3次関数の最大最小問題 1

以下の問題に対し,

- a. 微積を知っている高校生として解け。
- b. 微積を忘れた大学生として解け。
- **1** a を正の実数とする。たて a-x,よこ a+x,たかさ x の直方体の体積を最大にする x を求めよ。もちろん 0 < x < a である。
- 2 球に内接する円柱で体積最大のものを求めよ。
- **3** 1 辺が 12cm の正方形の厚紙の四すみから、合同な正方形を切り取った残りで、ふたのない直方体の箱を作る。箱の容積を最大にするには、どのようにすればよいか。
- 4 底面の直径と高さの和が 18cm である直円柱の体積が最大となるのは,高さが何 cm のときか。
- **5** 底面の半径 r, 高さ h の直円錐に、右の図(図は省略)のように内接する直円柱のうちで、体積が最大であるものの底面の半径と高さを求めよ。

[出典など]

- 1 独自問題。といっても問題2を手直ししただけ。おもしろくなくなったかも。
- 2 Miodrag S. Petković, Famous Puzzles of Great Mathematicians, American Mathematical Society, 2009, pp 94–95. このような円柱の直径と高さの比を求めよというのが Kepler の問題。
- 3, 4, 5 高等学校教科書「数学 II」, 数研出版.

3次関数の最大最小問題

3次関数 $y = x^3 + ax^2 + bx + c$, $a^2 > 3b$ を考える。

$$\alpha_{-2} = \frac{-a - 2\sqrt{a^2 - 3b}}{3}, \quad \alpha_{-1} = \frac{-a - \sqrt{a^2 - 3b}}{3}, \quad \alpha_0 = -\frac{a}{3},$$

$$\alpha_1 = \frac{-a + \sqrt{a^2 - 3b}}{3}, \quad \alpha_2 = \frac{-a + 2\sqrt{a^2 - 3b}}{3}$$

とおくと,

$$y = (x - \alpha_1)^2 (x - \alpha_{-2}) + \alpha_1^2 \alpha_{-2} + c \quad \cdots$$
 (1)

$$y = (x - \alpha_{-1})^2 (x - \alpha_2) + \alpha_{-1}^2 \alpha_2 + c \quad \cdots$$
 (2)

と書ける。ここで

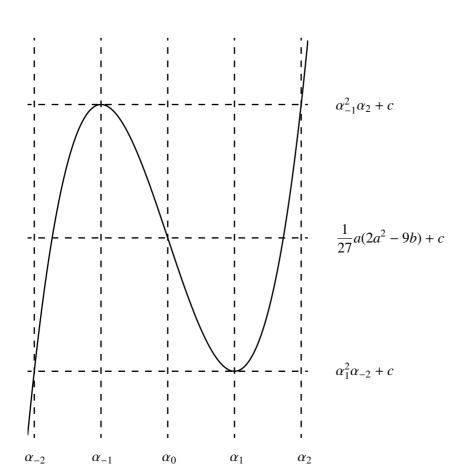
$$\alpha_1^2 \alpha_{-2} = \frac{1}{27} \left(a(2a^2 - 9b) - 2(a^2 - 3b)^{3/2} \right),\,$$

$$\alpha_{-1}^2 \alpha_2 = \frac{1}{27} \left(a(2a^2 - 9b) + 2(a^2 - 3b)^{3/2} \right)$$

である。

なお $\alpha_{-2} < \alpha_{-1} < \alpha_0 < \alpha_1 < \alpha_2$, $\alpha_1^2 \alpha_{-2} + c < \frac{1}{27} a(2a^2 - 9b) + c < \alpha_{-1}^2 \alpha_2 + c$ となっている。

- (1)より $x > \alpha_{-2}$ のとき $y \ge \alpha_1^2 \alpha_{-2} + c$ であり, $x = \alpha_1$ で極小値 $\alpha_1^2 \alpha_{-2} + c$ をとる。
- (2)より $x < \alpha_2$ のとき $y \le \alpha_{-1}^2 \alpha_2 + c$ であり、 $x = \alpha_{-1}$ で極大値 $\alpha_{-1}^2 \alpha_2 + c$ をとる。 この 3 次関数のグラフは以下のようになっている。



(1) の式から(2) の式に、あるいはその逆の変形は容易にできる。

$$y = (x - \alpha)^2 (x - \beta) + (\text{定数})$$

とする。計算すると

$$y = x^3 - (2\alpha + \beta)x^2 + \alpha(\alpha + 2\beta)x + (定数)$$

となる。

ここで

$$\alpha' = \frac{\alpha + 2\beta}{3}, \ \beta' = \frac{4\alpha - \beta}{3}$$

とおくと,

$$2\alpha' + \beta' = 2\alpha + \beta$$

$$\alpha'(\alpha' + 2\beta') = \alpha(\alpha + 2\beta)$$

となるので

$$y = (x - \alpha')^2 (x - \beta') + (定数)$$

と書ける。

なお $h = \frac{\alpha - \beta}{3}$ とおくと $\alpha' = \beta + h$, $\beta' = \alpha + h$ となっていることに注意 (前ページの図参照)。

解答例

1. 直方体の体積 V は

$$V = (a - x)(a + x)x$$
, $t \in U$ $0 < x < a$.

