KP , jV ! = − ¦⊗ L
BV ¦ : D(B) → D(A),

iV ∗ = the embedding : KP → D(A), j∗V = − ¦⊗ L
AV ?¦ : D(A) → D(B),

i!V = R Hom¦
A(∆¦

A(V ¦),−) : D(A) → KP , jV ∗ = R Hom¦
B(V ?¦,−) : D(B) → D(A),

then {KP ,D(A),D(B); i∗V , iV ∗, i!V , jV !, j
∗
V , jV ∗}:

KP

←
À D(A)

←
À D(B)

is a recollement.

Proof. Since it is easy to see that τV (V ¦) ◦ ϑV is the left multiplication morphism

B → R Hom¦
A(V ¦, V ¦), by the remark of Definition 1.5, ϑV : B → V ¦ ¦⊗ L

AV ?¦ is
an isomorphism in D(Be). By Lemma 2.7, {D(A),D(B); jV !, j

∗
V , jV ∗} is a bilocal-

ization. By Proposition 2.3, there exist i∗V : D(A) → KP , iV ∗ = the embedding
: KP → D(A), i!V : D(A) → KP such that {KP ,D(A),D(B); i∗V , iV ∗, i!V , jV !, j

∗
V , jV ∗}

is a recollement. For X ¦ ∈ D(A), by Lemma 2.7, X ¦ ¦⊗ L
AεV is isomorphic to the

adjunction arrow jV !j
∗
V (X ¦) → X ¦. Then X ¦ ¦⊗L

AηV is isomorphic to the adjunction

arrow X ¦ → iV ∗i∗V (X ¦), and hence we can take i∗V = − ¦⊗L
A∆¦

A(V ¦) by Propositions
2.2, 2.4. Similarly, we can take i!V = R Hom¦

A(∆¦
A(V ¦),−). ¤

In general, the above ∆¦
A(V ¦) and ∆¦

A(e) in Proposition 2.17 are unbounded
complexes. Then, by the following corollary we have unbounded complexes which
are compact objects in KP and in DA/AeA(A). This shows that recollements of
Theorem 2.8 and Proposition 2.17 are out of localizations of triangulated categories
which Neeman treated in [12].

Corollary 2.9. Under the condition Theorem 2.8, the following hold.
(1) KP is closed under coproducts in D(A).

(2) For any X ¦ ∈ D(A)perf , X ¦ ¦⊗ L
A∆¦

A(V ¦) is a compact object in KP .

Proof. 1. Since P ¦ is a compact object in D(A), it is trivial.
2. Since we have an isomorphism:

HomD(A)(i∗V X ¦, Y ¦) ∼= HomD(A)(X ¦, Y ¦)

for any Y ¦ ∈ KP , we have the statement. ¤
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Corollary 2.10. Let A, B be k-projective algebras over a commutative ring k,
P ¦ ∈ D(A) a partial tilting complex with B ∼= EndD(A)(P ¦), and let BV ¦

A be the
associated bimodule complex of P ¦. Then the following hold.

(1) ∆¦
A(V ¦) ∼= ∆¦

A(V ¦)
¦⊗ L

A∆¦
A(V ¦) in D(Ae).

(2) R Hom¦
A(∆¦

A(V ¦),∆¦
A(V ¦)) ∼= ∆¦

A(V ¦) in D(Ae).

Proof. Since ∆¦
A(V ¦)

¦⊗L
AV ?¦[n] ∼= j∗V iV ∗i∗V (A[n]) = 0 for all n, ∆¦

A(V ¦)
¦⊗L

AηV is an
isomorphism in D(Ae). Similarly, since

R Hom¦
A(V ?¦ ¦⊗ L

BV ¦,∆¦
A(V ¦))[n] ∼= R Hom¦

B(V ?¦,∆¦
A(V ¦)

¦⊗ L
AV ?¦)[n]

= 0

for all n, R Hom¦
A(ηV ,∆¦

A(V ¦)) is an isomorphism in D(Ae). ¤

Lemma 2.11. Let D be a triangulated category with coproducts. Then the following
hold.

(1) For morphisms of triangles in D (n ≥ 1):

Ln −−−−→ Mn −−−−→ Nn −−−−→ Ln[1]y
y

y
y

Ln+1 −−−−→ Mn+1 −−−−→ Nn+1 −−−−→ Ln+1[1],

there exists a triangle
∐

Ln → ∐
Ln → L → ∐

Ln[1] such that we have
the following triangle in D:

L → hocolim
−→

Mn → hocolim
−→

Nn → L[1].

(2) For a family of triangles in D: Cn → Xn−1 → Xn → Cn[1] (n ≥ 1), with
X0 = X, there exists a family of triangles in D:

Cn[−1] → Yn−1 → Yn → Cn (n ≥ 1),

with Y0 = 0, such that we have the following triangle in D:

Y → X → hocolim
−→

Xn → Y [1],

where
∐

Yn →
∐

Yn → Y → ∐
Yn[1] is a triangle in D.

Proof. 1. By the assumption, we have a commutative diagram:
∐

Ln −−−−→ ∐
Mn −−−−→ ∐

Nn −−−−→ ∐
Ln[1]y1−shift

y1−shift

∐
Ln −−−−→ ∐

Mn −−−−→ ∐
Nn −−−−→ ∐

Ln[1]

According to [1] 9 lemma, we have the statement.
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2. By the octahedral axiom, we have a commutative diagram:

Cn Cny
y

Yn−1 −−−−→ X −−−−→ Xn−1 −−−−→ Yn−1[1]y
∥∥∥

y
y

Yn −−−−→ X −−−−→ Xn −−−−→ Yn[1]y
y

Cn[1] Cn[1],

where all lines are triangles in D. By 1, we have the statement. ¤

For an object M in an additive category B, we denote by AddM (resp., addM)
the full subcategory of B consisting of objects which are isomorphic to summands
of coproducts (resp., finite coproducts) of copies of M .

Definition 2.12. Let A be a k-projective algebra over a commutative ring k, and
P ¦ ∈ D(A) a partial tilting complex. For X ¦ ∈ D−(A), there exists an integer r
such that HomD(A)(P ¦, X ¦[r + i]) = 0 for all i > 0. Let X ¦

0 = X ¦. For n ≥ 1, by
induction we construct a triangle:

P ¦
n[n− r − 1]

gn−→ X ¦
n−1

hn−−→ X ¦
n → P ¦

n[n− r]

as follows. If HomD(A)(P ¦, X ¦
n−1[r − n + 1]) = 0, then we set P ¦

n = 0. Otherwise,
we take P ¦

n ∈ AddP ¦ and a morphism g′n : P ¦
n → X ¦

n−1[r − n + 1] such that
HomD(A)(P ¦, g′n) is an epimorphism, and let gn = g′n[n − r − 1]. By Lemma 2.11,
we have triangles:

P ¦
n[n− r − 2] → Y ¦

n−1 → Y ¦
n → P ¦

n[n− r − 1]

and Y ¦
0 = 0. Then we define ∇¦

∞(P ¦, X ¦) and ∆¦
∞(P ¦, X ¦) to be the complex Y of

Lemma 2.11 (2) and hocolim
−→

X ¦
n, respectively. Moreover, we have a triangle:

∇¦
∞(P ¦, X ¦) → X ¦ → ∆¦

∞(P ¦, X ¦) → ∇¦
∞(P ¦, X ¦)[1].

Lemma 2.13. Let A, B be k-projective algebras over a commutative ring k, P ¦ ∈
D(A) a partial tilting complex with B ∼= EndD(A)(P ¦), and BV ¦

A the associated
bimodule complex of P ¦. For X ¦ ∈ D−(A), we have an isomorphism of triangles in
D(A):

jV !j
∗
V X ¦ −−−−→ X ¦ −−−−→ iV ∗i∗V X ¦ −−−−→ jV !j

∗
V X ¦[1]yo

∥∥∥
yo

yo
∇¦
∞(P ¦, X ¦) −−−−→ X ¦ −−−−→ ∆¦

∞(P ¦, X ¦) −−−−→ ∇¦
∞(P ¦, X ¦)[1].

Proof. By the construction, we have HomD(A)(P ¦,∆¦
∞(P ¦, X ¦)[i]) = 0 for all i,

and then ∆¦
∞(P ¦, X ¦) ∈ Im iV ∗ (see Lemma 4.5). Since jV ! is fully faithful and

P ¦ ∈ Im jV !, it is easy to see Y ¦
n ∈ Im jV !. Then ∇¦

∞(P ¦, X ¦) ∈ Im jV !, because jV !

commutes with coproducts. By Proposition 2.2, we complete the proof. ¤
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Definition 2.14. Let A be a k-projective algebra over a commutative ring k, and
P ¦ ∈ D(A) a partial tilting complex. Given X ¦ ∈ D(A), for n ≥ 0, we have a
triangle:

∇¦
∞(P ¦, σ≤nX ¦) → σ≤nX ¦ → ∆¦

∞(P ¦, σ≤nX ¦) → ∇¦
∞(P ¦, σ≤nX ¦)[1].

According to Lemma 2.13 and Proposition 2.2, for n ≥ 0 we have a morphism of
triangles:

∇¦
∞(P ¦, σ≤nX¦) → σ≤nX¦ → ∆¦

∞(P ¦, σ≤nX¦) → ∇¦
∞(P ¦, σ≤nX¦)[1]

↓ ↓ ↓ ↓
∇¦
∞(P ¦, σ≤n+1X¦) → σ≤n+1X¦ → ∆¦

∞(P ¦, σ≤n+1X¦) → ∇¦
∞(P ¦, σ≤n+1X¦)[1].

Then we define ∇¦
∞(P ¦, X ¦) and ∆¦

∞(P ¦, X ¦) to be the complex L of Lemma 2.11
(1) and hocolim

−→
∆¦
∞(P ¦, σ≤nX ¦), respectively. Moreover, we have a triangle:

∇¦
∞(P ¦, X ¦) → X ¦ → ∆¦

∞(P ¦, X ¦) → ∇¦
∞(P ¦, X ¦)[1],

because X ¦ ∼= hocolim
−→

σ≤nX ¦.

Proposition 2.15. Let A, B be k-projective algebras over a commutative ring k,
P ¦ ∈ D(A) a partial tilting complex with B ∼= EndD(A)(P ¦), and BV ¦

A the associated
bimodule complex of P ¦. For X ¦ ∈ D(A), we have an isomorphism of triangles in
D(A):

jV !j
∗
V X ¦ −−−−→ X ¦ −−−−→ iV ∗i∗V X ¦ −−−−→ jV !j

∗
V X ¦[1]yo

∥∥∥
yo

yo
∇¦
∞(P ¦, X ¦) −−−−→ X ¦ −−−−→ ∆¦

∞(P ¦, X ¦) −−−−→ ∇¦
∞(P ¦, X ¦)[1].

Proof. By Lemma 2.13, ∇¦
∞(P ¦, σ≤nX ¦) ∈ Im jV ! and ∆¦

∞(P ¦, σ≤nX ¦) ∈ Im iV ∗.
Since P ¦ is a perfect complex, HomD(A)(P ¦,−) commutes with coproducts. Then
we have ∆¦

∞(P ¦, X ¦) ∈ Im iV ∗. We have also ∇¦
∞(P ¦, X ¦) ∈ Im jV !, because jV ! is

fully faithful and commutes with coproducts. By Proposition 2.2, we complete the
proof. ¤
Corollary 2.16. Let A, B be k-projective algebras over a commutative ring k,
P ¦ ∈ D(A) a partial tilting complex with B ∼= EndD(A)(P ¦), and BV ¦

A the associated
bimodule complex of P ¦. For X ¦ ∈ D(A), we have isomorphisms in D(A):

X ¦ ¦⊗ L
AV ?¦ ¦⊗ L

BV ¦ ∼= ∇¦
∞(P ¦, X ¦),

X ¦ ¦⊗ L
A∆¦

A(V ¦) ∼= ∆¦
∞(P ¦, X ¦).

Proof. By Theorem 2.8 and Proposition 2.15, we complete the proof. ¤
For an idempotent e of a ring A, by HomA(eA,A) ∼= Ae, we have

je
A! = − ¦⊗ L

eAeeA : D(eAe) → D(A),

je∗
A = −⊗A Ae ∼= HomA(eA,−) : D(A) → D(eAe),

je
A∗ = R Hom¦

eAe(Ae,−) : D(eAe) → D(A).

And we also get the triangle ξe in D(Ae):

Ae
¦⊗ L

eAeeA
εe−→ A

ηe−→ ∆¦
A(e) → Ae

¦⊗ L
eAeeA[1].

Throughout this paper, we identify Mod A/AeA with the full subcategory of Mod A
consisting of A-modules M such that HomA(eA,M) = 0. We denote by D∗A/AeA(A)
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the full subcategory of D∗(A) consisting of complexes whose cohomologies are in
Mod A/AeA, where ∗ = nothing, +,−,b. According to Theorem 2.8, we have the
following.

Proposition 2.17. Let A be a k-projective algebra over a commutative ring k, e
an idempotent of A, and let

ie∗A = − ¦⊗ L
A∆¦

A(e) : D(A) → DA/AeA(A), je
A! = − ¦⊗ L

eAeeA : D(eAe) → D(A),

ieA∗ = the embedding : DA/AeA(A) → D(A), je∗
A = −⊗A Ae : D(A) → D(eAe),

ie!A =R Hom¦
A(∆¦

A(e),−) :D(A) → DA/AeA(A), je
A∗=R Hom¦

eAe(Ae,−) :D(eAe) → D(A).

Then {DA/AeA(A),D(A),D(eAe); ie∗A , ieA∗, i
e!
A, je

A!, j
e∗
A , je

A∗} is a recollement.

Remark 2.18. According to Proposition 1.1 and Lemma 2.7, it is easy to see that
{DC◦⊗A/AeA(C◦ ⊗ A),D(C◦ ⊗ A),D(C◦ ⊗ eAe); ie∗A , ieA∗, i

e!
A, je

A!, j
e∗
A , je

A∗} is also a
recollement for any k-projective k-algebra C.

Corollary 2.19. Let A be a k-projective algebra over a commutative ring k, and e
an idempotent of A, then the following hold.

(1) ∆¦
A(e)

¦⊗ L
A∆¦

A(e) ∼= ∆¦
A(e) in D(Ae)

(2) R Hom¦
A(∆¦

A(e),∆¦
A(e)) ∼= ∆¦

A(e) in D(Ae)
(3) We have the following isomorphisms in Mod Ae:

A/AeA ∼= EndD(A)(∆¦
A(e)) ∼= H0(∆¦

A(e)).