展開すると $V = -(x^3 - a^2x)$ となる。

$$\alpha_1 = \frac{\sqrt{3}}{3}a$$
, $\alpha_{-2} = -\frac{2\sqrt{3}}{3}a$, $\alpha_1^2 \alpha_{-2} = -\frac{2\sqrt{3}}{9}a^3$

より

$$V = -\left(x - \frac{\sqrt{3}}{3}a\right)^2 \left(x + \frac{2\sqrt{3}}{3}a\right) + \frac{2\sqrt{3}}{9}a^3.$$

$$0 < x < a$$
のとき $x + \frac{2\sqrt{3}}{3}a > 0$ だから $V \leq \frac{2\sqrt{3}}{9}a^3$ であり, $x = \frac{\sqrt{3}}{3}a$ で最大値 $\frac{2\sqrt{3}}{9}a^3$ をとる。

2. 球の半径を R, 内接する円柱の底面の半径を r, 高さを 2x とする。 $r = \sqrt{R^2 - x^2}$ だから,円柱の体積 V は,0 < x < R として

$$V = \pi r^2 \cdot 2x = 2\pi (R^2 - x^2)x = -2\pi (x^3 - R^2 x) = -2\pi \left(\left(x - \frac{\sqrt{3}}{3} R \right)^2 \left(x + \frac{2\sqrt{3}}{3} R \right) - \frac{2\sqrt{3}}{9} R^3 \right).$$

$$0 < x < R$$
のとき $x + \frac{2\sqrt{3}}{3}R > 0$ だから $V \le \frac{4\sqrt{3}}{9}\pi R^3$ であり, $x = \frac{\sqrt{3}}{3}R$ で最大値 $\frac{4\sqrt{3}}{9}\pi R^3$ をとる。

このとき,直径 =
$$2r = 2\sqrt{R^2 - x^2} = \frac{2\sqrt{6}}{3}R$$
 で 高さ = $2x = \frac{2\sqrt{3}}{3}R$ だから 直径 = $\sqrt{2}$.

3. 切り取る正方形の 1 辺の長さを x cm とすると、箱の容積 V は

$$V = (12 - 2x)^2 x = 4(x - 6)^2 x$$
, $t = 0 < x < 6$.

$$\frac{6-0}{3}$$
 = 2, 0+2=2, 6+2=8より $V=4(x-2)^2(x-8)+128$. なお定数項は計算した。

0 < x < 6のとき x - 8 < 0 だから $V \le 128$ であり,x = 2 で最大値 128 をとる。

- **4.** 高さをh cm とすると,底面の半径は $\frac{18-h}{2}$ cm だから,円柱の体積V は $V = \pi \left(\frac{18-h}{2}\right)^2 h = \frac{\pi}{4}(h-18)^2 h$, ただし0 < h < 18.
- $\frac{18-0}{3}=6$, 0+6=6, 18+6=24 より $V=\frac{\pi}{4}((x-6)^2(x-24)+864)$. なお定数項は計算した。 0< h<18 のとき x-24<0 だから $V\leq\frac{\pi}{4}\cdot864=216\pi$ であり,h=6 で最大値 216π をとる。
- **5.** 直円柱の底面の半径を x, 高さを y とすると, $\frac{y}{r-x}=\frac{h}{r}$ が成り立つので, $y=\frac{h}{r}(r-x)$ となる。よって円柱の体積 V は

$$\frac{0-r}{3} = -\frac{r}{3}, \quad r - \frac{r}{3} = \frac{2r}{3}, \quad 0 - \frac{r}{3} = -\frac{r}{3} \ \, \& \, 0 \ \, V = -\frac{\pi h}{r} \left(\left(x - \frac{2r}{3} \right)^2 \left(x + \frac{r}{3} \right) - \frac{4r^3}{27} \right).$$

0 < x < r のとき $x + \frac{r}{3} > 0$ だから $V \le -\frac{\pi h}{r} \left(-\frac{4r^3}{27} \right) = \frac{4}{27} \pi r^2 h$ であり, $x = \frac{2r}{3}$ で最大値 $\frac{4}{27} \pi r^2 h$ をとる。

このとき円柱の高さは $y = \frac{h}{r} \left(r - \frac{2r}{3} \right) = \frac{h}{3}$ である。

ひとりごと

微積を忘れた大学生がこんな式変形できるのかな? 微分すればスマートに解けるものを。

(滝沢 清)