Moreover, the first isomorphism is a ring isomorphism.

Proof. 1, 2. By Corollary 2.10.
3. Applying HomD(A)(−,∆¦

A(e)) to ξe, we have an isomorphism in Mod Ae:

HomD(A)(∆¦
A(e),∆¦

A(e)) ∼= HomD(A)(A,∆¦
A(e)),

because HomD(A)(Ae
¦⊗ L

eAeeA,∆¦
A(e)[n]) ∼= HomD(A)(je

A!j
e∗
A (A), ieA∗i

e!
A(A)[n]) = 0

for all n ∈ Z by Proposition 2.3, 1. Applying HomD(A)(A,−) to ξe, we have an
isomorphism between exact sequences in Mod Ae:

HomD(A)(A, Ae
¦⊗ L

eAeeA) → HomD(A)(A, A) → HomD(A)(A, ∆¦
A(e)) → 0

↓ o ↓ o ↓ o
Ae⊗eAe eA −→ A −→ A/AeA → 0.

Consider the inverse of HomD(A)(∆¦
A(e),∆¦

A(e)) ∼−→ HomD(A)(A,∆¦
A(e)), then it is

easy to see that HomD(A)(A,A) → HomD(A)(A,∆¦
A(e)) → HomD(A)(∆¦

A(e),∆¦
A(e))

is a ring morphism. ¤

Remark 2.20. It is not hard to see that the above triangle ξe also play the same
role in the left module version of Corollary 2.19. Then we have also

(1) R Hom¦
A◦(∆

¦
A(e),∆¦

A(e)) ∼= ∆¦
A(e) in D(Ae)

(2) We have a ring isomorphism (A/AeA)◦ ∼= EndD(A◦)(∆¦
A(e)).

3. Equivalences between Recollements

In this section, we study triangle equivalences between recollements induced by
idempotents.
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Definition 3.1. Let {Dn,D′′n; jn∗, j∗n} (resp., {Dn,D′′n; jn!, j
∗
n, jn∗}) be a colocaliza-

tion (resp., a bilocalization) of Dn (n = 1, 2). If there are triangle equivalences
F : D1 → D2, F ′′ : D′′1 → D′′2 such that all squares are commutative up to (∂-
functorial) isomorphism in the diagram:

D1 ¿ D′′1 D1

←
À D′′1

F ↓ ↓ F ′′ (resp., F ↓ ↓ F ′′ ),

D2 ¿ D′′2 D2

←
À D′′2

then we say that a colocalization {D1,D′′1 ; jn∗, j∗1} (resp., a bilocalization {D1,D′′1 ;
j1!, j

∗
1 , j1∗}) is triangle equivalent to a colocalization {D2,D′′2 ; jn∗, j∗2} (resp., a bilo-

calization {D2,D′′2 ; jn!, j
∗
2 , j2∗}).

For recollements {D′n,Dn,D′′n; i∗n, in∗, i!n, jn!, j
∗
n, jn∗} (n = 1, 2), if there are tri-

angle equivalences F ′ : D′1 → D′2, F : D1 → D2, F ′′ : D′′1 → D′′2 such that all
squares are commutative up to (∂-functorial) isomorphism in the diagram:

D′1
←
À D1

←
À D′′1

F ′ ↓ F ↓ ↓ F ′′

D′2
←
À D2

←
À D′′2 ,

then we say that a recollement {D′1,D1,D′′1 ; i∗1, i1∗, i
!
1, j1!, j

∗
1 , j1∗} is triangle equiva-

lent to a recollement {D′2,D2,D′′2 ; i∗2, i2∗, i
!
2, j2!, j

∗
2 , j2∗}.

We simply write a localization {D,D′′}, etc. for a localization {D,D′′; j∗, j∗},
etc. when we don’t confuse them. Parshall and Scott showed the following.

Proposition 3.2 ([14]). Let {D′n,Dn,D′′n} be recollements (n = 1, 2). If triangle
equivalences F : D1 → D2, F ′′ : D′′1 → D′′2 induce that a bilocalization {D1,D′′1} is
triangle equivalent to a bilocalization {D2,D′′2}, then there exists a unique triangle
equivalence F ′ : D′1 → D′2 up to isomorphism such that F ′, F, F ′′ induce that a
recollement {D′1,D1,D′′1} is triangle equivalent to a recollement {D′2,D2,D′′2}.

Lemma 3.3. Let A be a k-projective algebra over a commutative ring k, and e an
idempotent of A. For X ¦ ∈ D(A)perf , the following are equivalent.

(1) X ¦ ∼= P ¦ in D(A) for some P ¦ ∈ Kb(add eA).
(2) je

A!j
e∗
A (X ¦) ∼= X ¦ in D(A).

(3) γX is an isomorphism, where γ : je
A!j

e∗
A → 1D(A) is the adjunction arrow.

Proof. 1 ⇒ 2. Since je
A!j

e∗
A (P ) ∼= P in Mod A for any P ∈ add eA, it is trivial.

2 ⇔ 3. By Corollary 2.5.
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3 ⇒ 1. Let {Y ¦
i }i∈I be a family of complexes of D(A). By Proposition 1.3, we

have isomorphisms:
∐

i∈I

HomD(eAe)(je∗
A (X ¦), je∗

A (Y ¦
i )) ∼=

∐

i∈I

HomD(A)(je
A!j

e∗
A (X ¦), Y ¦

i )

∼=
∐

i∈I

HomD(A)(X ¦, Y ¦
i )

∼= HomD(A)(X ¦,
∐

i∈I

Y ¦
i )

∼= HomD(A)(je
A!j

e∗
A (X ¦),

∐

i∈I

Y ¦
i )

∼= HomD(eAe)(je∗
A (X ¦), je∗

A (
∐

i∈I

Y ¦
i ))

∼= HomD(eAe)(je∗
A (X ¦),

∐

i∈I

je∗
A (Y ¦

i )).

Since any complex Z ¦ of D(eAe) is isomorphic to je∗
A (Y ¦) for some Y ¦ ∈ D(A), by

Proposition 1.3 the above isomorphisms imply that je∗
A (X ¦) is a perfect complex of

D(eAe). Therefore, je
A!j

e∗
A (X ¦) is isomorphic to P ¦ for some P ¦ ∈ Kb(add eA). ¤

Lemma 3.4. Let A, B be k-projective algebras over a commutative ring k, and
e, f idempotents of A, B, respectively. For X ¦, Y ¦ ∈ D(B◦ ⊗ A), we have an
isomorphism in D((fBf)e):

fB ⊗B R Hom¦
A(X ¦, Y ¦)⊗B Bf ∼= R Hom¦

A(fX ¦, fY ¦).

Proof. First, by Proposition 1.1, 2, we have isomorphisms in D((fBf)◦ ⊗B):

fB ⊗B R Hom¦
A(X ¦, Y ¦) ∼= HomB(Bf,R Hom¦

A(X ¦, Y ¦))
∼= R Hom¦

A(X ¦,HomB(Bf, Y ¦))
∼= R Hom¦

A(X ¦, fY ¦).

Then we have isomorphisms in D((fBf)e):

fB ⊗B R Hom¦
A(X ¦, Y ¦)⊗B Bf ∼= R Hom¦

A(X ¦, fY ¦)⊗B Bf

∼= HomB(fB,R Hom¦
A(X ¦, fY ¦))

∼= R Hom¦
A(fX ¦, fY ¦).

¤

Theorem 3.5. Let A,B be k-projective algebras over a commutative ring k, and
e, f idempotents of A, B, respectively. Then the following are equivalent.

(1) The colocalization {D(A),D(eAe); je
A!, j

e∗
A } is triangle equivalent to the colo-

calization {D(B),D(fBf); jf
B!, j

f∗
B }.

(2) There is a tilting complex P ¦ ∈ Kb(projA) such that P ¦ = P ¦
1 ⊕ P ¦

2 in
Kb(projA) satisfying
(a) B ∼= EndD(A)(P ¦),
(b) under the isomorphism of (a), f ∈ B corresponds to the canonical
morphism P ¦ → P ¦

1 → P ¦ ∈ EndD(A)(P ¦),
(c) P ¦

1 ∈ Kb(add eA), and je∗
A (P ¦

1) is a tilting complex for eAe.
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(3) The recollement {DA/AeA(A),D(A),D(eAe)} is triangle equivalent to the
recollement {DB/BfB(B),D(B),D(fBf)}.

Proof. 1 ⇒ 2. Let G : D(B) → D(A), G′′ : D(fBf) → D(eAe) be triangle equiva-
lences such that

D(B) ¿ D(fBf)
G ↓ ↓ G′′

D(A) ¿ D(eAe)

is commutative up to isomorphism. Then G(B) and G′′(fBf) are tilting complexes
for A and for eAe with B ∼= EndD(A)(G(B)), fBf ∼= EndD(eAe)(G′′(B)), respec-
tively. Considering G(B) = G(fB)⊕G((1−f)B), by the above commutativity, we
have isomorphisms:

G(fB) ∼= Gjf
B!(fBf)

∼= je
A!G

′′(fBf)
∼= je

A!G
′′jf∗

B (fB)
∼= je

A!j
e∗
A G(fB),

je∗
A G(fB) ∼= G′′jf∗

B (fB)
∼= G′′(fBf).

By Lemma 3.3, G(fB) is isomorphic to a complex of Kb(add eA), and je∗
A G(fB) is

a tilting complex for eAe.
2 ⇒ 3. Let BT ¦

A be a two-sided tilting complex which is induced by P ¦
A. By

the assumption, ResA(fT ¦) ∼= P ¦
1 in D(A). By Lemma 3.3, γfT : je

A!j
e∗
A (fT ¦) ∼−→

fT ¦ is an isomorphism in D(A). By Remark 2.18, Proposition 1.1, 5, we have

fT ¦e
¦⊗ L

eAeeA
∼= fT ¦ in D((fBf)◦ ⊗ A). By Proposition 1.8, Lemma 3.4, we have

isomorphisms in D((fBf)e):

fBf ∼= R Hom¦
A(fT ¦, fT ¦)

∼= R Hom¦
A(fT ¦e

¦⊗ L
eAeeA, fT ¦e

¦⊗ L
eAeeA)

∼= R Hom¦
A(fT ¦e, fT ¦e

¦⊗ L
eAeeAe)

∼= R Hom¦
eAe(fT ¦e, fT ¦e).

By taking cohomology, we have

fBf ∼= HomD(eAe)(fT ¦e, fT ¦e).

By the assumption, fT ¦e ∼= je∗
A (fT ¦) ∼= je∗

A (P ¦
1) is a tilting complex for eAe. Since

it is easy to see the above isomorphism is induced by the left multiplication, by [17]
Lemma 3.2, [9] Theorem, fT ¦e is a two-sided tilting complex in D((fBf)◦ ⊗ eAe).
Let

F = R Hom¦
A(T ¦,−) : D(B◦ ⊗A) → D(B◦ ⊗B),

F ′′ = R Hom¦
eAe(fT ¦e,−) : D(B◦ ⊗ eAe) → D(B◦ ⊗ fBf),

G = − ¦⊗ L
BT ¦ : D(B◦ ⊗B) → D(B◦ ⊗A),

G′′ = − ¦⊗ L
fBffT ¦e : D(B◦ ⊗ eAe) → D(B◦ ⊗ fBf).

Using the same symbols, consider a triangle equivalence between colocalizations
{D(B◦ ⊗A),D(B◦ ⊗ eAe); je

A!, j
e∗
A } and {D(B◦ ⊗B),D(B◦ ⊗ fBf); jf

B!, j
f∗
B }. And
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we use the same symbols

F = R Hom¦
A(T ¦,−) : D(A) → D(B), F ′′ = R Hom¦

eAe(fT ¦e,−) : D(eAe) → D(fBf),

G = − ¦⊗ L
BT ¦ : D(B) → D(A), G′′ = − ¦⊗ L

fBffT ¦e : D(eAe) → D(fBf).

For any X ¦ ∈ D(B◦ ⊗ A) (resp., X ¦ ∈ D(A)), by Proposition 1.1, 3, we have
isomorphisms in D(B◦ ⊗ fBf) (resp., D(fBf)):

jf∗
B F (X ¦) ∼= R Hom¦

B(fB,R Hom¦
A(T ¦, X ¦))

∼= R Hom¦
A(fT ¦, X ¦)

∼= R Hom¦
A(je

A!j
e∗
A (fT ¦), X ¦)

∼= R Hom¦
eAe(j

e∗
A (fT ¦), je∗

A (X ¦))
∼= F ′′je∗

A (X ¦).

Since G, G′′ are quasi-inverses of F , F ′′, respectively, for B ∈ D(B◦ ⊗ B) we have
isomorphisms in D(B◦ ⊗ eAe):

T ¦e ∼= je∗
A G(B)

∼= G′′jf∗
B (B)

∼= Bf
¦⊗ L

fBffT ¦e.

Therefore, for any Y ¦ ∈ D(eAe), we have isomorphisms in D(B):

jf
B∗F

′′(Y ¦) ∼= R Hom¦
fBf (Bf,R Hom¦

eAe(fT ¦e, Y ¦))

∼= R Hom¦
B(Bf

¦⊗ L
fBffT ¦e, Y ¦)

∼= R Hom¦
B(T ¦e, Y ¦)

∼= R Hom¦
B(je∗

A (T ¦), Y ¦)
∼= R Hom¦

B(T ¦, je
A∗(Y

¦))
∼= Fje

A∗(Y
¦).

For any Z¦ ∈ D(fBf), we have isomorphisms in D(A):

je
A!G

′′(Z¦) = Z¦ ¦⊗ L
fBffT ¦e

¦⊗ L
eAeeA

∼= Z¦ ¦⊗ L
fBffT ¦

∼= Z¦ ¦⊗ L
fBffB ⊗B T ¦

∼= G′′jf
B!(Z

¦).

Since F , F ′′ are quasi-inverses of G, G′′, respectively, we have jf
B!F

′′ ∼= Fje
A!. By

Proposition 3.2, we have the statement.
3 ⇒ 1. It is trivial. ¤

Definition 3.6. Let A be a k-projective algebra over a commutative ring k, and e
an idempotent of A. We call a tilting complex P ¦ ∈ Kb(projA) a recollement tilting
complex related to an idempotent e of A if P ¦ satisfies the condition of Theorem
3.5, 2. In this case, we call an idempotent f ∈ B an idempotent corresponding to
e.
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We see the following symmetric properties of a two-sided tilting complex which
is induced by a recollement tilting complex. We will call the following two-sided
tilting complex a two-sided recollement tilting complex BT ¦

A related to idempotents
e ∈ A, f ∈ B.

Corollary 3.7. Let A,B be k-projective algebras over a commutative ring k, and
e, f idempotents of A, B, respectively. Let BT ¦

A be a two-sided tilting complex such
that

(a) fT ¦e ∈ D((fBf)◦ ⊗ eAe) is a two-sided tilting complex,

(b) fT ¦e
¦⊗ L

eAeeA
∼= fT ¦ in D((fBf)◦ ⊗A).

Then the following hold.

(1) Bf
¦⊗ L

fBffT ¦e ∼= T ¦e in D(B◦ ⊗ eAe).
(2) eT∨¦f is the inverse of fT ¦e, where T∨¦ is the inverse of T ¦.

(3) Ae
¦⊗ L

eAeeT
∨¦f ∼= T∨¦f in D(A◦ ⊗ fBf).

(4) eT∨¦f
¦⊗ L

fBffB ∼= eT∨¦ in D((eAe)◦ ⊗B).

Proof. Here we use the same symbols in the proof 2 ⇒ 3 of Theorem 3.5. It
is easy to see that F and F ′′ induce a triangle equivalence between bilocalizations
{D(B◦⊗A),D(B◦⊗eAe); je

A!, j
e∗
A , je

A∗} and {D(B◦⊗B),D(B◦⊗fBf); jf
B!, j

f∗
B , jf

B∗}.
By the proof of Theorem 3.5, we get the statement 1, and jf∗

B F ∼= F ′′je∗
A , jf

B!F
′′ ∼=

Fje
A! and jf

B∗F
′′ ∼= Fje

A∗. Then we have isomorphisms jf∗
B Fje

A!
∼= F ′′je∗

A je
A!
∼= F ′′.

Since − ¦⊗ L
AT∨¦

B
∼= F , we have isomorphisms eT∨¦f ∼= R Hom¦

eAe(fT ¦e, eAe) in

D((eAe)◦ ⊗ fBf), and − ¦⊗ L
eAeeT

∨¦f ∼= F ′′. This means that eT∨¦f is the inverse
of a two-sided tilting complex fT ¦e. Similarly, jf∗

B F ∼= F ′′je∗
A and jf

B!F
′′ ∼= Fje

A!

imply the statements 3 and 4, respectively. ¤

Corollary 3.8. Let A,B be k-projective algebras over a commutative ring k, and
e, f idempotents of A, B, respectively. For a two-sided recollement tilting complex

BT ¦
A related to idempotents e, f , we have an isomorphism between triangles T ¦ ¦⊗L

Aξe

and ξf

¦⊗ L
BT ¦ in D(B◦ ⊗A):

T ¦e
¦⊗ L

eAeeA −−−−→ T ¦ −−−−→ T ¦ ¦⊗ L
A∆¦

A(e) −−−−→ T ¦e
¦⊗ L

eAeeA[1]yo
∥∥∥

yo
yo

Bf
¦⊗ L

fBffT ¦ −−−−→ T ¦ −−−−→ ∆¦
B(f)

¦⊗ L
BT ¦ −−−−→ Bf

¦⊗ L
fBffT ¦[1].

Proof. According to Proposition 3.2, for the triangle equivalence between colocal-
izations in the proof of Corollary 3.7 there exists F ′ : DB◦⊗B/BfB(B◦ ⊗ B) →
DB◦⊗A/AeA(B◦ ⊗A) such that the recollement

{DB◦⊗B/BfB(B◦ ⊗B),D(B◦ ⊗B),D(B◦ ⊗ fBf); if∗B , ifB∗, i
f !
B , jf

B!, j
f∗
B , jf

B∗}
is triangle equivalent to the recollement

{DB◦⊗A/AeA(B◦ ⊗A),D(B◦ ⊗A),D(B◦ ⊗ eAe); ie∗A , ieA∗, i
e!
A, je

A!, j
e∗
A , je

A∗}.
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By Proposition 1.1, Lemma 2.7, the triangle T ¦ ¦⊗L
Aξe is isomorphic to the following

triangle in D(B◦ ⊗A):

je
A!j

e∗
A (T ¦) → T ¦ → ieA∗i

e∗
A (T ¦) → je

A!j
e∗
A (T ¦)[1].

On the other hand, the triangle ξf

¦⊗ L
BT ¦ is isomorphic to the following triangle in

D(B◦ ⊗A):

Fjf
B!j

f∗
B (B) → F (B) → FifB∗i

f∗
B (B) → Fjf

B!j
f∗
B (B)[1].

Since F (B) ∼= T ¦, Fjf
B!j

f∗
B (B) ∼= je

A!F
′′jf∗

B (B) ∼= je
A!j

e∗
A F (B), FifB∗i

f∗
B (B) ∼=

ieA∗F
′if∗B (B) ∼= ieA∗i

e∗
A F (B), by Proposition 2.2, we complete the proof. ¤

Corollary 3.9. Let A,B be k-projective algebras over a commutative ring k, and
e, f idempotents of A, B, respectively. For a two-sided recollement tilting complex
BT ¦

A related to idempotents e, f , the following hold.

(1) T ¦ ¦⊗ L
A∆¦

A(e) ∼= ∆¦
B(f)

¦⊗ L
BT ¦ in D(B◦ ⊗A).

(2) ∆¦
A(e)

¦⊗ L
AT∨¦ ∼= T∨¦ ¦⊗ L

B∆¦
B(f) in D(A◦ ⊗B).

Proof. 1. By Corollary 3.8.
2. We have isomorphisms in D(A◦ ⊗B):

∆¦
A(e)

¦⊗ L
AT∨¦ ∼= T∨¦ ¦⊗ L

BT ¦ ¦⊗ L
A∆¦

A(e)
¦⊗ L

AT∨¦

∼= T∨¦ ¦⊗ L
B∆¦

B(f)
¦⊗ L

BT ¦ ¦⊗ L
AT∨¦

∼= T∨¦ ¦⊗ L
B∆¦

B(f).

¤

Definition 3.10. Let A,B be k-projective algebras over a commutative ring k, and
e, f idempotents of A, B, respectively. For a two-sided recollement tilting complex
BT ¦

A related to idempotents e, f , we define

∆¦
T = T ¦ ¦⊗ L

A∆¦
A(e) ∈ D(B◦ ⊗A), ∆∨¦

T = ∆¦
A(e)

¦⊗ L
AT∨¦ ∈ D(A◦ ⊗B).

Proposition 3.11. Let A,B be k-projective algebras over a commutative ring k,
and e, f idempotents of A, B, respectively. For a two-sided recollement tilting
complex BT ¦

A related to idempotents e, f , let

F ′ = R Hom¦
A(∆¦

T ,−) : DA/AeA(A) → DB/BfB(B),

F = R Hom¦
A(T ¦,−) : D(A) → D(B),

F ′′ = R Hom¦
eAe(fT ¦e,−) : D(eAe) → D(fBf).

Then the following hold.

(1) We have an isomorphism F ′ ∼= − ¦⊗ L
A∆∨¦

T .

(2) A quasi-inverse G′ of F ′ is isomorphic to R Hom¦
B(∆∨¦

T ,−) ∼= − ¦⊗ L
B∆¦

T .
(3) F ′, F , F ′′ induce that the recollement {DA/AeA(A),D(A),D(eAe)} is tri-

angle equivalent to the recollement {DB/BfB(B),D(B),D(fBf)}.
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Proof. According to Proposition 3.2, F ′ exists and satisfies F ′ ∼= if∗B FieA∗ ∼= if !
BFieA∗.

By Proposition 2.17, we have isomorphisms

if∗B FieA∗ ∼= R Hom¦
A(T ¦,−)

¦⊗ L
B∆¦

B(f)

∼= − ¦⊗ L
AT∨¦ ¦⊗ L

B∆¦
B(f),

if !
BFieA∗ ∼= R Hom¦

B(∆¦
B(f),R Hom¦

A(T ¦,−))

∼= R Hom¦
A(∆¦

B(f)
¦⊗ L

AT ¦,−).

Let G = R Hom¦
B(T∨¦,−). Since G′ ∼= ie∗A GifB∗ ∼= ie!BGifB∗, we have isomorphisms

ie∗A GifB∗ ∼= R Hom¦
B(T∨¦,−)

¦⊗ L
A∆¦

A(e)

∼= − ¦⊗ L
BT ¦ ¦⊗ L

A∆¦
A(e),

ie!AGifB∗ ∼= R Hom¦
A(∆¦

A(e),R Hom¦
B(T∨¦,−))

∼= R Hom¦
B(∆¦

A(e)
¦⊗ L

AT∨¦,−).

By Corollary 3.9, we complete the proof. ¤

Corollary 3.12. Under the condition of Proposition 3.11, the following hold.

(1) ResA∆¦
T is a compact object in DA/AeA(A).

(2) ResB◦∆
¦
T is a compact object in D(B/BfB)◦(B◦).

(3) R Hom¦
A(∆¦

T ,−) : D∗A/AeA(A) ∼−→ D∗B/BfB(B) is a triangle equivalence,
where ∗ = nothing, +,−,b.

Proof. 1, 2. By Corollary 2.9, it is trivial.
3. Since for any X ¦ ∈ DA/AeA(A) we have isomorphisms in DB/BfB(B):

F ′(X ¦) = R Hom¦
A(∆¦

T , X ¦)

= R Hom¦
A(T ¦ ¦⊗ L

A∆¦
A(e), X ¦)

∼= R Hom¦
A(T ¦,R Hom¦

A(∆¦
A(e), X ¦))

∼= R Hom¦
A(T ¦, X ¦),

we have Im F ′|D∗
A/AeA

(A) ⊂ D∗B/BfB(B), where ∗ = nothing, +,−,b. Let G′ =
R Hom¦

B(∆∨¦
T ,−), then we have also Im G′|D∗

B/BfB
(B) ⊂ D∗A/AeA(A), where ∗ =

nothing, +,−,b. Since G′ is a quasi-inverse of F ′, we complete the proof. ¤

Proposition 3.13. Let A,B be k-projective algebras over a commutative ring k,
and e, f idempotents of A, B, respectively. For a two-sided recollement tilting
complex BT ¦

A related to idempotents e, f , the following hold.

(1) R Hom¦
A(∆¦

T ,∆¦
T ) ∼= ∆¦

T

¦⊗ L
A∆∨¦

T
∼= ∆¦

B(f) in D(Be).

(2) R Hom¦
B◦(∆

¦
T ,∆¦

T ) ∼= ∆∨¦
T

¦⊗ L
B∆¦

T
∼= ∆¦

A(e) in D(Ae).
(3) We have a ring isomorphism EndD(A)(∆¦

T ) ∼= B/BfB.
(4) We have a ring isomorphism EndD(B◦)(∆¦

T ) ∼= (A/AeA)◦.
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Proof. 1. By Corollaries 2.19, 3.9, Proposition 3.11, we have isomorphisms in
D(Be):

R Hom¦
A(∆¦

T ,∆¦
T ) ∼= ∆¦

T

¦⊗ L
A∆∨¦

T

∼= ∆¦
B(f)

¦⊗ L
BT ¦ ¦⊗ L

AT∨¦ ¦⊗ L
B∆¦

B(f)

∼= ∆¦
B(f)

¦⊗ L
B∆¦

B(f)
∼= ∆¦

B(f).

2. By Remark 2.20, Corollary 2.19, we have isomorphisms in D(Ae):

R Hom¦
B◦(∆

¦
T ,∆¦

T ) = R Hom¦
B◦(T

¦ ¦⊗ L
A∆¦

A(e), T ¦ ¦⊗ L
A∆¦

A(e))

∼= R Hom¦
A◦(∆

¦
A(e),R Hom¦

B◦(T
¦, T ¦ ¦⊗ L

A∆¦
A(e)))

∼= R Hom¦
A◦(∆

¦
A(e),∆¦

A(e))
∼= ∆¦

A(e),

and have isomorphisms in D(Ae):

∆∨¦
T

¦⊗ L
B∆¦

T
∼= ∆¦

A(e)
¦⊗ L

AT∨¦ ¦⊗ L
BT ¦ ¦⊗ L

A∆¦
A(e)

∼= ∆¦
A(e)

¦⊗ L
A∆¦

A(e)
∼= ∆¦

A(e).

3. By Corollaries 2.19, 3.9, we have ring isomorphisms:

EndD(A)(∆¦
T ) ∼= EndD(B)(∆¦

T

¦⊗ L
AT∨¦)

∼= EndD(B)(∆¦
B(f)

¦⊗ L
BT ¦ ¦⊗ L

AT∨¦)
∼= EndD(B)(∆¦

B(f))
∼= B/BfB.

4. By taking cohomology of the isomorphism of 2, we have the statement by
Remark 2.20. ¤

We give some tilting complexes satisfying the following proposition in Section 4.

Proposition 3.14. Let A, B be k-projective algebras over a commutative ring
k, e an idempotent of A, P ¦ a recollement tilting complex related to e, and B ∼=
EndD(A)(P ¦). If P ¦ ¦⊗ L

A∆¦
A(e) ∼= ∆¦

A(e) in D(A), then the following hold.

(1) A/AeA ∼= B/BfB as a ring, where f is an idempotent of B corresponding
to e.

(2) The standard equivalence R Hom¦
A(T ¦,−) : D(A) → D(B) induces an equiv-

alence R0 Hom¦
A(T ¦,−)|Mod A/AeA : Mod A/AeA → Mod B/BfB, where

BT ¦
A is the associated two-sided tilting complex of P ¦.

Proof. 1. By the assumption, we have an isomorphism ResA∆¦
T
∼= ResA∆¦

A(e) in
D(A). By Corollary 2.19, Proposition 3.13, we have the statement.

2. Let D0
A/AeA(A) (resp., D0

B/BfB(B)) be the full subcategory of DA/AeA(A)
(resp., DB/BfB(B)) consisting of complexes X ¦ with Hi(X ¦) = 0 for i 6= 0. This
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category is equivalent to Mod A/AeA (res., Mod B/BfB). By Corollary 3.9, we
have isomorphisms in D(B):

∆∨¦
T
∼= ∆¦

A(e)
¦⊗ L

AT∨¦

∼= T ¦ ¦⊗ L
A∆¦

A(e)
¦⊗ L

AT∨¦

∼= ∆¦
B(f)

¦⊗ L
BT ¦ ¦⊗ L

AT∨¦

∼= ∆¦
B(f).

Define
F ′ = R Hom¦

A(∆¦
T ,−) : DA/AeA(A) → DB/BfB(B),

G′ = R Hom¦
A(∆∨¦

T ,−) : DB/BfB(B) → DA/AeA(A),

then they induce an equivalence between DA/AeA(A) and DB/BfB(B), by Proposi-
tion 3.11. For any X ∈ Mod A/AeA, we have isomorphisms in D(k):

ReskR Hom¦
A(∆¦

T , X) ∼= ReskR Hom¦
A(∆¦

A(e), X)
∼= X.

This means that Im F ′|Mod A/AeA is contained in D0
B/BfB(B). Similarly since we

have isomorphisms in D(k):

ReskR Hom¦
B(∆∨¦

T , Y ) ∼= ReskR Hom¦
B(∆¦

B(f), Y )
∼= Y,

for any Y ∈ Mod B/BfB, Im G′|Mod B/BfB is contained in D0
A/AeA(A). Therefore

F ′ and G′ induce an equivalence between D0
A/AeA(A) and D0

B/BfB(B). Since we
have isomorphisms in D(B):

R Hom¦
A(T ¦, X) ∼= R Hom¦

A(T ¦, ieA∗(X))
∼= ifB∗R Hom¦

A(∆¦
T , X)

for any X ∈ Mod A/AeA, we complete the proof. ¤

4. Tilting Complexes over symmetric Algebras

Throughout this section, A is a finite dimensional algebra over a field k, and
D = Homk(−, k). A is called a symmetric k-algebra if A ∼= DA as A-bimodules. In
the case of symmetric algebras, the following basic property has been seen in [18].

Lemma 4.1. Let A be a symmetric algebra over a field k, and P ¦ ∈ Kb(projA).
For a bounded complex X ¦ of finitely generated right A-modules, we have an iso-
morphism:

Hom¦
A(P ¦, X ¦) ∼= D Hom¦

A(X ¦, P ¦).
In particular we have an isomorphism:

HomK(A)(P ¦, X ¦[n]) ∼= D HomK(A)(X ¦, P ¦[−n])

for any n ∈ Z.

Definition 4.2. For a complex X ¦, we denote l(X ¦) = max{n | Hn(X ¦) 6= 0} −
min{n | Hn(X ¦) 6= 0}+ 1. We call l(X ¦) the length of a complex X ¦.

We redefine precisely Definition 2.12 for constructing tilting complexes.
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Definition 4.3. Let A be a finite dimensional algebra over a field k, M a finitely
generated A-module, and P ¦ : P s−r → . . . → P s−1 → P s ∈ Kb(projA) a partial
tilting complex of length r + 1. For an integer n ≥ 0, by induction, we construct a
family {∆¦

n(P ¦,M)}n≥0 of complexes as follows.
Let ∆¦

0(P
¦,M) = M . For n ≥ 1, by induction we construct a triangle ζn(P ¦,M):

P ¦
n[n + s− r − 1]

gn−→ ∆¦
n−1(P

¦,M) hn−−→ ∆¦
n(P ¦,M) → P ¦

n[n + s− r]

as follows. If HomK(A)(P ¦,∆¦
n−1(P

¦,M)[r − s − n + 1]) = 0, then we set P ¦
n = 0.

Otherwise, we take P ¦
n ∈ addP ¦ and a morphism g′n : P ¦

n → ∆¦
n−1(P

¦,M)[r −
s−n + 1] such that HomK(A)(P ¦, g′n) is a projective cover as EndD(A)(P ¦)-modules,
and gn = g′n[n + s − r − 1]. Moreover, ∆¦

∞(P ¦,M) = hocolim
−→

∆¦
n(P ¦,M) and

Θ¦
n(P ¦,M) = ∆¦

n(P ¦,M)⊕ P ¦[n + s− r].

By the construction, we have the following properties.

Lemma 4.4. For {∆¦
n(P ¦,M)}n≥0, we have isomorphisms:

Hr−n+i(∆¦
n(P ¦,M)) ∼= Hr−n+i(∆¦

n+j(P
¦,M))

for all i > 0 and ∞ ≥ j ≥ 0.

Lemma 4.5. For {∆¦
n(P ¦,M)}n≥0 and ∞ ≥ n ≥ r, we have

HomD(A)(P ¦,∆¦
n(P ¦,M)[i]) = 0

for all i 6= r − n− s.

Proof. Applying HomD(A)(P ¦,−) to ζn(P ¦,M) (n ≥ 1), in case of 0 ≤ n ≤ r we
have

HomD(A)(P ¦[s],∆¦
n(P ¦,M)[i]) = 0

for i > r − n or i < 0. Then in case of n ≥ r we have

HomD(A)(P ¦,∆¦
n(P ¦,M)[i]) = 0

for i 6= r − n− s. ¤

Theorem 4.6. Let A be a symmetric algebra over a field k, and P ¦ ∈ Kb(projA)
a partial tilting complex of length r + 1. Then the following are equivalent.

(1) Hi(∆¦
r(P

¦, A)) = 0 for all i > 0.
(2) Θ¦

n(P ¦, A) is a tilting complex for any n ≥ r.

Proof. According to the construction of ∆¦
n(P ¦, A), it is clear that Θ¦

n(P ¦, A) gen-
erates Kb(projA). By Lemmas 4.1 and 4.5, it is easy to see that Θ¦

n(P ¦, A) is a
tilting complex for A if and only if HomD(A)(∆¦

n(P ¦, A),∆¦
n(P ¦, A)[i]) = 0 for all

i > 0. By Lemma 4.4, we have

Hi(∆¦
r(P

¦, A)) ∼= Hi(∆¦
n(P ¦, A))

∼= HomD(A)(A,∆¦
n(P ¦, A)[i])

for all i > 0. For j ≤ n, applying HomD(A)(−,∆¦
n(P ¦, A)) to ζj(P ¦, A), we have

HomD(A)(∆¦
j(P

¦, A),∆¦
n(P ¦, A)[i]) ∼= HomD(A)(∆¦

j−1(P
¦, A),∆¦

n(P ¦, A)[i])

for all i > 0, because HomD(A)(P ¦[j+s−r−1],∆¦
n(P ¦, A)[i]) = 0 for all i ≥ 0. There-

fore HomD(A)(A,∆¦
n(P ¦, A)[i]) = 0 for all i > 0 if and only if HomD(A)(∆¦

n(P ¦, A),
∆¦

n(P ¦, A)[i]) = 0 for all i > 0. ¤
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Corollary 4.7. Let A be a symmetric algebra over a field k, P ¦ ∈ Kb(projA) a
partial tilting complex of length r + 1, and V ¦ the associated bimodule complex of
P ¦. Then the following are equivalent.

(1) Hi(∆¦
A(V ¦)) = 0 for all i > 0.

(2) Θ¦
n(P ¦, A) is a tilting complex for any n ≥ r.

Proof. According to Corollary 2.16, we have ∆¦
A(V ¦) ∼= ∆¦

∞(P ¦, A) in D(A). Since
Hi(∆¦

∞(P ¦, A)) ∼= Hi(∆¦
r(P

¦, A)) for i > 0, we complete the proof by Theorem
4.6. ¤

In the case of symmetric algebras, we have a complex version of extensions of
classical partial tilting modules which was showed by Bongartz [3].

Corollary 4.8. Let A be a symmetric algebra over a field k, and P ¦ ∈ Kb(projA)
a partial tilting complex of length 2. Then Θ¦

n(P ¦, A) is a tilting complex for any
n ≥ 1.

Proof. By the construction, ∆i
1(P

¦, A) = 0 for i > 0. According to Theorem 4.6 we
complete the proof. ¤

For an object M in an additive category, we denote by n(M) the number of
indecomposable types in addM .

Corollary 4.9. Let A be a symmetric algebra over a field k, and P ¦ ∈ Kb(projA)
a partial tilting complex of length 2. Then the following are equivalent.

(1) P ¦ is a tilting complex for A.
(2) n(P ¦) = n(A).

Proof. We may assume P ¦ : P−1 → P 0. Since Θ¦
1(P

¦, A) = P ¦ ⊕ ∆¦
1(P

¦, A), by
Corollary 4.8, we have n(A) = n(Θ¦

1(P
¦, A)) = n(P ¦) + m for some m ≥ 0. It is

easy to see that m = 0 if and only if addΘ¦
1(P

¦, A) = addP ¦. ¤

Lemma 4.10. Let θ : 1D(eAe) → je∗
A je

A! be the adjunction arrow, and let X ¦ ∈
D(eAe) and Y ¦ ∈ D(A). For h ∈ HomD(A)(je

A!(X
¦), Y ¦), let Φ(h) = je∗

A (h) ◦
θX , then Φ : HomD(A)(je

A!(X
¦), Y ¦) ∼−→ HomD(A)(X ¦, je∗

A Y ¦) is an isomorphism as
EndD(A)(X ¦)-modules.

Theorem 4.11. Let A be a symmetric algebra over a field k, e an idempotent of
A, Q¦ ∈ Kb(proj eAe) a tilting complex for eAe, and P ¦ = je

A!(Q
¦) ∈ Kb(projA) with

l(P ¦) = r + 1. For n ≥ r, the following hold.

(1) Θ¦
n(P ¦, A) is a recollement tilting complex related to e.

(2) A/AeA ∼= B/BfB, where B = EndD(A)(Θ¦
n(P ¦, A)) and f is an idempotent

of B corresponding to e.

Proof. We may assume P ¦ : P−r → . . . P−1 → P 0. Since je
A! is fully faithful,

HomD(A)(P ¦, P ¦[i]) = 0 for i 6= 0. Consider a family {∆¦
n(P ¦, A)}n≥0 of Definition

4.3 and triangles ζn(P ¦, A):

P ¦
n[n− r − 1]

gn−→ ∆¦
n−1(P

¦, A) hn−−→ ∆¦
n(P ¦, A) → P ¦

n[n− r].
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The morphism Φ of Lemma 4.10 induces isomorphisms between exact sequences in
Mod B:

HomD(A)(P
¦, P ¦

n[n− r − 1 + i]) → HomD(A)(P
¦, ∆¦

n−1(P
¦, A)[i]) →

↓ Φ ↓ Φ
HomD(eAe)(Q

¦, je∗
A P ¦

n[n− r − 1 + i]) → HomD(eAe)(Q
¦, je∗

A ∆¦
n−1(P

¦, A)[i]) →

HomD(A)(P
¦, ∆¦

n(P ¦, A)[i]) → HomD(A)(P
¦, P ¦

n[n− r + i])
↓ Φ ↓ Φ

HomD(eAe)(Q
¦, je∗

A ∆¦
n(P ¦, A)[i]) → HomD(eAe)(Q

¦, je∗
A P ¦

n[n− r + i])

for all i. By Lemma 4.10, we have je∗
A (ζn(P ¦, A)) ∼= ζn(Q¦, je∗

A A) in D(eAe), and
then {je∗

A (∆¦
n(P ¦, A))}n≥0

∼= {∆¦
n(Q¦, Ae)}n≥0. By lemma 4.5, it is easy to see that

HomD(eAe)(Q¦,∆¦
∞(Q¦, Ae)[i]) = 0

for all i ∈ Z. Since Q¦ is a tilting complex for eAe, ∆¦
∞(Q¦, Ae) is a null complex,

that is Hi(∆¦
∞(Q¦, Ae)) = 0 for all i ∈ Z. By Lemma 4.4, for n ≥ r we have

Hi(∆¦
n(Q¦, Ae)) = 0 for all i > 0. By the above isomorphism, for n ≥ r we have

Hi(∆¦
n(P ¦, A)) ∈ Mod A/AeA for all i > 0. On the other hand, ∆¦

n(P ¦, A) has the
form:

R¦ : R−n → . . . → R0 → R1 → . . . → Rr−1,

where Ri ∈ add eA for i 6= 0, and R0 = A ⊕ R
′0 with R

′0 ∈ add eA. Since
HomA(eA,Mod A/AeA) = 0, it is easy to see that ∆¦

n(P ¦, A) ∼= σ≤0∆
¦
n(P ¦, A)

(∼= σ≤0 . . . σ≤r−2∆
¦
n(P ¦, A) if r ≥ 2). Therefore, Hi(∆¦

n(P ¦, A)) = 0 for all i > 0,
and hence Θ¦

n(P ¦, A) is a recollement tilting complex related to e by Theorem 4.6.

Since Θ¦
n(P ¦, A) ∼= P ¦[n − r] ⊕ R¦ and je

A!(X
¦)

¦⊗ L
A∆¦

A(e) = ie∗A je
A!(X

¦) = 0 for

X ¦ ∈ D(eAe), we have an isomorphism Θ¦
n(P ¦, A)

¦⊗A ∆¦
A(e) ∼= ∆¦

A(e) in D(A). By
Proposition 3.14, we complete the proof. ¤
Corollary 4.12. Under the condition Theorem 4.11, let BT ¦

A be the associated two-
sided tilting complex of Θ¦

n(P ¦, A). Then the standard equivalence R Hom¦
A(T ¦,−) :

D(A) ∼−→ D(B) induces an equivalence R0 Hom¦
A(T ¦,−)|Mod A/AeA : Mod A/AeA

∼−→
Mod B/BfB.

Proof. By the proof of Theorem 4.11, we have T ¦ ¦⊗ L
A∆¦

A(e) ∼= ∆¦
A(e) in D(A). By

Proposition 3.14, we complete the proof. ¤
Remark 4.13. For a symmetric algebra A over a field k and an idempotent e of A,
eAe is also a symmetric k-algebra. Therefore, we have constructions of tilting com-
plexes with respect to any sequence of idempotents of A. Moreover, if a recollement
{DA/AeA(A),D(A),D(eAe)} is triangle equivalent to a recollement {DB/BfB(B),
D(B),D(fBf)}, then B and fBf are also symmetric k-algebras.

Remark 4.14. According to [17], under the condition of Theorem 4.11 we have
a stable equivalence modA

∼−→ modB which sends A/AeA-modules to B/BfB-
modules, where modA,modB are stable categories of finitely generated modules.
In particular, this equivalence sends simple A/AeA-modules to simple B/BfB-
modules.

Remark 4.15. Let A be a ring, and e an idempotent of A such that there is a
finitely generated projective resolution of Ae in Mod eAe. Then Hoshino and Kato
showed that Θ¦

n(eA,A) is a tilting complex if and only if Exti
A(A/AeA, eA) = 0
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for 0 ≤ i < n ([7]). In even this case, we have also A/AeA ∼= B/BfB, where
B = EndD(A)(Θ¦

n(eA,A)) and f is an idempotent of B corresponding to e. Moreover
if A, B are k-projective algebras over a commutative ring k, then by Proposition
3.14 the standard equivalence induces an equivalence Mod A/AeA

∼−→ Mod B/BfB.
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